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Network failures can cause serious damage and disrupt communications, which in 

turn significantly reduces service reliability. Among the various causes of network 

failure, link failure between network components is one of the most common. For 

intelligent, autonomous operation without human intervention, a smart grid must 

have a flexible communication infrastructure capable of rapidly detecting and 

repairing link failures. A software-defined networking (SDN) approach offers this 

capability. SDN enables centralized control and decouples the data and control 

planes, facilitating dynamic management and rapid response to failures. This 

technology enhances the speed of rerouting and path recovery during link failures 

by providing centralized and optimized decision-making. Central controllers in 

SDN architectures can select new paths for data flows in the event of failure, 

thereby reducing recovery time and packet loss rates. In this study, we design a 

module for the SDN controller equipped with link failure detection features and 

implement automatic recovery using the Q-learning algorithm. In smart grid 

environments, packet loss rates are critical because any data loss can degrade 

service quality and hinder the reception of essential information required for 

system control in crisis situations, ultimately reducing the grid's ability to respond 

to instabilities. The core focus of this research is reducing the packet loss rate, as 

data loss severely impacts network stability and efficiency. When comparing the 

proposed method to a reference study, the packet loss rate, recovery time, and 

algorithm execution time in the German topology decreased by 66.62%, 85.99%, 

and 91.99%, respectively. Similarly, in the U.S. topology, these metrics were 

reduced by 90.50%, 76.99%, and 98.99%, respectively. Additionally, compared 

to the normal state, the packet loss rate was reduced by an average of 67.95% in 

the German topology and 13.15% in the U.S. topology. 

Keywords: Smart grid, software-defined networking (SDN), Q-learning 

algorithm, fault management. 
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1. Introduction 

he rapid evolution of electrical infrastructure into 

highly automated and intelligent systems has made the 

concept of the smart grid increasingly vital to modern energy 

management and distribution. Smart grids are complex 

cyber-physical systems that incorporate bi-directional flows 

of information and electricity to enable adaptive, efficient, 

and sustainable power distribution, especially under 

dynamic and uncertain conditions (Shafiullah et al., 2013). 

However, this increasing sophistication also brings about 

critical vulnerabilities—especially concerning 

communication reliability and routing resilience, 

particularly in the face of link failures. In response to these 

challenges, the integration of Software-Defined Networking 

(SDN) into smart grids has emerged as a promising 

architectural enhancement due to its programmability, 

centralized control, and separation of data and control planes 

(Ali et al., 2020). 

The dynamic nature of smart grid communication 

networks necessitates a recovery framework that is both 

resilient and adaptable to link failures. Traditional routing 

algorithms, which typically operate based on static 

topologies and pre-configured paths, are ill-suited for real-

time response to failures in rapidly changing environments 

such as smart grids (Bhavani et al., 2023). Therefore, 

leveraging machine learning (ML) approaches, particularly 

reinforcement learning techniques such as Q-learning, has 

garnered attention due to their ability to model non-

deterministic scenarios and improve decision-making 

through environmental feedback (Zhang et al., 2019). These 

models can dynamically update routing decisions based on 

observed network states, thereby minimizing the delay and 

packet loss typically incurred during link failures (Tang, 

2024). 

Among ML approaches, Q-learning is particularly 

suitable for routing in SDN-based smart grids due to its 

model-free nature and ability to optimize actions in unknown 

environments. Q-learning algorithms iteratively learn 

optimal policies by interacting with the environment, 

thereby enabling autonomous agents to select routes that 

minimize cumulative costs, including delay and energy 

consumption (Zhang et al., 2019). Moreover, its lightweight 

nature makes it implementable within the processing 

constraints of SDN controllers (Zhou et al., 2021). Several 

studies have demonstrated the efficacy of Q-learning in 

improving routing resilience under uncertain conditions, 

showing reductions in average path delay and increases in 

packet delivery ratio compared to traditional deterministic 

algorithms (Mohammadi & Javidan, 2021). 

The integration of SDN and ML-based routing in smart 

grids is further motivated by the modular and programmable 

nature of SDN controllers, which allows for the deployment 

of intelligent decision-making layers. This architecture 

supports rapid failure detection and rerouting, especially 

when controllers are enhanced with learning modules that 

adapt to topological and traffic variations in real time 

(Abdulkadhim et al., 2022). In this context, the SDN 

controller is not only responsible for managing flow tables 

and routing paths but also acts as a host for executing 

learning algorithms that continuously refine network 

performance. Such a design is well-suited to meet the 

operational and security demands of critical infrastructure 

networks like smart grids (Mohammad, 2024). 

