Management of Hazardous Waste Generated from the Natural Gas Sweetening Process in Gas Refineries (Case Study: South Pars Phases 9 and 10)

Authors

    Ataollah Ghasemi Department of Environmental Management, BA.C, Islamic Azad University, Bandar Abbas, Iran
    Saber Ghasemi * Department of Environmental Management, BA.C, Islamic Azad University, Bandar Abbas, Iran 5679512645@iau.ir
    Mohsen Dehghani Ghanatghestani Department of Environmental Management, BA.C, Islamic Azad University, Bandar Abbas, Iran
    Vali Alipour Professor of Environmental Health Engineering, Environmental Health Engineering Department, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

Keywords:

hazardous waste management, gas sweetening, refinery, nanocomposite membrane

Abstract

The aim of this study was to manage hazardous waste generated from the natural gas sweetening process in gas refineries using PEBAX nanocomposite membrane technology. In this regard, data related to the type, quantity, and characteristics of the waste produced in the Fifth South Pars Gas Refinery were collected and classified over a 12-month period by the HSE unit. Based on the data analysis, spent amine solutions were identified as the most significant source of hazardous waste generation. To control this source at its origin, the PEBAX membrane technology was considered as an innovative method to replace part of the amine absorption process, thereby reducing the acidic gas load and decreasing the need for frequent regeneration or replacement of the amine solution, ultimately lowering hazardous waste production. For technical evaluation of this approach, the geometric model of the membrane module was designed in COMSOL Multiphysics and simulated using the Transport of Diluted Species and Laminar Flow modules. In this model, the effects of parameters such as pressure, temperature, and membrane layer thickness on the transfer rate of CO₂ and H₂S gases were examined. Simulation results indicated that the PEBAX nanocomposite membrane has a high capacity for acidic gas separation and can effectively contribute to hazardous waste management by reducing pollutant load in the feed gas stream. The findings suggest that employing this technology, alongside appropriate managerial policies, can provide an effective strategy for minimizing waste generation at the source and enhancing the environmental performance of the country’s gas refineries.

References

Afshoun, H. R., Chenar, M. P., & Ismail, A. F. (2017). Effect of Coating Method and Feed Pressure and Temperature on CO2/CH4 Gas Separation Performance of Pebax/PES Composite Membranes. Journal of Gas Technology, 3(1), 48-65. https://www.jgt.irangi.org/article_251624.html

Amini, Z., & Asghari, M. (2018). Preparation and characterization of ultra-thin poly ether block amide/nanoclay nanocomposite membrane for gas separation. Applied Clay Science, 166, 230-241. https://doi.org/10.1016/j.clay.2018.09.025

Ariazadeh, M., Farashi, Z., Azizi, N., & Khajouei, M. (2020). Influence of functionalized SiO₂ nanoparticles on the morphology and CO₂/CH₄ separation efficiency of Pebax-based mixed-matrix membranes. Korean Journal of Chemical Engineering, 37, 295-306. https://doi.org/10.1007/s11814-019-0350-7

Chen, Z., Zhang, P., Wu, H., Sun, S., You, X., Yuan, B., Hou, J., Duan, C., & Jiang, Z. (2022). Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation. Separation and Purification Technology, 288, 120682. https://doi.org/10.1016/j.seppur.2022.120682

Delavari, M., Beyranvand, F., Jahangiri, M., & Abdipour, H. (2024). Increasing the Permeability of Carbon Dioxide and Nitrogen Gases Through a Polymer Membrane Consisting of a Modified Polyether Block Amide and Experimental Design. Journal of Polymers and the Environment, 32(10), 4822-4841. https://doi.org/10.1007/s10924-024-03247-z

Eljaddi, T., Bouillon, J., Roizard, D., & Lebrun, L. (2022). Pebax-Based Composite Membranes with High Transport Properties Enhanced by ZIF-8 for CO2 Separation. Membranes, 12, 836. https://doi.org/10.3390/membranes12090836

Elyasi Kojabad, M., Amirabedi, P., & Dorfeshan, M. (2024). Enhanced CO2 Separation Using Pebax Membrane Modified with Ethylene Glycol Monophenyl Ether. Journal of Gas Technology, 9(2), 28-38. https://www.jgt.irangi.org/article_721338.html?lang=en

Elyasi, M., & Norouzi, A. (2025). Pebax / NCPCL membrane containing well-distributed PCL grafted biodegradable nano-chitosan particles for CO2 separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 705, 135576. https://doi.org/10.1016/j.colsurfa.2024.135576

Feng, S., Ren, J., Zhao, D., Li, H., Hua, K., Li, X., & Deng, M. (2019). Effect of poly(ethylene glycol) molecular weight on CO2/N2 separation performance of poly(amide-12-b-ethylene oxide)/poly(ethylene glycol) blend membranes. J. Energy Chem., 28, 39-45. https://doi.org/10.1016/j.jechem.2017.10.014

Harrigan, D. J., Yang, J., Sundell, B. J., Lawrence, J. A., O'Brien, J. T., & Ostraat, M. L. (2020). Sour gas transport in poly(ether-b-amide) membranes for natural gas separations. Journal of Membrane Science, 595, 117497. https://doi.org/10.1016/j.memsci.2019.117497

Hassanzadeh, H., Abedini, R., & Ghorbani, M. (2022). CO2 Separation over N2 and CH4 Light Gases in Sorbitol-Modified Poly (ether- block -amide) (Pebax 2533) Membrane. Industrial & Engineering Chemistry Research, 61(36), 13669-13682. https://doi.org/10.1021/acs.iecr.2c02760

