

Article history:
Received 29 July 2024
Revised 25 September 2024
Accepted 04 October 2024
Published online 24 October 2024

Journal of Resource Management and
Decision Engineering

Volume 3, Issue 4, pp 116-135

A Machine Learning-Based Approach for Link Recovery in

Smart Grids Using Software-Defined Networking

Nasser Mozayani1* , Hemila Vali1

1 Department of Computer Science, School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

* Corresponding author email address: Mozayani@iust.ac.ir

A r t i c l e I n f o A B S T R A C T

Article type:

Original Research

How to cite this article:

Mozayani, N., & Vali, H. (2024). A

Machine Learning-Based Approach for

Link Recovery in Smart Grids Using

Software-Defined Networking. Journal of

Resource Management and Decision

Engineering, 3(4), 116-135.

https://doi.org/10.61838/kman.jrmde.3.4.13

© 2024 the authors. Published by KMAN

Publication Inc. (KMANPUB). This is an

open access article under the terms of the

Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-

NC 4.0) License.

Network failures can cause serious damage and disrupt communications, which in

turn significantly reduces service reliability. Among the various causes of network

failure, link failure between network components is one of the most common. For

intelligent, autonomous operation without human intervention, a smart grid must

have a flexible communication infrastructure capable of rapidly detecting and

repairing link failures. A software-defined networking (SDN) approach offers this

capability. SDN enables centralized control and decouples the data and control

planes, facilitating dynamic management and rapid response to failures. This

technology enhances the speed of rerouting and path recovery during link failures

by providing centralized and optimized decision-making. Central controllers in

SDN architectures can select new paths for data flows in the event of failure,

thereby reducing recovery time and packet loss rates. In this study, we design a

module for the SDN controller equipped with link failure detection features and

implement automatic recovery using the Q-learning algorithm. In smart grid

environments, packet loss rates are critical because any data loss can degrade

service quality and hinder the reception of essential information required for

system control in crisis situations, ultimately reducing the grid's ability to respond

to instabilities. The core focus of this research is reducing the packet loss rate, as

data loss severely impacts network stability and efficiency. When comparing the

proposed method to a reference study, the packet loss rate, recovery time, and

algorithm execution time in the German topology decreased by 66.62%, 85.99%,

and 91.99%, respectively. Similarly, in the U.S. topology, these metrics were

reduced by 90.50%, 76.99%, and 98.99%, respectively. Additionally, compared

to the normal state, the packet loss rate was reduced by an average of 67.95% in

the German topology and 13.15% in the U.S. topology.

Keywords: Smart grid, software-defined networking (SDN), Q-learning

algorithm, fault management.

https://doi.org/10.61838/kman.jrmde.3.4.13
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 117

1. Introduction

he rapid evolution of electrical infrastructure into

highly automated and intelligent systems has made the

concept of the smart grid increasingly vital to modern energy

management and distribution. Smart grids are complex

cyber-physical systems that incorporate bi-directional flows

of information and electricity to enable adaptive, efficient,

and sustainable power distribution, especially under

dynamic and uncertain conditions (Shafiullah et al., 2013).

However, this increasing sophistication also brings about

critical vulnerabilities—especially concerning

communication reliability and routing resilience,

particularly in the face of link failures. In response to these

challenges, the integration of Software-Defined Networking

(SDN) into smart grids has emerged as a promising

architectural enhancement due to its programmability,

centralized control, and separation of data and control planes

(Ali et al., 2020).

The dynamic nature of smart grid communication

networks necessitates a recovery framework that is both

resilient and adaptable to link failures. Traditional routing

algorithms, which typically operate based on static

topologies and pre-configured paths, are ill-suited for real-

time response to failures in rapidly changing environments

such as smart grids (Bhavani et al., 2023). Therefore,

leveraging machine learning (ML) approaches, particularly

reinforcement learning techniques such as Q-learning, has

garnered attention due to their ability to model non-

deterministic scenarios and improve decision-making

through environmental feedback (Zhang et al., 2019). These

models can dynamically update routing decisions based on

observed network states, thereby minimizing the delay and

packet loss typically incurred during link failures (Tang,

2024).

Among ML approaches, Q-learning is particularly

suitable for routing in SDN-based smart grids due to its

model-free nature and ability to optimize actions in unknown

environments. Q-learning algorithms iteratively learn

optimal policies by interacting with the environment,

thereby enabling autonomous agents to select routes that

minimize cumulative costs, including delay and energy

consumption (Zhang et al., 2019). Moreover, its lightweight

nature makes it implementable within the processing

constraints of SDN controllers (Zhou et al., 2021). Several

studies have demonstrated the efficacy of Q-learning in

improving routing resilience under uncertain conditions,

showing reductions in average path delay and increases in

packet delivery ratio compared to traditional deterministic

algorithms (Mohammadi & Javidan, 2021).

The integration of SDN and ML-based routing in smart

grids is further motivated by the modular and programmable

nature of SDN controllers, which allows for the deployment

of intelligent decision-making layers. This architecture

supports rapid failure detection and rerouting, especially

when controllers are enhanced with learning modules that

adapt to topological and traffic variations in real time

(Abdulkadhim et al., 2022). In this context, the SDN

controller is not only responsible for managing flow tables

and routing paths but also acts as a host for executing

learning algorithms that continuously refine network

performance. Such a design is well-suited to meet the

operational and security demands of critical infrastructure

networks like smart grids (Mohammad, 2024).