Nonetheless, the incorporation of machine learning into 

network control is not without its risks. The susceptibility of 

ML models to adversarial attacks has raised significant 

concerns about the robustness and reliability of such systems 

(Ibitoye et al., 2019). Malicious manipulation of input data 

or model parameters could lead to incorrect routing 

decisions, service interruptions, and potential system-wide 

failures. Recent studies have emphasized the importance of 

designing secure and robust ML pipelines to mitigate 

adversarial threats and maintain operational integrity in 

mission-critical networks (Ibitoye et al., 2025). Therefore, 

while Q-learning and similar algorithms provide notable 

performance advantages, their deployment must be coupled 

with stringent security protocols and ongoing model 

validation. 

From a systems perspective, SDN-enabled smart grids 

that incorporate ML-based routing must be evaluated on 

multiple performance dimensions. These include not only 

traditional quality of service (QoS) metrics such as end-to-

end delay and packet loss, but also recovery time and 

algorithm execution duration following link failures (Wei et 

al., 2014). Studies that simulate realistic grid topologies—

such as backbone structures found in German and American 

smart grid networks—show that Q-learning–based recovery 

strategies outperform conventional methods in minimizing 

recovery time and maintaining high service availability 

during failures (Mohammadi & Javidan, 2021). 

Furthermore, the inclusion of shared-risk link groups 

(SRLGs) in these simulations enables a more accurate 

reflection of real-world network dependencies and 

vulnerabilities (Ali et al., 2020). 

T 
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While SDN-based failure recovery methods have been 

extensively studied, most existing approaches remain 

reactive, relying on network state polling and control-plane 

computations to address faults after they occur (Ali et al., 

2020). In contrast, proactive methods using reinforcement 

learning algorithms have demonstrated significant 

reductions in recovery latency by pre-computing backup 

paths based on predicted network states (Zhang et al., 2019). 

Additionally, hybrid methods that combine proactive and 

reactive features—such as penalizing failed links in the Q-

table while simultaneously updating topology information—

offer a balanced trade-off between recovery speed and 

computational efficiency (Mohammadi & Javidan, 2021). 

In terms of implementation, platforms such as RYU, 

OpenDaylight, and ONOS offer different capacities for 

supporting intelligent routing mechanisms. While 

OpenDaylight and ONOS natively support proactive path 

installation using algorithms like Dijkstra, RYU follows a 

reactive model that requires flow requests to trigger path 

computation (Ali et al., 2020). Therefore, customizing RYU 

to support proactive, ML-driven routing can offer insights 

into enhancing controller performance and reducing flow 

setup latency. Moreover, integrating these systems with 

virtualized environments such as Mininet enables 

comprehensive simulation and performance benchmarking 

under controlled yet realistic conditions (Zheng et al., 2024). 

Beyond technical performance, the adoption of 

intelligent, SDN-enabled routing frameworks has broad 

implications for the future of smart grid infrastructure. As 

the energy sector undergoes a digital transformation, 

characterized by distributed generation, electric vehicles, 

and IoT-enabled energy devices, the communication 

backbone must be equally agile and intelligent (Shafiullah et 

al., 2013). The use of adaptive routing techniques powered 

by ML offers a scalable solution to managing the increased 

complexity and data flows within modern grids. Moreover, 

the alignment of such technologies with global energy 

transition goals enhances sustainability and operational 

resilience (Bhavani et al., 2023). 

In addition to operational efficiency, the integration of 

learning algorithms in SDN controllers also enables 

predictive analytics and fault prevention. For instance, deep 

learning models trained on historical failure patterns can 

predict potential future faults and reconfigure paths 

preemptively, minimizing service disruption (Mishra & 

Gupta, 2017). Furthermore, neural networks have been 

effectively applied in diverse fields such as radial drilling 

optimization and LFM signal recovery, underscoring the 

cross-domain versatility of these techniques (Krivoshchekov 

et al., 2022; Zhou et al., 2021). Their application to smart 

grid communication is therefore a logical and impactful 

extension. 

However, future progress in this area depends not only on 

algorithmic innovation but also on hardware acceleration 

and system-level integration. Recent developments in in-

network machine learning and hardware-based neural 

processing units offer promising directions for deploying 

low-latency, energy-efficient ML models directly within 

network devices (Ueyoshi et al., 2016; Zheng et al., 2024). 

Such developments can significantly reduce the processing 

burden on centralized SDN controllers and distribute 

intelligence across the network, thereby enhancing 

scalability and fault tolerance. 

In conclusion, the convergence of SDN and machine 

learning holds transformative potential for enhancing the 

robustness, responsiveness, and intelligence of smart grid 

communication systems. Q-learning–based routing 

frameworks offer a compelling approach to dynamic path 

recovery, particularly in environments characterized by 

volatility and high performance requirements. However, 

successful implementation demands a comprehensive 

strategy that incorporates simulation, security, and 

hardware-level support. This study aims to design, 

implement, and evaluate a Q-learning–based routing and 

link failure recovery method for smart grid communication 

networks enabled by Software-Defined Networking (SDN). 

