Management of Hazardous Waste Generated from the Natural Gas Sweetening Process in Gas Refineries (Case Study: South Pars Phases 9 and 10)
Keywords:
hazardous waste management, gas sweetening, refinery, nanocomposite membraneAbstract
The aim of this study was to manage hazardous waste generated from the natural gas sweetening process in gas refineries using PEBAX nanocomposite membrane technology. In this regard, data related to the type, quantity, and characteristics of the waste produced in the Fifth South Pars Gas Refinery were collected and classified over a 12-month period by the HSE unit. Based on the data analysis, spent amine solutions were identified as the most significant source of hazardous waste generation. To control this source at its origin, the PEBAX membrane technology was considered as an innovative method to replace part of the amine absorption process, thereby reducing the acidic gas load and decreasing the need for frequent regeneration or replacement of the amine solution, ultimately lowering hazardous waste production. For technical evaluation of this approach, the geometric model of the membrane module was designed in COMSOL Multiphysics and simulated using the Transport of Diluted Species and Laminar Flow modules. In this model, the effects of parameters such as pressure, temperature, and membrane layer thickness on the transfer rate of CO₂ and H₂S gases were examined. Simulation results indicated that the PEBAX nanocomposite membrane has a high capacity for acidic gas separation and can effectively contribute to hazardous waste management by reducing pollutant load in the feed gas stream. The findings suggest that employing this technology, alongside appropriate managerial policies, can provide an effective strategy for minimizing waste generation at the source and enhancing the environmental performance of the country’s gas refineries.
References
Afshoun, H. R., Chenar, M. P., & Ismail, A. F. (2017). Effect of Coating Method and Feed Pressure and Temperature on CO2/CH4 Gas Separation Performance of Pebax/PES Composite Membranes. Journal of Gas Technology, 3(1), 48-65. https://www.jgt.irangi.org/article_251624.html
Amini, Z., & Asghari, M. (2018). Preparation and characterization of ultra-thin poly ether block amide/nanoclay nanocomposite membrane for gas separation. Applied Clay Science, 166, 230-241. https://doi.org/10.1016/j.clay.2018.09.025
Ariazadeh, M., Farashi, Z., Azizi, N., & Khajouei, M. (2020). Influence of functionalized SiO₂ nanoparticles on the morphology and CO₂/CH₄ separation efficiency of Pebax-based mixed-matrix membranes. Korean Journal of Chemical Engineering, 37, 295-306. https://doi.org/10.1007/s11814-019-0350-7
Chen, Z., Zhang, P., Wu, H., Sun, S., You, X., Yuan, B., Hou, J., Duan, C., & Jiang, Z. (2022). Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation. Separation and Purification Technology, 288, 120682. https://doi.org/10.1016/j.seppur.2022.120682
Delavari, M., Beyranvand, F., Jahangiri, M., & Abdipour, H. (2024). Increasing the Permeability of Carbon Dioxide and Nitrogen Gases Through a Polymer Membrane Consisting of a Modified Polyether Block Amide and Experimental Design. Journal of Polymers and the Environment, 32(10), 4822-4841. https://doi.org/10.1007/s10924-024-03247-z
Eljaddi, T., Bouillon, J., Roizard, D., & Lebrun, L. (2022). Pebax-Based Composite Membranes with High Transport Properties Enhanced by ZIF-8 for CO2 Separation. Membranes, 12, 836. https://doi.org/10.3390/membranes12090836
Elyasi Kojabad, M., Amirabedi, P., & Dorfeshan, M. (2024). Enhanced CO2 Separation Using Pebax Membrane Modified with Ethylene Glycol Monophenyl Ether. Journal of Gas Technology, 9(2), 28-38. https://www.jgt.irangi.org/article_721338.html?lang=en
Elyasi, M., & Norouzi, A. (2025). Pebax / NCPCL membrane containing well-distributed PCL grafted biodegradable nano-chitosan particles for CO2 separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 705, 135576. https://doi.org/10.1016/j.colsurfa.2024.135576
Feng, S., Ren, J., Zhao, D., Li, H., Hua, K., Li, X., & Deng, M. (2019). Effect of poly(ethylene glycol) molecular weight on CO2/N2 separation performance of poly(amide-12-b-ethylene oxide)/poly(ethylene glycol) blend membranes. J. Energy Chem., 28, 39-45. https://doi.org/10.1016/j.jechem.2017.10.014
Harrigan, D. J., Yang, J., Sundell, B. J., Lawrence, J. A., O'Brien, J. T., & Ostraat, M. L. (2020). Sour gas transport in poly(ether-b-amide) membranes for natural gas separations. Journal of Membrane Science, 595, 117497. https://doi.org/10.1016/j.memsci.2019.117497