Nonetheless, the incorporation of machine learning into

network control is not without its risks. The susceptibility of

ML models to adversarial attacks has raised significant

concerns about the robustness and reliability of such systems

(Ibitoye et al., 2019). Malicious manipulation of input data

or model parameters could lead to incorrect routing

decisions, service interruptions, and potential system-wide

failures. Recent studies have emphasized the importance of

designing secure and robust ML pipelines to mitigate

adversarial threats and maintain operational integrity in

mission-critical networks (Ibitoye et al., 2025). Therefore,

while Q-learning and similar algorithms provide notable

performance advantages, their deployment must be coupled

with stringent security protocols and ongoing model

validation.

From a systems perspective, SDN-enabled smart grids

that incorporate ML-based routing must be evaluated on

multiple performance dimensions. These include not only

traditional quality of service (QoS) metrics such as end-to-

end delay and packet loss, but also recovery time and

algorithm execution duration following link failures (Wei et

al., 2014). Studies that simulate realistic grid topologies—

such as backbone structures found in German and American

smart grid networks—show that Q-learning–based recovery

strategies outperform conventional methods in minimizing

recovery time and maintaining high service availability

during failures (Mohammadi & Javidan, 2021).

Furthermore, the inclusion of shared-risk link groups

(SRLGs) in these simulations enables a more accurate

reflection of real-world network dependencies and

vulnerabilities (Ali et al., 2020).

T

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 118

While SDN-based failure recovery methods have been

extensively studied, most existing approaches remain

reactive, relying on network state polling and control-plane

computations to address faults after they occur (Ali et al.,

2020). In contrast, proactive methods using reinforcement

learning algorithms have demonstrated significant

reductions in recovery latency by pre-computing backup

paths based on predicted network states (Zhang et al., 2019).

Additionally, hybrid methods that combine proactive and

reactive features—such as penalizing failed links in the Q-

table while simultaneously updating topology information—

offer a balanced trade-off between recovery speed and

computational efficiency (Mohammadi & Javidan, 2021).

In terms of implementation, platforms such as RYU,

OpenDaylight, and ONOS offer different capacities for

supporting intelligent routing mechanisms. While

OpenDaylight and ONOS natively support proactive path

installation using algorithms like Dijkstra, RYU follows a

reactive model that requires flow requests to trigger path

computation (Ali et al., 2020). Therefore, customizing RYU

to support proactive, ML-driven routing can offer insights

into enhancing controller performance and reducing flow

setup latency. Moreover, integrating these systems with

virtualized environments such as Mininet enables

comprehensive simulation and performance benchmarking

under controlled yet realistic conditions (Zheng et al., 2024).

Beyond technical performance, the adoption of

intelligent, SDN-enabled routing frameworks has broad

implications for the future of smart grid infrastructure. As

the energy sector undergoes a digital transformation,

characterized by distributed generation, electric vehicles,

and IoT-enabled energy devices, the communication

backbone must be equally agile and intelligent (Shafiullah et

al., 2013). The use of adaptive routing techniques powered

by ML offers a scalable solution to managing the increased

complexity and data flows within modern grids. Moreover,

the alignment of such technologies with global energy

transition goals enhances sustainability and operational

resilience (Bhavani et al., 2023).

In addition to operational efficiency, the integration of

learning algorithms in SDN controllers also enables

predictive analytics and fault prevention. For instance, deep

learning models trained on historical failure patterns can

predict potential future faults and reconfigure paths

preemptively, minimizing service disruption (Mishra &

Gupta, 2017). Furthermore, neural networks have been

effectively applied in diverse fields such as radial drilling

optimization and LFM signal recovery, underscoring the

cross-domain versatility of these techniques (Krivoshchekov

et al., 2022; Zhou et al., 2021). Their application to smart

grid communication is therefore a logical and impactful

extension.

However, future progress in this area depends not only on

algorithmic innovation but also on hardware acceleration

and system-level integration. Recent developments in in-

network machine learning and hardware-based neural

processing units offer promising directions for deploying

low-latency, energy-efficient ML models directly within

network devices (Ueyoshi et al., 2016; Zheng et al., 2024).

Such developments can significantly reduce the processing

burden on centralized SDN controllers and distribute

intelligence across the network, thereby enhancing

scalability and fault tolerance.

In conclusion, the convergence of SDN and machine

learning holds transformative potential for enhancing the

robustness, responsiveness, and intelligence of smart grid

communication systems. Q-learning–based routing

frameworks offer a compelling approach to dynamic path

recovery, particularly in environments characterized by

volatility and high performance requirements. However,

successful implementation demands a comprehensive

strategy that incorporates simulation, security, and

hardware-level support. This study aims to design,

implement, and evaluate a Q-learning–based routing and

link failure recovery method for smart grid communication

networks enabled by Software-Defined Networking (SDN).