2. Methods and Materials 

2.1. Operating System 

In this study, the primary objective was to utilize the 

Linux operating system for simulation purposes. To achieve 

this, the VMware virtualization tool was employed. VMware 

enables the execution of various operating systems, 

including Ubuntu 64-bit Arm version 22.04.4, virtually on a 

physical device. This software creates an appropriate and 

independent virtual environment, allowing us to conduct 

simulations effectively without modifying the host operating 

system. The allocated resources for the virtual machine are 

as follows: 

✓ Number of processors: 8 processors, each with 2 cores 

✓ Memory: 14 GB 

✓ Disk space: 24 GB 
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2.2. Software and Programming Languages Used 

For simulation purposes, Visual Studio software was used 

for programming. The programming of the designed unit for 

the Software-Defined Network (SDN) controller was 

implemented using this software in the Python language and 

executed in the Linux terminal. AWK, a programming 

language for parsing and processing text files, particularly in 

Linux-based operating systems, was also utilized. Using 

AWK, large text files can be easily analyzed and subjected 

to the required operations in a straightforward structure. This 

language was used in the present study to process data and 

extract required information from text files. Finally, Linux 

shell programming was employed. The shell acts as an 

interface between the user and the Linux kernel and provides 

powerful tools to leverage kernel functionalities. Shell 

scripting enables users to automate repetitive operations by 

writing executable scripts containing commands and 

parameters. In network simulation projects using tools such 

as Mininet, shell scripts can be used to automatically launch 

network topologies, manage SDN controllers, and execute 

AWK files for data processing. These scripts automate time-

consuming repetitive tasks and enhance network 

optimization and management. 

2.3. Tools 

Mininet is a network emulator designed for use in both 

research and development settings to create a realistic virtual 

network for testing before deployment on physical network 

hardware. Mininet is open-source, making it an ideal tool for 

research as it does not require a license. Unlike other 

simulators and emulators, Mininet is specifically designed 

with SDN networks in mind. It offers several features that 

make simulating SDN environments convenient. For 

instance, it allows the emulated network to be controlled by 

a simulated or real SDN controller. It also supports the 

OpenFlow protocol and can translate actual OpenFlow 

commands issued by an external controller through the 

southbound interface into simulated OpenFlow commands 

interpretable by emulated OpenFlow network devices. 

For creating topologies, two approaches are used. The 

first is the command-line interface (CLI), which allows users 

to build network topologies in various designs (e.g., star, 

mesh) using specific Mininet commands and define the 

number of hosts and nodes directly via CLI. The second 

approach involves Python scripting, supported by Mininet, 

through which topologies can be written in Python and then 

executed via the CLI. Additionally, network tools like iPerf 

and Ping can be used to generate traffic. These tools can 

either be embedded in Python scripts or run via the CLI on 

each host node. 

2.4. Proposed Method 

Given that maintaining communications in smart grid 

infrastructures is essential for delivering electricity services, 

a flexible communication architecture capable of recovering 

from link failures is required. For this reason, the present 

study leverages the capabilities of SDN to develop an 

effective method for identifying optimal sequential recovery 

strategies in smart grid networks. The proposed architecture 

comprises several components and is designed based on the 

SDN architecture in smart grid networks. 

2.4.1. Smart Grid Network Environment 

In this study, two topologies—Germany Backbone 

Network (GNB) and US Network (USNET)—were used. 

The hosts included in these topologies represent smart 

meters. Smart meters play a key role in smart grid networks, 

as they are capable of measuring, analyzing, and monitoring 

energy consumption. These meters continuously collect data 

and information regarding electricity usage and transmit it to 

central stations. 
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Figure 1 

GNB Topology 

 

 

In addition, they establish two-way communication with 

all consumers, a core feature of smart grid networks. This 

data exchange and bi-directional communication enable 

more optimized and sustainable network management. 

Figures 1 and 2 illustrate the topologies used in the study. 

Figure 2 

USNET Topology 

 

 

2.4.2. Role of Software-Defined Networking (SDN) 

With the continuous development and widespread 

adoption of Software-Defined Networking (SDN), this 

technology also faces numerous challenges. Network 

failures are detrimental as they disrupt communications and 

significantly reduce service availability. Various factors 

contribute to network failures, the most common being link 

failure. In real-world scenarios, link disconnection is a 

frequent occurrence and can lead to severe consequences. 

When such events happen, they can cause service 

interruptions, negatively affect user experience, and even 

result in substantial financial losses. Therefore, designing a 

reasonable and efficient link failure recovery scheme can 

significantly enhance the fault tolerance, stability, and 

robustness of the network. Figure 3 illustrates the 

architecture of the proposed method based on SDN. 

Figure 3 

Architecture of the Proposed Method 
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2.4.3. Link Failure Detection Methods in Software-

Defined Networks 

Generally, before initiating recovery mechanisms, link 

failure detection is required. In SDN, there are two common 

methods for detecting link failures: signal loss and 

bidirectional forwarding detection. 

