Analysis of the Retrofit Method for Concrete Structures Using Steel Bracing Connection
Keywords:
steel bracing connection, concrete-filled steel tube (CFT), concrete structure retrofitting, end plate, steel plate core, yielding zone, seismic performanceAbstract
Retrofitting concrete structures is considered one of the key methods for improving seismic performance and enhancing the safety of buildings. In this study, the steel bracing connection has been analyzed as an effective solution to increase the strength and stiffness of concrete structures. By using numerical models and examining nonlinear behavior, the effect of bracings on improving flexural and shear resistance, reducing lateral displacement, and controlling crack propagation was evaluated. The results indicate that proper connection design, accurate determination of internal core spacing, and the use of concrete-filled steel tubes (CFT) along with reinforcing elements such as steel plates and end rings play a significant role in enhancing structural performance. The findings can provide practical guidance for engineers in strengthening and retrofitting existing concrete structures, while minimizing the destructive impacts caused by seismic and dynamic loadings.
References
ACI Committee. Report on the Physical Properties and Durability of Fiber-Reinforced Concrete. https://www.tagroup.com.lb/uploads/downloads/Physical_Properties_Durability_Report(5445r_10).pdf
Al-Rumaithi, A. M. (2025). Nonlinear 3D FE Solver for Steel and Concrete 2. MATLAB Central File Exchange.
Antoine, E. N. (1985). Fiber reinforced for concrete. Concrete international, 21-258. https://www.matec-conferences.org/articles/matecconf/ref/2014/01/matecconf_bust2013_02004/matecconf_bust2013_02004.html
Batson, G., Ball, C., Bailey, L., Landers, E., & Hooks, J. (1972). Flexural Fatigue Strength of Steel Fiber Reinforced Concerete Beames. ACI Journal, 69(11), 673-677. https://doi.org/10.14359/11275
Beddar, M. (2008). Development of steel fiber reinforced concrete from antiquity until the present option. Dundee, UK, 35-44. https://www.jsce.ir/article_46856.html
Black, C., Makris, N., & Aiken, I. (2001). Component testing, stability analysis and characterization of buckling restrained braces. Final Report to Nippon Steel Corporation. https://peer.berkeley.edu/sites/default/files/0208_c._black_n._makris_i._aiken.pdf
Brown, R., Shukla, A., & Natarajan, K. R. (2002). Fiber Reinforcement of Concrete Structures. https://rosap.ntl.bts.gov/view/dot/16102/dot_16102_DS1.pdf
Choi, H., & Kim, J. (2006). Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum. Engineering Structures, 304-311. https://doi.org/10.1016/j.engstruct.2005.08.008
Choi, H., Kim, J., & Chung, L. (2006). Seismic design of buckling-restrained braced frames based on a modified energy-balance concept. Canadian Journal of Civil Engineering, 33, 1251-1260. https://doi.org/10.1139/l06-068
Decanini, L. D., & Mollaioli, F. (2002). An energy-based methodology for the assessment of seismic demand. Soil Dynamic and Earthquake Engineering, 21(1), 113-137. https://doi.org/10.1016/S0267-7261(00)00102-0
Ejaz, K. T. (2023). A Study on Shell Structures Through a Comparative Case Study Analysis https://repository.bilkent.edu.tr/items/3dffc721-995a-4301-9a16-717fa58fd1df
Eren, O., Yüksel, N., Börklü, H. R., Sezer, H. K., & Canyurt, O. E. (2024). Deep learning-enabled design for tailored mechanical properties of SLM -manufactured metallic lattice structures. Engineering Applications of Artificial Intelligence, 130, 107685. https://doi.org/10.1016/j.engappai.2023.107685
Fahnestock, L. A., Sause, R., & Ricles, J. M. (2007). Seismic Response and Performance of Buckling-Restrained Braced Frames. Journal of Structural Engineering, 133(9), 1195-1204. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1195)
Fajfar, P., & Vidic, T. (1991). Consistent inelastic design spectra: Hysteretic and input energy. Earthquake Engineering and Structures Dynamics, 23(5), 523-537. https://doi.org/10.1002/eqe.4290230505
Farshad, M. (2013). Design and analysis of shell structures (Vol. 16). https://link.springer.com/book/10.1007/978-94-017-1227-9
Hadi, M. (2008). An investigation of steel and polypropylene fiber reinforced concrete slabs. Proceedings.Int Conference Concrete Constructions sustainable option, 233-244.