2. Methods and Materials

2.1. Operating System

In this study, the primary objective was to utilize the

Linux operating system for simulation purposes. To achieve

this, the VMware virtualization tool was employed. VMware

enables the execution of various operating systems,

including Ubuntu 64-bit Arm version 22.04.4, virtually on a

physical device. This software creates an appropriate and

independent virtual environment, allowing us to conduct

simulations effectively without modifying the host operating

system. The allocated resources for the virtual machine are

as follows:

✓ Number of processors: 8 processors, each with 2 cores

✓ Memory: 14 GB

✓ Disk space: 24 GB

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 119

2.2. Software and Programming Languages Used

For simulation purposes, Visual Studio software was used

for programming. The programming of the designed unit for

the Software-Defined Network (SDN) controller was

implemented using this software in the Python language and

executed in the Linux terminal. AWK, a programming

language for parsing and processing text files, particularly in

Linux-based operating systems, was also utilized. Using

AWK, large text files can be easily analyzed and subjected

to the required operations in a straightforward structure. This

language was used in the present study to process data and

extract required information from text files. Finally, Linux

shell programming was employed. The shell acts as an

interface between the user and the Linux kernel and provides

powerful tools to leverage kernel functionalities. Shell

scripting enables users to automate repetitive operations by

writing executable scripts containing commands and

parameters. In network simulation projects using tools such

as Mininet, shell scripts can be used to automatically launch

network topologies, manage SDN controllers, and execute

AWK files for data processing. These scripts automate time-

consuming repetitive tasks and enhance network

optimization and management.

2.3. Tools

Mininet is a network emulator designed for use in both

research and development settings to create a realistic virtual

network for testing before deployment on physical network

hardware. Mininet is open-source, making it an ideal tool for

research as it does not require a license. Unlike other

simulators and emulators, Mininet is specifically designed

with SDN networks in mind. It offers several features that

make simulating SDN environments convenient. For

instance, it allows the emulated network to be controlled by

a simulated or real SDN controller. It also supports the

OpenFlow protocol and can translate actual OpenFlow

commands issued by an external controller through the

southbound interface into simulated OpenFlow commands

interpretable by emulated OpenFlow network devices.

For creating topologies, two approaches are used. The

first is the command-line interface (CLI), which allows users

to build network topologies in various designs (e.g., star,

mesh) using specific Mininet commands and define the

number of hosts and nodes directly via CLI. The second

approach involves Python scripting, supported by Mininet,

through which topologies can be written in Python and then

executed via the CLI. Additionally, network tools like iPerf

and Ping can be used to generate traffic. These tools can

either be embedded in Python scripts or run via the CLI on

each host node.

2.4. Proposed Method

Given that maintaining communications in smart grid

infrastructures is essential for delivering electricity services,

a flexible communication architecture capable of recovering

from link failures is required. For this reason, the present

study leverages the capabilities of SDN to develop an

effective method for identifying optimal sequential recovery

strategies in smart grid networks. The proposed architecture

comprises several components and is designed based on the

SDN architecture in smart grid networks.

2.4.1. Smart Grid Network Environment

In this study, two topologies—Germany Backbone

Network (GNB) and US Network (USNET)—were used.

The hosts included in these topologies represent smart

meters. Smart meters play a key role in smart grid networks,

as they are capable of measuring, analyzing, and monitoring

energy consumption. These meters continuously collect data

and information regarding electricity usage and transmit it to

central stations.

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 120

Figure 1

GNB Topology

In addition, they establish two-way communication with

all consumers, a core feature of smart grid networks. This

data exchange and bi-directional communication enable

more optimized and sustainable network management.

Figures 1 and 2 illustrate the topologies used in the study.

Figure 2

USNET Topology

2.4.2. Role of Software-Defined Networking (SDN)

With the continuous development and widespread

adoption of Software-Defined Networking (SDN), this

technology also faces numerous challenges. Network

failures are detrimental as they disrupt communications and

significantly reduce service availability. Various factors

contribute to network failures, the most common being link

failure. In real-world scenarios, link disconnection is a

frequent occurrence and can lead to severe consequences.

When such events happen, they can cause service

interruptions, negatively affect user experience, and even

result in substantial financial losses. Therefore, designing a

reasonable and efficient link failure recovery scheme can

significantly enhance the fault tolerance, stability, and

robustness of the network. Figure 3 illustrates the

architecture of the proposed method based on SDN.

Figure 3

Architecture of the Proposed Method

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 121

2.4.3. Link Failure Detection Methods in Software-

Defined Networks

Generally, before initiating recovery mechanisms, link

failure detection is required. In SDN, there are two common

methods for detecting link failures: signal loss and

bidirectional forwarding detection.

1. Signal Loss Method: This method is suitable for

detecting failures in a specific port of the data-plane

switch. When a link failure occurs, the status of the

relevant OpenFlow (OF) switch port changes from

"up" to "down." The associated OF switch then

independently generates a port status message to

inform the controller. Upon receiving this message,

the controller becomes aware of the link failure and

its location. In practice, this mechanism is reactive

(see).

2. Bidirectional Forwarding Detection (BFD)

Method: This method can detect both link and path

failures. In this approach, two endpoint nodes

periodically exchange control and echo messages.

Each node responds with an echo message after

receiving a control message. If a node does not

receive the echo packet from the monitored

connection, the link or path is assumed to have

failed. Figure 4 depicts the message exchange

process in the bidirectional detection method. In

practice, this mechanism is proactive (see). In the

present study, we use the bidirectional forwarding

detection method for link failure detection.

Figure 4

Message Exchange Process in the Bidirectional Forwarding Detection Method

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 122

2.4.4. Link Failure Recovery Methods in Software-

Defined Networks

When a link failure event occurs in SDN, it can be

managed either proactively or reactively. During normal

network operation, flows are routed from the source node to

the destination node via a primary path. However, when a

link fails, these two approaches handle failures differently

(see).