1. Signal Loss Method: This method is suitable for 

detecting failures in a specific port of the data-plane 

switch. When a link failure occurs, the status of the 

relevant OpenFlow (OF) switch port changes from 

"up" to "down." The associated OF switch then 

independently generates a port status message to 

inform the controller. Upon receiving this message, 

the controller becomes aware of the link failure and 

its location. In practice, this mechanism is reactive 

(see ). 

2. Bidirectional Forwarding Detection (BFD) 

Method: This method can detect both link and path 

failures. In this approach, two endpoint nodes 

periodically exchange control and echo messages. 

Each node responds with an echo message after 

receiving a control message. If a node does not 

receive the echo packet from the monitored 

connection, the link or path is assumed to have 

failed. Figure 4 depicts the message exchange 

process in the bidirectional detection method. In 

practice, this mechanism is proactive (see ). In the 

present study, we use the bidirectional forwarding 

detection method for link failure detection. 

Figure 4 

Message Exchange Process in the Bidirectional Forwarding Detection Method 
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2.4.4. Link Failure Recovery Methods in Software-

Defined Networks 

When a link failure event occurs in SDN, it can be 

managed either proactively or reactively. During normal 

network operation, flows are routed from the source node to 

the destination node via a primary path. However, when a 

link fails, these two approaches handle failures differently 

(see ). 

Proactive Recovery: In proactive recovery, backup paths 

are pre-configured. Hence, failure detection typically occurs 

locally, and flows associated with the failed link are 

immediately redirected to the alternate path without 

interaction with the controller. Figure 5 illustrates link 

failure recovery using the proactive mechanism. When the 

link in path 1 fails, the flow rules for the backup path are 

already set on the switch; therefore, data packets are 

redirected from the failed link to the predefined alternate 

path on the switch. 

Figure 5 

Link Failure Recovery Using Proactive Mechanism 

 

 

Proponents of proactive recovery argue that it is more 

efficient in terms of recovery time because the paths are pre-

configured and no interaction with the control plane is 

necessary to find an alternative route. As a result, carrier-

grade network requirements are met, meaning that paths can 

be restored in less than 50 milliseconds. Thus, this approach 

provides faster recovery without controller intervention, 

minimizing any delay caused by interactions with the 

controller to find alternate routes. 

Reactive Recovery: Reactive failure recovery primarily 

relies on the SDN controller. Figure 6 presents a scenario of 

reactive link failure recovery. The following steps are taken 

upon detecting a link failure: 

✓ The controller monitors the network status by sending 

periodic heartbeat messages. 

✓ The controller detects any failures. 

✓ The controller searches for an alternate path to replace 

the failed link. 

✓ The controller deletes old flow entries and installs new 

flow entries for the updated path in the SDN switches. 

In this method, controller intervention introduces a 

significant delay in recovery time. This delay results from 

communication overhead between the switches and the 

controller, the additional time needed to discover an 

alternate path, and the time required to insert new flow 

entries for the updated route. Therefore, critics of this 
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approach argue that reactive recovery cannot meet the sub-

50-millisecond delay requirements of carrier-grade 

networks. 

Figure 6 

Link Failure Recovery Using Reactive Mechanism 

 

2.4.5. Design of the Module for the Controller 

In this study, we designed a module for the controller that 

utilizes a recovery strategy to resolve link failures. Figure 7 

illustrates the details of the fault-tolerant unit presented in 

Figure 3. According to Figure 7, this unit consists of seven 

steps. 

Figure 7 

Management Module Design for the Controller 
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✓ Link Delay Calculation: Information about the delay 

of each network link is obtained and stored in a matrix. 

✓ Link Bandwidth Calculation: Information about the 

bandwidth of each network link is acquired and stored in a 

matrix. 

✓ Normalization: Since delay is measured in 

milliseconds and bandwidth in gigabits per second, and the 

units are not consistent, normalization must be applied. 

Equation (1) 

Cost_s1s2 = α d_s1s2 + (1 – α) b_s1s2^–1 

In this formula, d represents the delay, b the bandwidth 

between link s1s2, and α is the scaling coefficient, which is 

set to 0.5. 

✓ Link Cost Calculation: The cost of each link is 

calculated based on the normalized values of the delay and 

bandwidth matrices and stored in another matrix. 

✓ Network Topology: Periodic information about the 

network topology—including nodes and links—is collected 

and stored in the relevant matrix. 

✓ Path Calculation: The path is computed using the Q-

learning algorithm. 

✓ Path Installation: At this stage, the calculated path 

output is received, and the paths are installed on the 

switches. 

The relationship between the RYU architecture and the 

designed module is as follows: 

The designed module acts as an intelligent layer for 

making complex decisions about routing and enhancing 

network performance. This unit includes several processing 

functions such as calculating link delay and bandwidth, 

normalizing the computed values, calculating link costs, and 

ultimately executing a Q-learning–based routing algorithm 

to find the optimal path under dynamic network conditions. 