Hassoun, M. N., & Al-Manaseer, A. (2020). Structural concrete: theory and design. John Wiley & Sons. https://www.wiley.com/en-us/Structural+Concrete%3A+Theory+and+Design%2C+7th+Edition-p-00037037
Houghton, D. L., Borge, O. E., & Paxton, J. A. (1978). Cavitation Resistance of Some Special Concretes. ACI Journal Proceedings, 75(12), 664-667. https://doi.org/10.14359/10979
Housner, G. (1956). Limit design of structures to resist earthquakes. Proceedings of the first world conference on earthquake engineering. https://www.iitk.ac.in/nicee/wcee/article/1_5-1.pdf
Huang, Y. H., Wada, A., Sugihara, H., Narikawa, M., Takeuchi, T., & Iwata, M. (2000). Seismic performance of moment resistant steel frame with hysteretic damper. The 3rd International Conference STESSA. https://www.scribd.com/document/462902118/NEHRP-Seismic-Design-Technical-Brief-No-part-2-pdf
Kim, J., Choi, H., & Chung, L. (2004). Energy-based seismic design of structures with buckling-restrained braces. Steel and Composite Structures, 6(4), 639-706. https://doi.org/10.12989/scs.2004.4.6.437
Kim, J., & Seo, Y. (2004). Seismic design of low-rise steel frames with buckling-restrained braces. Engineering Structures, 543-551. https://doi.org/10.1016/j.engstruct.2003.11.005
Kimura, K., Takeda, Y., Yoshioka, K., Furuya, N., & Takemoto, Y. (1976). An experimental study on braces encased in steel tube and mortar. Proc., Annual Meeting of the Architectural Institute of Japan.
Kormeling, H. A., Reinhardt, H. W., & Shah, S. P. (1980). Static and Fatigue Propertiec of Concrete Beams Reinforced with Continuous Bar and with Fibers. ACI Journal Proceedings, 77(1), 36-43. https://doi.org/10.14359/6989
Leuratti, N., Marangoni, G., Drouet, L., Kamp, L. M., & Kwakkel, J. (2025). Green hydrogen in the iron and steel industry increases resilience against shocks in energy prices. Environmental Research Letters, 20(2), 024021. https://doi.org/10.1088/1748-9326/ada2b3
Ma, Q., Rejab, M. R. M., Siregar, J. P., & Guan, Z. (2021). A review of the recent trends on core structures and impact response of sandwich panels. Journal of Composite Materials, 55(18), 2513-2555. https://doi.org/10.1177/0021998321990734
Mavros, M., Panagiotou, M., Koutromanos, I., Alvarez, R., & Restrepo, J. I. (2022). Seismic analysis of a modern 14‐story reinforced concrete core wall building system using the BTM‐shell methodology. Earthquake Engineering & Structural Dynamics, 51(6), 1540-1562. https://doi.org/10.1002/eqe.3627
McKee.D.C. (1969). the propertice of an Expansive cement Mortar Reinforced with Random wire Fibers ETH - ph.D Thesis urbana.
Merritt, S., Uang, C. M., & Benzoni, G. (2003). Subassemblage testing of star seismic buckling-restrained braces. Report TR-2003/04. Structural Systems Research Projects, Department of Structural Engineering, University of California, San Diego.