Proactive Recovery: In proactive recovery, backup paths

are pre-configured. Hence, failure detection typically occurs

locally, and flows associated with the failed link are

immediately redirected to the alternate path without

interaction with the controller. Figure 5 illustrates link

failure recovery using the proactive mechanism. When the

link in path 1 fails, the flow rules for the backup path are

already set on the switch; therefore, data packets are

redirected from the failed link to the predefined alternate

path on the switch.

Figure 5

Link Failure Recovery Using Proactive Mechanism

Proponents of proactive recovery argue that it is more

efficient in terms of recovery time because the paths are pre-

configured and no interaction with the control plane is

necessary to find an alternative route. As a result, carrier-

grade network requirements are met, meaning that paths can

be restored in less than 50 milliseconds. Thus, this approach

provides faster recovery without controller intervention,

minimizing any delay caused by interactions with the

controller to find alternate routes.

Reactive Recovery: Reactive failure recovery primarily

relies on the SDN controller. Figure 6 presents a scenario of

reactive link failure recovery. The following steps are taken

upon detecting a link failure:

✓ The controller monitors the network status by sending

periodic heartbeat messages.

✓ The controller detects any failures.

✓ The controller searches for an alternate path to replace

the failed link.

✓ The controller deletes old flow entries and installs new

flow entries for the updated path in the SDN switches.

In this method, controller intervention introduces a

significant delay in recovery time. This delay results from

communication overhead between the switches and the

controller, the additional time needed to discover an

alternate path, and the time required to insert new flow

entries for the updated route. Therefore, critics of this

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 123

approach argue that reactive recovery cannot meet the sub-

50-millisecond delay requirements of carrier-grade

networks.

Figure 6

Link Failure Recovery Using Reactive Mechanism

2.4.5. Design of the Module for the Controller

In this study, we designed a module for the controller that

utilizes a recovery strategy to resolve link failures. Figure 7

illustrates the details of the fault-tolerant unit presented in

Figure 3. According to Figure 7, this unit consists of seven

steps.

Figure 7

Management Module Design for the Controller

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 124

✓ Link Delay Calculation: Information about the delay

of each network link is obtained and stored in a matrix.

✓ Link Bandwidth Calculation: Information about the

bandwidth of each network link is acquired and stored in a

matrix.

✓ Normalization: Since delay is measured in

milliseconds and bandwidth in gigabits per second, and the

units are not consistent, normalization must be applied.

Equation (1)

Cost_s1s2 = α d_s1s2 + (1 – α) b_s1s2^–1

In this formula, d represents the delay, b the bandwidth

between link s1s2, and α is the scaling coefficient, which is

set to 0.5.

✓ Link Cost Calculation: The cost of each link is

calculated based on the normalized values of the delay and

bandwidth matrices and stored in another matrix.

✓ Network Topology: Periodic information about the

network topology—including nodes and links—is collected

and stored in the relevant matrix.

✓ Path Calculation: The path is computed using the Q-

learning algorithm.

✓ Path Installation: At this stage, the calculated path

output is received, and the paths are installed on the

switches.

The relationship between the RYU architecture and the

designed module is as follows:

The designed module acts as an intelligent layer for

making complex decisions about routing and enhancing

network performance. This unit includes several processing

functions such as calculating link delay and bandwidth,

normalizing the computed values, calculating link costs, and

ultimately executing a Q-learning–based routing algorithm

to find the optimal path under dynamic network conditions.

In this process, the designed module depends on topology

and link parameter information provided by RYU

components; hence, different parts of the RYU controller

play an essential role in supplying the necessary

infrastructural data to this module so it can make intelligent

routing decisions.

✓ Topology Discovery: This unit continuously discovers

and updates the network topology. This information includes

nodes, links, and existing paths, which are regularly

provided to the designed module. In our module, this

information is used as input for computing the optimal route,

since the Q-learning algorithm requires awareness of the

current network topology (see).

✓ Event Management: Upon the occurrence of any

change or event in the network—such as link disconnection

or reconnection—this unit sends the relevant event to other

components. This capability allows the designed module to

receive new parameters to recalculate paths and update

optimal routing when link states change (see).

✓ OpenFlow Parsing and Serialization: This unit is

responsible for processing OpenFlow messages and

enabling communication between the controller and network

devices. The module we designed utilizes this

communication to install new paths, meaning that once the

best path is selected by the Q-learning algorithm, the path is

transmitted to the network switches through OpenFlow

messages (see).

It should also be noted that upon link disconnection,

feedback from the installed path is required. In the designed

module, a function is implemented to detect link failure.

Upon failure, a function is called to compare the new

topology with the previous one, and if a change is detected,

the path is recalculated and reinstalled. If Q-learning is used,

a penalty value corresponding to the failure is assigned in the

Q-table. Figure 8 presents the flowchart of this feedback

mechanism.

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 125

Figure 8

Flowchart of the Feedback Mechanism for the Installed Path

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 126

As mentioned earlier, the Q-learning algorithm is used to

improve routing and respond to link failures in the network.

This algorithm leverages a Q-table, which contains value

scores for different state-action pairs, to select the most

optimal paths for data flow and demonstrates its capability

in managing complex network conditions.