In this process, the designed module depends on topology 

and link parameter information provided by RYU 

components; hence, different parts of the RYU controller 

play an essential role in supplying the necessary 

infrastructural data to this module so it can make intelligent 

routing decisions. 

✓ Topology Discovery: This unit continuously discovers 

and updates the network topology. This information includes 

nodes, links, and existing paths, which are regularly 

provided to the designed module. In our module, this 

information is used as input for computing the optimal route, 

since the Q-learning algorithm requires awareness of the 

current network topology (see ). 

✓ Event Management: Upon the occurrence of any 

change or event in the network—such as link disconnection 

or reconnection—this unit sends the relevant event to other 

components. This capability allows the designed module to 

receive new parameters to recalculate paths and update 

optimal routing when link states change (see ). 

✓ OpenFlow Parsing and Serialization: This unit is 

responsible for processing OpenFlow messages and 

enabling communication between the controller and network 

devices. The module we designed utilizes this 

communication to install new paths, meaning that once the 

best path is selected by the Q-learning algorithm, the path is 

transmitted to the network switches through OpenFlow 

messages (see ). 

It should also be noted that upon link disconnection, 

feedback from the installed path is required. In the designed 

module, a function is implemented to detect link failure. 

Upon failure, a function is called to compare the new 

topology with the previous one, and if a change is detected, 

the path is recalculated and reinstalled. If Q-learning is used, 

a penalty value corresponding to the failure is assigned in the 

Q-table. Figure 8 presents the flowchart of this feedback 

mechanism. 
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Figure 8 

Flowchart of the Feedback Mechanism for the Installed Path 
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As mentioned earlier, the Q-learning algorithm is used to 

improve routing and respond to link failures in the network. 

This algorithm leverages a Q-table, which contains value 

scores for different state-action pairs, to select the most 

optimal paths for data flow and demonstrates its capability 

in managing complex network conditions. 

3. Findings and Results 

3.1. Simulation Settings 

In Figures 1 and 2, the dotted circles represent links with 

shared risk, meaning all links covered by a single dotted 

circle are exposed to a similar risk. In the GNB and USNET 

topologies, we considered four and nine groups of shared-

risk links, respectively. In both experiments, we 

implemented a Python script in Linux to simulate link 

failures. This script uses the ifdown command to disconnect 

a link and the ifup command to reconnect it. The script is 

activated every 10 seconds and randomly selects one shared-

risk link from each group, disconnecting it for a specific 

period defined as failure time. After the failure time, the 

script reconnects the previously disconnected links. In all 

simulations of the proposed method, the controller is 

configured to poll network statistics, execute the proposed 

method every 20 seconds, and announce separate routes for 

each source-destination pair to the relevant switches. It is 

noteworthy that the simulation duration is set to 240 seconds 

(4 minutes). 

In the GNB topology, the delay and bandwidth of each 

link are configured to 10 milliseconds and 5 megabits per 

second, respectively. This topology includes three source-

destination pairs, with each source host generating UDP 

traffic at a rate of 1 megabit per second (with a packet size 

of 1000 bytes) and sending it to the destination host. In the 

USNET topology, each link's delay and bandwidth are 

configured to 20 milliseconds and 10 megabits per second, 

respectively. This topology has five source-destination pairs, 

and each source host generates UDP traffic at a rate of 2 

megabits per second (with a packet size of 1000 bytes) and 

sends it to the destination. All simulation configurations are 

aligned to enable comparison with the reference article. 

3.2. Computational Parameters 

The simulation results are analyzed based on quality of 

service parameters (average end-to-end delay and packet 

loss), recovery time, and algorithm execution time. These 

parameters are defined as follows: 

✓ Average end-to-end delay: Refers to the average time 

required for successful transmission of each data packet 

from the source to the destination. 

✓ Packet loss: Indicates the ratio of total data packets that 

did not reach the destination to the total number of packets 

sent from the traffic source. 

✓ Recovery time: Represents the duration required to 

detect a link failure and compute a new path. 

✓ Algorithm execution time: In the controller module, the 

start and end times of the path computation are recorded, and 

the difference is used to determine the algorithm’s execution 

time. 

3.3. Evaluation of the Proposed Method Versus the 

Reference Article 

This section presents the evaluation of the results for the 

GNB and USNET scenarios and compares them with the 

reference method. 

3.3.1. Evaluation of Link Failure Results in GNB and 

USNET Topologies 

In Figures 9 and 10, the results of the reference article 

clearly demonstrate superior performance in reducing 

average end-to-end delay through the use of optimization 

techniques. These techniques include improvements in 

routing and the selection of shorter and more efficient paths 

for data flows in the network, which result in reduced packet 

transmission time from source to destination and lower 

overall network delay. This reduction in delay directly 

enhances network performance under various conditions and 

demonstrates the reference method’s superiority in 

minimizing delay. 