Michiels, T., & Adriaenssens, S. (2017). Identification of key design parameters for earthquake resistance of reinforced concrete shell structures. Engineering Structures, 153, 411-420. https://doi.org/10.1016/j.engstruct.2017.10.043
Mochizuki, N., Murata, Y., Andou, N., & Takahashi, S. (1980). An experimental study on buckling of unbonded braces under centrally applied loads. Proc., Annual Meeting of the Architectural Institute of Japan. https://jace.chd.edu.cn/en/oa/DArticle.aspx?type=view&id=201906011
Moens, J. E. C. (1976). Steel Fiber concrete Mix proportioning. philadelphi.
Patil, A., & Patil, R. (2024). Seismic Analysis of a Multi Storied Steel Building With Different Types of Damper and Base Isolation. https://doi.org/10.21203/rs.3.rs-4007536/v1
Quresh, L. A. (2008). Effect of mixing steel fibers and silica fume on properties of high strength concrete. Proceedings.Int Conference Concrete : Constructions sustainable option, 173-185. https://journals.guilan.ac.ir/article_1534.html
Ramm, E., & Mehlhorn, G. (1991). On shape finding methods and ultimate load analyses of reinforced concrete shells. Engineering Structures, 13(2), 178-198. https://doi.org/10.1016/0141-0296(91)90050-M
Ross, A., & Mipenz, B. (2008). Steel fibre reinforced concrete. Quality, performance
specification. https://scholar.google.com/scholar?q=Steel+fibre+reinforced+concrete+-+Quality,+p.,+et+al.+(2008).&hl=en&as_sdt=0&as_vis=1&oi=scholart
Sabelli, R., Mahin, S., & Chang, C. (2003). Seismic demands on steel braced frame buildings with buckling restrained braces. Engineering Structures, 655-666. https://doi.org/10.1016/j.engstruct.2003.11.005
Schader, E. K., & Munch, A. V. (1976). Fibrous Concrete Repair of Cavitation Damage. Proceedings, ASCE, 102(CO2), 385-399. https://doi.org/10.1061/JCCEAZ.0000614
Takeuchi, T., Hajjar, J. F., Matsui, R., Nishimoto, K., & Aiken, I. D. (2010). Local buckling restraint condition for core plates in buckling restrained braces. Journal of Constructional Steel Research, 139-149. https://doi.org/10.1016/j.jcsr.2009.09.002
Tsai, K. C., & Li, J. W. (1997). DRAIN2D+, A general purpose computer program for static and dynamic analyses of inelastic 2D structures supplemented with a graphic processor. Report No. CEER/R86-07. National Taiwan University. https://koreascience.kr/article/JAKO200421349902979.page
Uang, C. M., & Bertero, V. V. (1988). Use of energy as a design criterion in earthquake resistant design. Report No. UCB/EERC-88/18. Earthquake Engineering Research Center, University of California at Berkeley. https://www.jsce.ir/m/article_47359.html
Wada, A., Saeki, E., Takeuchi, T., & Watanabe, A. (1989). Development of unbonded brace. Column Technical Publication, 12(115). https://e-tarjome.com/storage/panel/fileuploads/2019-02-06/1549442748_E11705-e-tarjome.pdfس
Watanabe, A., Hitomoi, Y., Saeki, E., Wada, A., & Fujimoto, M. (1988). Properties of braces encased in bucklingrestraining concrete and steel tube. Proc., 9th World Conf. on Earthquake Engineering, IV, 719-724. https://www.iitk.ac.in/nicee/wcee/article/9_vol4_719.pdf
Watanabe, A., & Nakamura, H. (1992). Study on the behavior of buildings using steel with low yield point. Proc., 10th World Conf. on Earthquake Engineering. https://wcee.nicee.org/wcee/10?page=5&conf=10WCEE&title=&author=&keywords=
Zhang, F., Liu, X., Ge, F. W., & Cui, C. (2023). Investigation on the Ductility Capacity of Concrete Columns with High Strength Steel Reinforcement under Eccentric Loading. Materials, 16(12), 4389. https://doi.org/10.3390/ma16124389
Downloads
Published
Submitted
Revised
Accepted
Issue
Section
License
Copyright (c) 2023 Mir Emad-Aldin Mahdavi Saeedi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.