3. Findings and Results

3.1. Simulation Settings

In Figures 1 and 2, the dotted circles represent links with

shared risk, meaning all links covered by a single dotted

circle are exposed to a similar risk. In the GNB and USNET

topologies, we considered four and nine groups of shared-

risk links, respectively. In both experiments, we

implemented a Python script in Linux to simulate link

failures. This script uses the ifdown command to disconnect

a link and the ifup command to reconnect it. The script is

activated every 10 seconds and randomly selects one shared-

risk link from each group, disconnecting it for a specific

period defined as failure time. After the failure time, the

script reconnects the previously disconnected links. In all

simulations of the proposed method, the controller is

configured to poll network statistics, execute the proposed

method every 20 seconds, and announce separate routes for

each source-destination pair to the relevant switches. It is

noteworthy that the simulation duration is set to 240 seconds

(4 minutes).

In the GNB topology, the delay and bandwidth of each

link are configured to 10 milliseconds and 5 megabits per

second, respectively. This topology includes three source-

destination pairs, with each source host generating UDP

traffic at a rate of 1 megabit per second (with a packet size

of 1000 bytes) and sending it to the destination host. In the

USNET topology, each link's delay and bandwidth are

configured to 20 milliseconds and 10 megabits per second,

respectively. This topology has five source-destination pairs,

and each source host generates UDP traffic at a rate of 2

megabits per second (with a packet size of 1000 bytes) and

sends it to the destination. All simulation configurations are

aligned to enable comparison with the reference article.

3.2. Computational Parameters

The simulation results are analyzed based on quality of

service parameters (average end-to-end delay and packet

loss), recovery time, and algorithm execution time. These

parameters are defined as follows:

✓ Average end-to-end delay: Refers to the average time

required for successful transmission of each data packet

from the source to the destination.

✓ Packet loss: Indicates the ratio of total data packets that

did not reach the destination to the total number of packets

sent from the traffic source.

✓ Recovery time: Represents the duration required to

detect a link failure and compute a new path.

✓ Algorithm execution time: In the controller module, the

start and end times of the path computation are recorded, and

the difference is used to determine the algorithm’s execution

time.

3.3. Evaluation of the Proposed Method Versus the

Reference Article

This section presents the evaluation of the results for the

GNB and USNET scenarios and compares them with the

reference method.

3.3.1. Evaluation of Link Failure Results in GNB and

USNET Topologies

In Figures 9 and 10, the results of the reference article

clearly demonstrate superior performance in reducing

average end-to-end delay through the use of optimization

techniques. These techniques include improvements in

routing and the selection of shorter and more efficient paths

for data flows in the network, which result in reduced packet

transmission time from source to destination and lower

overall network delay. This reduction in delay directly

enhances network performance under various conditions and

demonstrates the reference method’s superiority in

minimizing delay.

In contrast, the proposed method in this study employs

the Q-learning algorithm for recovering failed links. In this

algorithm, whenever a link fails, a penalty is assigned to the

corresponding Q-table entry. These penalties prompt the

system to automatically choose alternate paths to avoid

failed links. If the available alternate links in the network are

longer or contain more nodes, the selected path will also be

longer. Increased path length directly leads to higher

network delay, as packets must traverse more nodes.

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 127

Figure 9

Average End-to-End Delay for the GNB Topology

Figure 10

Average End-to-End Delay for the USNET Topology

In Figures 11 and 12, it is observed that the packet loss

rate in the proposed method has decreased on average by

66.62% in the German topology and 90.50% in the U.S.

topology compared to the reference article. This

performance improvement is attributed to the higher

algorithm execution time in the reference article; the process

of detecting a link failure and computing and installing a new

path takes significantly longer. This delay results in the loss

of a large number of packets across the network, thereby

negatively affecting system performance.

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 128

Figure 11

Packet Loss for the GNB Topology

Figure 12

Packet Loss for the USNET Topology

Recovery time is defined as the sum of the path

installation time and algorithm execution duration. In the

reference article, the algorithm's execution time is high due

to the complexity of the failure detection process and the

computation of new paths, which can significantly extend

the recovery time. Conversely, in the proposed method, the

use of the Q-learning algorithm and improved processes for

detection and path selection have effectively reduced the

algorithm’s execution time. As shown clearly in Figures 13

and 14, the average recovery time in the proposed method

has been reduced by 85.99% in the German topology and

76.99% in the U.S. topology compared to the reference

article.

It is important to note that to better compare the results of

the two methods, due to the significant difference in

recovery time scales, two separate y-axes are used in the

graphs: the left axis for values from the Q-learning algorithm

and the right axis for values from the reference method

(EFSUTE). This configuration enables more accurate

observation and analysis of the results.

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 129

Figure 13

Recovery Time for the GNB Topology

Figure 14

Recovery Time for the USNET Topology

The algorithm execution time in the proposed method has

significantly decreased compared to the reference article. As

shown in Figures 15 and 16, the execution time was reduced

by 91.99% in the German topology and 98.99% in the U.S.

topology during the experiments. This substantial difference

is due to the time complexity of the algorithm in the

reference article, which is classified as non-deterministic

polynomial (NP) and thus requires significantly more

runtime than the Q-learning algorithm. In contrast, the

proposed method benefits from the Q-learning algorithm’s

lower time complexity and has demonstrated better

performance in terms of execution speed.

It is again worth noting that for more effective

comparison, due to the substantial difference in recovery

time scale, the graphs utilize two separate y-axes: the left for

the Q-learning algorithm values and the right for the

reference article (EFSUTE). This setting facilitates more

precise visualization and interpretation of results.