In contrast, the proposed method in this study employs 

the Q-learning algorithm for recovering failed links. In this 

algorithm, whenever a link fails, a penalty is assigned to the 

corresponding Q-table entry. These penalties prompt the 

system to automatically choose alternate paths to avoid 

failed links. If the available alternate links in the network are 

longer or contain more nodes, the selected path will also be 

longer. Increased path length directly leads to higher 

network delay, as packets must traverse more nodes. 
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Figure 9 

Average End-to-End Delay for the GNB Topology 

 

Figure 10 

Average End-to-End Delay for the USNET Topology 

 

 

In Figures 11 and 12, it is observed that the packet loss 

rate in the proposed method has decreased on average by 

66.62% in the German topology and 90.50% in the U.S. 

topology compared to the reference article. This 

performance improvement is attributed to the higher 

algorithm execution time in the reference article; the process 

of detecting a link failure and computing and installing a new 

path takes significantly longer. This delay results in the loss 

of a large number of packets across the network, thereby 

negatively affecting system performance. 
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Figure 11 

Packet Loss for the GNB Topology 

 

Figure 12 

Packet Loss for the USNET Topology 

 

 

Recovery time is defined as the sum of the path 

installation time and algorithm execution duration. In the 

reference article, the algorithm's execution time is high due 

to the complexity of the failure detection process and the 

computation of new paths, which can significantly extend 

the recovery time. Conversely, in the proposed method, the 

use of the Q-learning algorithm and improved processes for 

detection and path selection have effectively reduced the 

algorithm’s execution time. As shown clearly in Figures 13 

and 14, the average recovery time in the proposed method 

has been reduced by 85.99% in the German topology and 

76.99% in the U.S. topology compared to the reference 

article. 

It is important to note that to better compare the results of 

the two methods, due to the significant difference in 

recovery time scales, two separate y-axes are used in the 

graphs: the left axis for values from the Q-learning algorithm 

and the right axis for values from the reference method 

(EFSUTE). This configuration enables more accurate 

observation and analysis of the results. 
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Figure 13 

Recovery Time for the GNB Topology 

 

Figure 14 

Recovery Time for the USNET Topology 

 

 

The algorithm execution time in the proposed method has 

significantly decreased compared to the reference article. As 

shown in Figures 15 and 16, the execution time was reduced 

by 91.99% in the German topology and 98.99% in the U.S. 

topology during the experiments. This substantial difference 

is due to the time complexity of the algorithm in the 

reference article, which is classified as non-deterministic 

polynomial (NP) and thus requires significantly more 

runtime than the Q-learning algorithm. In contrast, the 

proposed method benefits from the Q-learning algorithm’s 

lower time complexity and has demonstrated better 

performance in terms of execution speed. 

It is again worth noting that for more effective 

comparison, due to the substantial difference in recovery 

time scale, the graphs utilize two separate y-axes: the left for 

the Q-learning algorithm values and the right for the 

reference article (EFSUTE). This setting facilitates more 

precise visualization and interpretation of results. 
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Figure 15 

Algorithm Execution Time for the GNB Topology 

 

Figure 16 

Algorithm Execution Time for the USNET Topology 

 

 

3.3.2. Evaluation of Two-Link Failure Results in GNB 

and USNET Topologies 

As observed in Figures 17 and 18, the average end-to-end 

delay in the normal method is lower than in the proposed 

method, because the routing algorithm in the normal method 

operates based on the number of hops and always selects the 

shortest path. Since the link delay values are identical in both 

methods, selecting the shortest path inherently results in the 

lowest delay. In contrast, in the proposed method, due to the 

penalization of the Q-table associated with the failed link, 

the path to the destination becomes longer, thereby 

increasing overall network delay. 
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Figure 17 

Average End-to-End Delay for the GNB Topology 

 

Figure 18 

Average End-to-End Delay for the USNET Topology 

 

 

As shown in Figures 19 and 20, the packet loss rate in the 

proposed method is reduced on average by 67.95% in the 

German topology and 13.15% in the U.S. topology 

compared to the normal method. In the normal method, 

routing is performed solely based on the shortest path, and 

when a link failure occurs, no new alternative path is 

installed. This leads to the loss of a significant number of 

packets. However, in the proposed method, upon detecting a 

link failure, the Q-table entry related to the failed link is 

penalized to prevent its reuse, and instead, a new path is 

selected from among the healthy links. This process 

effectively reduces packet loss. 

 

 

 

 

 

 

 



 Mozayani & Vali                                                                                           Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135 

 

 132 

Figure 19 

Packet Loss for the GNB Topology 

 

Figure 20 

Packet Loss for the USNET Topology 

 

 

As stated earlier, in smart grids, the priority is to ensure 

that data is accurately received and not lost. Therefore, the 

primary focus of this study is on reducing the packet loss 

rate, since this phenomenon can have severely detrimental 

effects. 