Hassanzadeh, H., Abedini, R., & Ghorbani, M. (2022). CO2 Separation over N2 and CH4 Light Gases in Sorbitol-Modified Poly (ether- block -amide) (Pebax 2533) Membrane. Industrial & Engineering Chemistry Research, 61(36), 13669-13682. https://doi.org/10.1021/acs.iecr.2c02760
Hosseinkhani, A., Omidkhah, M., & Ebadi Amooghin, A. (2024). Fine-tuning CO2 separation of mixed matrix membranes by constructing efficient transport pathways through the addition of hybrid porous 2D nanosheets. Chemical Engineering Journal Advances, 20, 100685. https://doi.org/10.1016/j.ceja.2024.100685
Huang, G., Isfahani, A. P., Muchtar, A., Sakurai, K., Shrestha, B. B., Qin, D., Yamaguchi, D., Sivaniah, E., & Ghalei, B. (2018). Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. J. Membr. Sci., 565, 370-379. https://doi.org/10.1016/j.memsci.2018.08.026
Huang, G., Pournaghshband, A., Muchtar, A., & Sakurai, K. (2018). Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. Journal of Membrane Science, 565, 370-379. https://doi.org/10.1016/j.memsci.2018.08.026
Jiao, C., Li, Z., Li, X., Wu, M., & Jiang, H. (2021). Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8. Sep. Purif. Technol., 259, 118190. https://doi.org/10.1016/j.seppur.2020.118190
Kojabad, M. E., Babaluo, A., & Tavakoli, A. (2021). A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (etherblock-amide) for CO2/N2 separation: Molecular simulation and experimental study. Separation and Purification Technology, 118494. https://doi.org/10.1016/j.seppur.2021.118494
Li, H., Tuo, L., Yang, K., Jeong, H., Dai, Y., He, G., & Zhao, W. (2016). Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid. Journal of Membrane Science, 511, 130-142. https://doi.org/10.1016/j.memsci.2016.03.050
Liu, Y., Zhou, Z., Zhang, B., Wu, C., Liu, W., & Guo, H. (2022). Upgrading CO₂/CH₄ separation performances of Pebax-based mixed-matrix membranes incorporated with core/shell-structured ZIF-L(Co)@ZIF-8 composite nanosheets. Journal of Membrane Science, 659, 120787. https://doi.org/10.1016/j.memsci.2022.120787
Meshkat, S., Kaliaguine, S., & Rodrigue, D. (2019). Enhancing CO2 separation performance of Pebax® MH-1657 with aromatic carboxylic acids. Sep. Purif. Technol., 212, 901-912. https://doi.org/10.1016/j.seppur.2018.12.008
Meshkat, S., Kaliaguine, S., & Rodrigue, D. (2020). Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO₂ separation. Separation and Purification Technology, 235, 116150. https://doi.org/10.1016/j.seppur.2019.116150
Narkkun, T., Kraithong, W., Ruangdit, S., Klaysom, C., Faungnawakij, K., & Itthibenchapong, V. (2023). Pebax/Modified Cellulose Nanofiber Composite Membranes for Highly Enhanced CO₂/CH₄ Separation. Acs Omega, 8(48), 45428-45437. https://doi.org/10.1021/acsomega.3c04800
Nobakht, D., & Abedini, R. (2023). A new ternary Pebax®1657/maltitol/ZIF-8 mixed matrix membrane for efficient CO₂ separation. Process Safety and Environmental Protection, 170, 709-719. https://doi.org/10.1016/j.psep.2022.12.058
Sanaeepur, H., Ahmadi, R., Ebadi, A., & Ghanbari, D. (2019). A novel ternary mixed matrix membrane containing glycerol-modified poly (ether- block -amide) (Pebax 1657)/copper nanoparticles for CO2 separation. Journal of Membrane Science, 573, 234-246. https://doi.org/10.1016/j.memsci.2018.12.012
Tu, W., Wang, X., & Zhao, J. (2024). Engineering highly reversible hydrogen bonding in polymeric membranes for efficient H₂S and CO₂ removal from natural gas. Journal of Membrane Science, 688, 121639. https://doi.org/10.1016/j.memsci.2024.122618
Yoon, S. S., Lee, H. K., & Hong, S. R. (2021). CO₂/N₂ Gas Separation Using Pebax/ZIF-7-PSf Composite Membranes. Membranes, 11(9), 708. https://doi.org/10.3390/membranes11090708
Zhang, Y., Tong, Y., Li, X., Guo, S., Zhang, H., Chen, X., Cai, K., Cheng, L., & He, W. (2021). Pebax Mixed-Matrix Membrane with Highly Dispersed ZIF-8@CNTs to Enhance CO₂/N₂ Separation. Acs Omega, 6(29), 18566-18575. https://doi.org/10.1021/acsomega.1c00493
Zhou, T., Luo, L., Hu, S., Wang, S., Zhang, R., & Wu, H. (2015). Janus composite nanoparticle-incorporated mixed matrix membranes for CO2 separation. Journal of Membrane Science, 489, 1-10. https://doi.org/10.1016/j.memsci.2015.03.070
Downloads
Published
Submitted
Revised
Accepted
Issue
Section
License
Copyright (c) 2026 Ataollah Ghasemi (Author); Saber Ghasemi; Mohsen Dehghani Ghanatghestani, Vali Alipour (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