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 130

Figure 15

Algorithm Execution Time for the GNB Topology

Figure 16

Algorithm Execution Time for the USNET Topology

3.3.2. Evaluation of Two-Link Failure Results in GNB

and USNET Topologies

As observed in Figures 17 and 18, the average end-to-end

delay in the normal method is lower than in the proposed

method, because the routing algorithm in the normal method

operates based on the number of hops and always selects the

shortest path. Since the link delay values are identical in both

methods, selecting the shortest path inherently results in the

lowest delay. In contrast, in the proposed method, due to the

penalization of the Q-table associated with the failed link,

the path to the destination becomes longer, thereby

increasing overall network delay.

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 131

Figure 17

Average End-to-End Delay for the GNB Topology

Figure 18

Average End-to-End Delay for the USNET Topology

As shown in Figures 19 and 20, the packet loss rate in the

proposed method is reduced on average by 67.95% in the

German topology and 13.15% in the U.S. topology

compared to the normal method. In the normal method,

routing is performed solely based on the shortest path, and

when a link failure occurs, no new alternative path is

installed. This leads to the loss of a significant number of

packets. However, in the proposed method, upon detecting a

link failure, the Q-table entry related to the failed link is

penalized to prevent its reuse, and instead, a new path is

selected from among the healthy links. This process

effectively reduces packet loss.

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 132

Figure 19

Packet Loss for the GNB Topology

Figure 20

Packet Loss for the USNET Topology

As stated earlier, in smart grids, the priority is to ensure

that data is accurately received and not lost. Therefore, the

primary focus of this study is on reducing the packet loss

rate, since this phenomenon can have severely detrimental

effects.

3.4. Normal Method

In many SDN controllers, including OpenDaylight and

ONOS, a proactive routing mechanism is implemented.

These controllers, using algorithms such as Dijkstra,

compute optimal paths for data flows in advance and install

them on the switches. This allows data packets to be

transmitted quickly, without the need for additional

processing for each new request. As a result, network

performance is significantly enhanced and transmission

delays are reduced.

However, the RYU controller used in this study does not

have such a built-in proactive routing mechanism. RYU

operates using a reactive routing approach, meaning that

when a new data flow arrives at a switch without a

predefined path, the switch sends a request to the controller.

At this point, the controller computes the required path and

communicates it to the switches so that the packets can be

forwarded accordingly. This process is repeated separately

for each new flow. This reactive approach increases the

processing overhead on the controller, as RYU must

compute paths step-by-step for every new flow.

To overcome this limitation and align the performance of

the RYU controller with that of other controllers, routing

using the Dijkstra algorithm—referred to as the "normal

method"—has been implemented in this study. This measure

helps improve the performance and efficiency of the RYU

controller. Furthermore, in the comparison between the

proposed method and the reference article, only one link

from a shared-risk group was disconnected. In contrast, in

this comparison with the normal method, both links in the

shared-risk group are disconnected, and the resulting

outcomes are discussed in the next section. It is important to

note that the normal method was developed as an auxiliary,

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 133

external part of the main study and is intended to highlight

the reduction in packet loss rate.

4. Discussion and Conclusion

This study aimed to evaluate the performance of a Q-

learning–based routing strategy for smart grid networks

enabled by Software-Defined Networking (SDN). The

simulation results in both GNB and USNET topologies

confirmed that the proposed method, despite a trade-off in

end-to-end delay, significantly outperforms traditional and

reference approaches in packet loss reduction, recovery

time, and algorithm execution time.

First, regarding end-to-end delay, the results show that

the normal method, which relies on shortest-path routing

based on hop count, achieved lower average delays

compared to the proposed method. This outcome is expected

because, in the normal method, routing is static and always

selects the path with the fewest hops, inherently minimizing

delay when link qualities are equal. In contrast, the Q-

learning–based method imposes penalties on failed links

within the Q-table, which can result in the selection of longer

alternate paths to avoid failed segments. Consequently, as

more nodes are traversed, delay increases. However, this is

a calculated trade-off in favor of overall resilience and

packet delivery success. Such trade-offs have been

acknowledged in earlier studies on intelligent routing in

SDN networks, where the primary goal was maximizing

reliability and delivery rates under dynamic network

conditions rather than minimizing delay alone (Ali et al.,

2020; Zhang et al., 2019).

Second, the proposed method demonstrated a significant

reduction in packet loss, particularly under multiple-link

failure scenarios. In the GNB topology, the average packet

loss decreased by approximately 67.95%, and in the USNET

topology, by 13.15% when compared with the normal

method. This result underscores the primary strength of Q-

learning in dynamic environments. Unlike traditional

routing algorithms that do not adapt to network state changes

during runtime, reinforcement learning methods like Q-

learning are capable of reacting to disruptions by learning

from past failures and avoiding problematic links. These

findings are consistent with previous research, which

highlighted the capacity of Q-learning to improve network

robustness in failure-prone environments, especially in

smart grids where real-time data delivery is mission-critical

(Bhavani et al., 2023; Zhang et al., 2019). Moreover,

machine learning–based approaches have proven effective

in failure detection and adaptive routing across various

domains, as shown in both power distribution modeling

(Wei et al., 2014) and radar network recovery (Zhou et al.,

2021).