3.4. Normal Method 

In many SDN controllers, including OpenDaylight and 

ONOS, a proactive routing mechanism is implemented. 

These controllers, using algorithms such as Dijkstra, 

compute optimal paths for data flows in advance and install 

them on the switches. This allows data packets to be 

transmitted quickly, without the need for additional 

processing for each new request. As a result, network 

performance is significantly enhanced and transmission 

delays are reduced. 

However, the RYU controller used in this study does not 

have such a built-in proactive routing mechanism. RYU 

operates using a reactive routing approach, meaning that 

when a new data flow arrives at a switch without a 

predefined path, the switch sends a request to the controller. 

At this point, the controller computes the required path and 

communicates it to the switches so that the packets can be 

forwarded accordingly. This process is repeated separately 

for each new flow. This reactive approach increases the 

processing overhead on the controller, as RYU must 

compute paths step-by-step for every new flow. 

To overcome this limitation and align the performance of 

the RYU controller with that of other controllers, routing 

using the Dijkstra algorithm—referred to as the "normal 

method"—has been implemented in this study. This measure 

helps improve the performance and efficiency of the RYU 

controller. Furthermore, in the comparison between the 

proposed method and the reference article, only one link 

from a shared-risk group was disconnected. In contrast, in 

this comparison with the normal method, both links in the 

shared-risk group are disconnected, and the resulting 

outcomes are discussed in the next section. It is important to 

note that the normal method was developed as an auxiliary, 
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external part of the main study and is intended to highlight 

the reduction in packet loss rate. 

4. Discussion and Conclusion 

This study aimed to evaluate the performance of a Q-

learning–based routing strategy for smart grid networks 

enabled by Software-Defined Networking (SDN). The 

simulation results in both GNB and USNET topologies 

confirmed that the proposed method, despite a trade-off in 

end-to-end delay, significantly outperforms traditional and 

reference approaches in packet loss reduction, recovery 

time, and algorithm execution time. 

First, regarding end-to-end delay, the results show that 

the normal method, which relies on shortest-path routing 

based on hop count, achieved lower average delays 

compared to the proposed method. This outcome is expected 

because, in the normal method, routing is static and always 

selects the path with the fewest hops, inherently minimizing 

delay when link qualities are equal. In contrast, the Q-

learning–based method imposes penalties on failed links 

within the Q-table, which can result in the selection of longer 

alternate paths to avoid failed segments. Consequently, as 

more nodes are traversed, delay increases. However, this is 

a calculated trade-off in favor of overall resilience and 

packet delivery success. Such trade-offs have been 

acknowledged in earlier studies on intelligent routing in 

SDN networks, where the primary goal was maximizing 

reliability and delivery rates under dynamic network 

conditions rather than minimizing delay alone (Ali et al., 

2020; Zhang et al., 2019). 

Second, the proposed method demonstrated a significant 

reduction in packet loss, particularly under multiple-link 

failure scenarios. In the GNB topology, the average packet 

loss decreased by approximately 67.95%, and in the USNET 

topology, by 13.15% when compared with the normal 

method. This result underscores the primary strength of Q-

learning in dynamic environments. Unlike traditional 

routing algorithms that do not adapt to network state changes 

during runtime, reinforcement learning methods like Q-

learning are capable of reacting to disruptions by learning 

from past failures and avoiding problematic links. These 

findings are consistent with previous research, which 

highlighted the capacity of Q-learning to improve network 

robustness in failure-prone environments, especially in 

smart grids where real-time data delivery is mission-critical 

(Bhavani et al., 2023; Zhang et al., 2019). Moreover, 

machine learning–based approaches have proven effective 

in failure detection and adaptive routing across various 

domains, as shown in both power distribution modeling 

(Wei et al., 2014) and radar network recovery (Zhou et al., 

2021). 

Third, the study’s most pronounced performance gain 

was in the area of recovery time and algorithm execution 

time. In comparison with the EFSUTE algorithm from the 

reference article, the proposed Q-learning method achieved 

a recovery time reduction of 85.99% in the GNB topology 

and 76.99% in the USNET topology. Similarly, algorithm 

execution time was reduced by 91.99% and 98.99%, 

respectively. These improvements are particularly 

noteworthy considering the operational importance of rapid 

failure recovery in smart grid environments. Delays in 

rerouting after link failures can severely impact grid 

responsiveness, leading to cascading system errors or energy 

delivery mismatches. Q-learning’s low computational 

complexity and its model-free nature allow for rapid 

decision-making and policy updates, which are vital in such 

time-sensitive scenarios. Previous works also support this 

assertion, stating that Q-learning provides faster adaptability 

in real-time applications compared to deterministic or 

computationally heavy multi-objective routing strategies 

(Mishra & Gupta, 2017; Mohammadi & Javidan, 2021). 