Hosseinkhani, A., Omidkhah, M., & Ebadi Amooghin, A. (2024). Fine-tuning CO2 separation of mixed matrix membranes by constructing efficient transport pathways through the addition of hybrid porous 2D nanosheets. Chemical Engineering Journal Advances, 20, 100685. https://doi.org/10.1016/j.ceja.2024.100685

Huang, G., Isfahani, A. P., Muchtar, A., Sakurai, K., Shrestha, B. B., Qin, D., Yamaguchi, D., Sivaniah, E., & Ghalei, B. (2018). Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. J. Membr. Sci., 565, 370-379. https://doi.org/10.1016/j.memsci.2018.08.026

Huang, G., Pournaghshband, A., Muchtar, A., & Sakurai, K. (2018). Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. Journal of Membrane Science, 565, 370-379. https://doi.org/10.1016/j.memsci.2018.08.026

Jiao, C., Li, Z., Li, X., Wu, M., & Jiang, H. (2021). Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8. Sep. Purif. Technol., 259, 118190. https://doi.org/10.1016/j.seppur.2020.118190

Kojabad, M. E., Babaluo, A., & Tavakoli, A. (2021). A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (etherblock-amide) for CO2/N2 separation: Molecular simulation and experimental study. Separation and Purification Technology, 118494. https://doi.org/10.1016/j.seppur.2021.118494

Li, H., Tuo, L., Yang, K., Jeong, H., Dai, Y., He, G., & Zhao, W. (2016). Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid. Journal of Membrane Science, 511, 130-142. https://doi.org/10.1016/j.memsci.2016.03.050

Liu, Y., Zhou, Z., Zhang, B., Wu, C., Liu, W., & Guo, H. (2022). Upgrading CO₂/CH₄ separation performances of Pebax-based mixed-matrix membranes incorporated with core/shell-structured ZIF-L(Co)@ZIF-8 composite nanosheets. Journal of Membrane Science, 659, 120787. https://doi.org/10.1016/j.memsci.2022.120787

Meshkat, S., Kaliaguine, S., & Rodrigue, D. (2019). Enhancing CO2 separation performance of Pebax® MH-1657 with aromatic carboxylic acids. Sep. Purif. Technol., 212, 901-912. https://doi.org/10.1016/j.seppur.2018.12.008

Meshkat, S., Kaliaguine, S., & Rodrigue, D. (2020). Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO₂ separation. Separation and Purification Technology, 235, 116150. https://doi.org/10.1016/j.seppur.2019.116150

Narkkun, T., Kraithong, W., Ruangdit, S., Klaysom, C., Faungnawakij, K., & Itthibenchapong, V. (2023). Pebax/Modified Cellulose Nanofiber Composite Membranes for Highly Enhanced CO₂/CH₄ Separation. Acs Omega, 8(48), 45428-45437. https://doi.org/10.1021/acsomega.3c04800

Nobakht, D., & Abedini, R. (2023). A new ternary Pebax®1657/maltitol/ZIF-8 mixed matrix membrane for efficient CO₂ separation. Process Safety and Environmental Protection, 170, 709-719. https://doi.org/10.1016/j.psep.2022.12.058

Sanaeepur, H., Ahmadi, R., Ebadi, A., & Ghanbari, D. (2019). A novel ternary mixed matrix membrane containing glycerol-modified poly (ether- block -amide) (Pebax 1657)/copper nanoparticles for CO2 separation. Journal of Membrane Science, 573, 234-246. https://doi.org/10.1016/j.memsci.2018.12.012

Tu, W., Wang, X., & Zhao, J. (2024). Engineering highly reversible hydrogen bonding in polymeric membranes for efficient H₂S and CO₂ removal from natural gas. Journal of Membrane Science, 688, 121639. https://doi.org/10.1016/j.memsci.2024.122618

Yoon, S. S., Lee, H. K., & Hong, S. R. (2021). CO₂/N₂ Gas Separation Using Pebax/ZIF-7-PSf Composite Membranes. Membranes, 11(9), 708. https://doi.org/10.3390/membranes11090708

Zhang, Y., Tong, Y., Li, X., Guo, S., Zhang, H., Chen, X., Cai, K., Cheng, L., & He, W. (2021). Pebax Mixed-Matrix Membrane with Highly Dispersed ZIF-8@CNTs to Enhance CO₂/N₂ Separation. Acs Omega, 6(29), 18566-18575. https://doi.org/10.1021/acsomega.1c00493

Zhou, T., Luo, L., Hu, S., Wang, S., Zhang, R., & Wu, H. (2015). Janus composite nanoparticle-incorporated mixed matrix membranes for CO2 separation. Journal of Membrane Science, 489, 1-10. https://doi.org/10.1016/j.memsci.2015.03.070

Downloads

Published

2026-01-01

Submitted

2025-08-01

Revised

2025-12-07

Accepted

2025-12-10

Issue

Section

Articles

How to Cite

Ghasemi, A., Ghasemi, S., Dehghani Ghanatghestani, M., & Alipour, V. (2026). Management of Hazardous Waste Generated from the Natural Gas Sweetening Process in Gas Refineries (Case Study: South Pars Phases 9 and 10). Journal of Resource Management and Decision Engineering, 1-13. https://journalrmde.com/index.php/jrmde/article/view/221

Similar Articles

101-110 of 144

You may also start an advanced similarity search for this article.