Third, the study’s most pronounced performance gain

was in the area of recovery time and algorithm execution

time. In comparison with the EFSUTE algorithm from the

reference article, the proposed Q-learning method achieved

a recovery time reduction of 85.99% in the GNB topology

and 76.99% in the USNET topology. Similarly, algorithm

execution time was reduced by 91.99% and 98.99%,

respectively. These improvements are particularly

noteworthy considering the operational importance of rapid

failure recovery in smart grid environments. Delays in

rerouting after link failures can severely impact grid

responsiveness, leading to cascading system errors or energy

delivery mismatches. Q-learning’s low computational

complexity and its model-free nature allow for rapid

decision-making and policy updates, which are vital in such

time-sensitive scenarios. Previous works also support this

assertion, stating that Q-learning provides faster adaptability

in real-time applications compared to deterministic or

computationally heavy multi-objective routing strategies

(Mishra & Gupta, 2017; Mohammadi & Javidan, 2021).

Another important observation was the effectiveness of

penalization within the Q-table during link failure events.

This mechanism enables the controller to adaptively avoid

previously failed links and reroute traffic through alternate

paths, even if those paths are longer. The reactive-reflexive

behavior of the Q-agent in the SDN controller reinforces

fault avoidance and demonstrates a form of experiential

learning not available in traditional or statically

preconfigured routing approaches. The value of such

adaptive strategies in critical systems has been emphasized

by several studies, particularly those addressing the design

of resilient and secure SDN architectures (Abdulkadhim et

al., 2022; Mohammad, 2024).

Furthermore, the integration of SDN with Q-learning

aligns with the broader shift toward intelligent, decentralized

network control, allowing networks to self-optimize in

response to evolving topologies and threats. This

convergence is especially relevant in smart grids, where the

control infrastructure must manage a diverse array of

nodes—from smart meters to substations—and ensure fault-

tolerant data transmission. Reinforcement learning strategies

like the one proposed here fulfill this requirement by

incorporating environmental feedback into future decision-

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 134

making, reducing network overhead, and enhancing

scalability (Ibitoye et al., 2025; Tang, 2024).

While the results of the proposed method are promising,

it is important to consider the implications of security in

machine learning–driven SDN controllers. Recent research

has highlighted the vulnerability of such models to

adversarial attacks that can manipulate input data or training

sets to compromise routing decisions (Ibitoye et al., 2019).

Although Q-learning is generally less complex and thus

potentially less vulnerable than deep learning models, it is

still susceptible to reward manipulation and spoofed

feedback. As such, embedding robust adversarial detection

and countermeasures is crucial for operational deployment,

particularly in safety-critical domains like energy

infrastructure (Ibitoye et al., 2025; Ueyoshi et al., 2016).

The simulation environment also played a critical role in

validating the results. By utilizing Mininet and simulating

shared-risk link groups (SRLGs) within realistic topologies

such as GNB and USNET, the study approximated real-

world network vulnerabilities more accurately than models

relying on simplified topologies. The use of heartbeat

messaging for link monitoring, and the regular update of the

SDN controller’s Q-table, facilitated a robust test of the

proposed architecture’s responsiveness and reliability. This

approach is consistent with best practices in ML-in-network

experimentation, as suggested by recent studies on in-

network ML inference platforms like Planter (Zheng et al.,

2024).

In conclusion, the study demonstrates that Q-learning–

based routing in SDN-enabled smart grids can significantly

enhance resilience, especially in failure-prone scenarios.

While it introduces modest increases in delay due to longer

alternate paths, this is outweighed by substantial

improvements in packet loss reduction, recovery time, and

computation efficiency. These findings affirm the relevance

of reinforcement learning for self-adaptive, fault-tolerant

networking, providing a clear path forward for integrating

ML into smart grid control infrastructures (Krivoshchekov

et al., 2022; Mohammad, 2024; Mohammadi & Javidan,

2021).

Despite its promising outcomes, the present study has

several limitations. First, the simulations were conducted in

a virtualized testbed environment, which may not capture all

real-world complexities such as hardware-induced latencies,

varying traffic intensities, or physical environmental

interferences. Second, the learning model assumes full

observability and timely reception of feedback, which may

not always be feasible in real-time smart grid scenarios.

Third, only Q-learning was evaluated; the inclusion of other

reinforcement learning algorithms such as Deep Q-

Networks (DQN) or Actor-Critic models may offer

additional insights. Moreover, the scope of adversarial risks

and security vulnerabilities was not empirically tested in this

implementation and requires further exploration.

Future research should aim to expand the study by

incorporating hybrid learning approaches, such as

combining Q-learning with predictive analytics based on

historical fault data. Additionally, exploring the integration

of hardware-accelerated ML platforms can help address

latency issues, particularly in edge computing settings.

Long-term studies under real-time conditions, including

stress testing under simultaneous multi-node failures or

cyberattacks, will also provide a more comprehensive

understanding of the model’s resilience. Comparative

studies between different SDN controllers and their

capability to host ML-based decision modules will further

clarify deployment feasibility.

Practitioners aiming to deploy intelligent routing in SDN-

enabled smart grids should prioritize modular design,

allowing easy integration of Q-learning models with existing

controllers. They should also implement periodic topology

monitoring and update mechanisms to ensure Q-tables

remain relevant. Proactive route learning, especially under

shared-risk link scenarios, can reduce failure response times

and enhance service availability. Finally, adopting a

security-first approach, including model validation and

feedback authentication, will be critical to ensuring trust and

performance in real-world deployments.

Authors’ Contributions

Authors contributed equally to this article.

Declaration

In order to correct and improve the academic writing of

our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable

request to the corresponding author.

Acknowledgments

We would like to express our gratitude to all individuals

helped us to do the project.

 Mozayani & Vali Journal of Resource Management and Decision Engineering 3:4 (2024) 116-135

 135

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial

support.