Another important observation was the effectiveness of 

penalization within the Q-table during link failure events. 

This mechanism enables the controller to adaptively avoid 

previously failed links and reroute traffic through alternate 

paths, even if those paths are longer. The reactive-reflexive 

behavior of the Q-agent in the SDN controller reinforces 

fault avoidance and demonstrates a form of experiential 

learning not available in traditional or statically 

preconfigured routing approaches. The value of such 

adaptive strategies in critical systems has been emphasized 

by several studies, particularly those addressing the design 

of resilient and secure SDN architectures (Abdulkadhim et 

al., 2022; Mohammad, 2024). 

Furthermore, the integration of SDN with Q-learning 

aligns with the broader shift toward intelligent, decentralized 

network control, allowing networks to self-optimize in 

response to evolving topologies and threats. This 

convergence is especially relevant in smart grids, where the 

control infrastructure must manage a diverse array of 

nodes—from smart meters to substations—and ensure fault-

tolerant data transmission. Reinforcement learning strategies 

like the one proposed here fulfill this requirement by 

incorporating environmental feedback into future decision-
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making, reducing network overhead, and enhancing 

scalability (Ibitoye et al., 2025; Tang, 2024). 

While the results of the proposed method are promising, 

it is important to consider the implications of security in 

machine learning–driven SDN controllers. Recent research 

has highlighted the vulnerability of such models to 

adversarial attacks that can manipulate input data or training 

sets to compromise routing decisions (Ibitoye et al., 2019). 

Although Q-learning is generally less complex and thus 

potentially less vulnerable than deep learning models, it is 

still susceptible to reward manipulation and spoofed 

feedback. As such, embedding robust adversarial detection 

and countermeasures is crucial for operational deployment, 

particularly in safety-critical domains like energy 

infrastructure (Ibitoye et al., 2025; Ueyoshi et al., 2016). 

The simulation environment also played a critical role in 

validating the results. By utilizing Mininet and simulating 

shared-risk link groups (SRLGs) within realistic topologies 

such as GNB and USNET, the study approximated real-

world network vulnerabilities more accurately than models 

relying on simplified topologies. The use of heartbeat 

messaging for link monitoring, and the regular update of the 

SDN controller’s Q-table, facilitated a robust test of the 

proposed architecture’s responsiveness and reliability. This 

approach is consistent with best practices in ML-in-network 

experimentation, as suggested by recent studies on in-

network ML inference platforms like Planter (Zheng et al., 

2024). 

In conclusion, the study demonstrates that Q-learning–

based routing in SDN-enabled smart grids can significantly 

enhance resilience, especially in failure-prone scenarios. 

While it introduces modest increases in delay due to longer 

alternate paths, this is outweighed by substantial 

improvements in packet loss reduction, recovery time, and 

computation efficiency. These findings affirm the relevance 

of reinforcement learning for self-adaptive, fault-tolerant 

networking, providing a clear path forward for integrating 

ML into smart grid control infrastructures (Krivoshchekov 

et al., 2022; Mohammad, 2024; Mohammadi & Javidan, 

2021). 

Despite its promising outcomes, the present study has 

several limitations. First, the simulations were conducted in 

a virtualized testbed environment, which may not capture all 

real-world complexities such as hardware-induced latencies, 

varying traffic intensities, or physical environmental 

interferences. Second, the learning model assumes full 

observability and timely reception of feedback, which may 

not always be feasible in real-time smart grid scenarios. 

Third, only Q-learning was evaluated; the inclusion of other 

reinforcement learning algorithms such as Deep Q-

Networks (DQN) or Actor-Critic models may offer 

additional insights. Moreover, the scope of adversarial risks 

and security vulnerabilities was not empirically tested in this 

implementation and requires further exploration. 

Future research should aim to expand the study by 

incorporating hybrid learning approaches, such as 

combining Q-learning with predictive analytics based on 

historical fault data. Additionally, exploring the integration 

of hardware-accelerated ML platforms can help address 

latency issues, particularly in edge computing settings. 

Long-term studies under real-time conditions, including 

stress testing under simultaneous multi-node failures or 

cyberattacks, will also provide a more comprehensive 

understanding of the model’s resilience. Comparative 

studies between different SDN controllers and their 

capability to host ML-based decision modules will further 

clarify deployment feasibility. 

Practitioners aiming to deploy intelligent routing in SDN-

enabled smart grids should prioritize modular design, 

allowing easy integration of Q-learning models with existing 

controllers. They should also implement periodic topology 

monitoring and update mechanisms to ensure Q-tables 

remain relevant. Proactive route learning, especially under 

shared-risk link scenarios, can reduce failure response times 

and enhance service availability. Finally, adopting a 

security-first approach, including model validation and 

feedback authentication, will be critical to ensuring trust and 

performance in real-world deployments. 
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