Ethics Considerations

In this research, ethical standards including obtaining

informed consent, ensuring privacy and confidentiality were

considered.

References

Abdulkadhim, M., Abdulmuhsen, N. Q., & Al-Kadhimi, A. M.

(2022). Design and Simulation of a Software Defined

Networking-Enabled Smart Switch for Internet of Things-

Based Smart Grid. Indonesian Journal of Electrical

Engineering and Computer Science, 25(2), 780.

https://doi.org/10.11591/ijeecs.v25.i2.pp780-787

Ali, J., Lee, G. M., Roh, B. H., Ryu, D. K., & Park, G. (2020).

Software-defined networking approaches for link failure

recovery: A survey. Sustainability, 12(10), 42-55.

https://doi.org/10.3390/su12104255

Bhavani, A., Ramana, A. V., & Chakravarthy, A. S. N. (2023). A

Review on Machine Learning Based Routing Protocols for

Delay Tolerant Networks. Intelligent Decision Technologies,

17(2), 287-299. https://doi.org/10.3233/idt-220018

Ibitoye, O., Abou-Khamis, R., Shehaby, M. e., Matrawy, A., &

Shafiq, M. O. (2019). The Threat of Adversarial Attacks on

Machine Learning in Network Security -- A Survey.

https://doi.org/10.48550/arxiv.1911.02621

Ibitoye, O., Abou-Khamis, R., Shehaby, M. e., Matrawy, A., &

Shafiq, M. O. (2025). The Threat of Adversarial Attacks

Against Machine Learning in Network Security: A Survey. J.

Electron. Electric. Eng.

https://doi.org/10.37256/jeee.4120255738

Krivoshchekov, S., Kochnev, A., & Ozhgibesov, E. (2022). The

Application of Neural Networks to Forecast Radial Jet

Drilling Effectiveness. Energies, 15(5), 1917.

https://doi.org/10.3390/en15051917

Mishra, C., & Gupta, D. (2017). Deep Machine Learning and

Neural Networks: An Overview. Iaes International Journal of

Artificial Intelligence (Ij-Ai), 6(2), 66.

https://doi.org/10.11591/ijai.v6.i2.pp66-73

Mohammad, R. (2024). Principles of designing software-defined

networks. Abou Ali Sina University Press.

Mohammadi, R., & Javidan, R. (2021). EFSUTE: A novel efficient

and survivable traffic engineering for software defined

networks. Journal of Reliable Intelligent Environments, 137,

1-14. https://link.springer.com/article/10.1007/s40860-021-

00139-0

Shafiullah, G. M., Maung Than Oo, A., Ali, A. B. M. S., & Wolfs,

P. (2013). Smart grid for a sustainable future. Smart Grid and

Renewable Energy, 4, 23-34.

https://doi.org/10.4236/sgre.2013.41004

Tang, Y. (2024). The Application of Machine Learning in the Field

of Network Security. Tcsisr, 7, 363-369.

https://doi.org/10.62051/cw085k64

Ueyoshi, K., Marukame, T., Asai, T., Motomura, M., & Schmid,

A. (2016). Robustness of Hardware-Oriented Restricted

Boltzmann Machines in Deep Belief Networks for Reliable

Processing. Nonlinear Theory and Its Applications Ieice, 7(3),

395-406. https://doi.org/10.1587/nolta.7.395

Wei, Y., Ji, C., Galvan, F., Couvillon, S., Orellana, G., & Momoh,

J. A. (2014). Learning Geotemporal Nonstationary Failure and

Recovery of Power Distribution. IEEE Transactions on

Neural Networks and Learning Systems, 25(1), 229-240.

https://doi.org/10.1109/tnnls.2013.2271853

Zhang, Y., Wu, J., Chen, Z., Huang, Y., & Zheng, Z. (2019).

Sequential node/link recovery strategy of power grids based

on q-learning approach. In 2019 IEEE International

Symposium on Circuits and Systems (ISCAS),

Zheng, C., Zang, M., Hong, X., Perreault, L. P. L., Bensoussane,

R., Vargaftik, S., Ben-Itzhak, Y., & Zilberman, N. (2024).

Planter: Rapid Prototyping of in-Network Machine Learning

Inference. Acm Sigcomm Computer Communication Review,

54(1), 2-21. https://doi.org/10.1145/3687230.3687232

Zhou, Y., Zhang, F., Sun, G., & Pan, S. (2021). Machine Learning

Based LFM Signal Recovery for Fiber-Connected Radar

Networks. M4B.2. https://doi.org/10.1364/oecc.2021.m4b.2

https://doi.org/10.11591/ijeecs.v25.i2.pp780-787
https://doi.org/10.3390/su12104255
https://doi.org/10.3233/idt-220018
https://doi.org/10.48550/arxiv.1911.02621
https://doi.org/10.37256/jeee.4120255738
https://doi.org/10.3390/en15051917
https://doi.org/10.11591/ijai.v6.i2.pp66-73
https://link.springer.com/article/10.1007/s40860-021-00139-0
https://link.springer.com/article/10.1007/s40860-021-00139-0
https://doi.org/10.4236/sgre.2013.41004
https://doi.org/10.62051/cw085k64
https://doi.org/10.1587/nolta.7.395
https://doi.org/10.1109/tnnls.2013.2271853
https://doi.org/10.1145/3687230.3687232
https://doi.org/10.1364/oecc.2021.m4b.2

