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CrossMark

The objective of this study is to propose an efficient hybrid framework for portfolio
management that can simultaneously optimize investment returns and effectively
control risk under both normal and turbulent market conditions. The primary focus is
on improving the accuracy of asset return forecasting and transforming these
forecasts into optimal portfolio weighting decisions. In this research, a hybrid
approach is employed that combines a memory-instance—based gated transformer
model for forecasting asset returns with a hybrid metaheuristic algorithm based on
adaptive differential evolution and particle swarm optimization for portfolio
optimization. Financial data from the Iranian capital market covering the period from
2016 to 2024 were collected and, after preprocessing, cleaning, and feature
extraction, were entered into the modeling process. The mean absolute error in the
test period was 0.0068, and the root mean square error was 0.0100; these values
exhibited a standard deviation of less than 0.0004 in cross-validation, indicating
prediction stability. The optimal portfolio obtained by integrating these forecasts with
the hybrid metaheuristic algorithm achieved an annualized return of 0.325 and an
annualized standard deviation of 0.238, resulting in a Sharpe ratio of 1.16 and a
Sortino ratio of 1.61. Tail risk measures also remained at controlled levels, such that
the value at risk (VaR) at the 0.95 confidence level was 0.021 and the conditional
value at risk (CVaR) was calculated as 0.0316. The paired Wilcoxon test conducted
to compare the proposed model with benchmark methods yielded statistics above the
significance threshold (for the Sharpe ratio, z = 2.51 and p = 0.012; for the Sortino
ratio, z = 2.78 and p = 0.005), indicating a statistically significant improvement in
performance. Based on the findings, it can be concluded that the proposed hybrid
framework is capable of establishing an appropriate balance between return and risk
in portfolio management by leveraging deep learning and metaheuristic optimization.
The stability of the results across different temporal subsamples and the maintenance
of acceptable performance under turbulent market conditions indicate that this
approach possesses strong generalizability and practical applicability.
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1. Introduction

ortfolio management has long been recognized as a

central pillar of modern financial decision-making,
aiming to allocate limited capital among competing assets in
a manner that balances expected return against risk.
Classical portfolio theory, rooted in the mean-variance
framework, assumes rational investors, normally distributed
returns, and stable covariance structures. While this
paradigm has provided a foundational benchmark for
decades, empirical evidence from real markets increasingly
demonstrates that these assumptions are frequently violated,
especially in emerging and volatile financial systems.
Behavioral biases, structural market frictions, regulatory
constraints, technological disruption, and rapid information
diffusion collectively complicate the portfolio optimization
problem and reduce the practical effectiveness of purely
classical approaches (Antony, 2019; Hadbaa, 2019).
Consequently, contemporary portfolio management research
has shifted toward more flexible, data-driven, and adaptive
frameworks capable of capturing nonlinear dynamics,
regime changes, and tail risks.

One of the most significant challenges in portfolio
management arises from the empirical characteristics of
financial return distributions. Numerous studies have
documented that asset returns are typically non-Gaussian,
exhibiting skewness, excess kurtosis, volatility clustering,
and time-varying correlations. These features are
particularly pronounced in emerging markets, where
liquidity  constraints, information asymmetry, and
macroeconomic instability intensify market fluctuations. As
a result, reliance on variance alone as a risk measure may
underestimate downside risk and fail to capture extreme loss
scenarios, motivating the integration of tail-risk metrics such
as Value at Risk and Conditional Value at Risk into portfolio
optimization frameworks (Bahramian, 2022; Drenovak et
al., 2020). The recognition of these empirical regularities has
led to the development of multi-objective portfolio models
that explicitly trade off return maximization against various
dimensions of risk.

In parallel with advances in financial theory, rapid
progress in computational intelligence and machine learning
has fundamentally reshaped the analytical toolkit available
to portfolio managers. Machine learning models are
particularly well suited to financial data because they can

approximate complex nonlinear relationships, adapt to
evolving data-generating processes, and integrate large
volumes of heterogeneous information. Early applications
focused on regression and classification tasks, such as
predicting asset returns or identifying market regimes. More
recent research has expanded toward end-to-end portfolio
decision systems that combine forecasting, optimization,
and execution within a unified framework (Johnson &
Moore, 2019; Liang et al., 2018). These developments have
coincided with the increasing availability of high-frequency
data and computational resources, enabling more
sophisticated modeling strategies.

Among machine learning paradigms, deep learning has
gained particular prominence due to its ability to learn
hierarchical feature representations directly from raw data.
Recurrent neural networks, long short-term memory models,
and gated recurrent units have been widely applied to
financial time series  forecasting, = demonstrating
improvements over traditional econometric models in
capturing temporal dependencies. However, these
architectures often struggle with long-range dependencies
and may suffer from vanishing gradients or limited
interpretability. The transformer architecture, originally
developed for natural language processing, addresses many
of these limitations through attention mechanisms that allow
the model to selectively focus on relevant past observations,
regardless of their temporal distance (Han et al., 2024). This
characteristic makes transformers especially attractive for
financial forecasting, where market dynamics are influenced
by both recent shocks and longer-term structural patterns.

Recent studies have extended transformer-based models
to financial applications, including stock price prediction,
commodity price forecasting, and early warning systems for
financial crises (Chenetal., 2024; W. Liu et al., 2024; Wang
et al., 2024). These works consistently report superior
predictive accuracy compared to conventional neural
networks,  particularly in  volatile  environments.
Nevertheless, purely attention-based models may still be
sensitive to noise and extreme events, and their performance
can deteriorate when historical context needs to be
selectively retained rather than uniformly attended to. To
address this issue, hybrid architectures incorporating
external memory components and gating mechanisms have
been proposed, allowing models to store, retrieve, and
regulate the influence of critical historical patterns. Such
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memory-augmented models enhance stability and
robustness in non-stationary settings and align well with the
episodic nature of financial markets (Burkart & Huber,
2021).

While forecasting accuracy is a necessary condition for
effective portfolio management, it is not sufficient. Forecasts
must be translated into actionable portfolio weights under
real-world constraints, including budget balance, liquidity
limits, regulatory requirements, and transaction costs. This
translation step constitutes a high-dimensional, nonlinear
optimization problem that is often non-convex and
computationally  intractable  for  exact  methods.
Metaheuristic algorithms have therefore become a popular
choice for portfolio optimization, as they offer flexible
search strategies that can explore complex solution spaces
without requiring gradient information or restrictive
assumptions about objective function structure (Ayari Salah,
2025). Techniques such as genetic algorithms, particle
swarm optimization, and differential evolution have been
extensively studied and shown to outperform classical
solvers in many portfolio settings.

Each metaheuristic method, however, has inherent
strengths and weaknesses. Genetic algorithms excel at global
exploration but may converge slowly; particle swarm
optimization offers rapid convergence but risks premature
stagnation; differential evolution provides robust mutation
strategies but may lose diversity over time. Recent research
has thus emphasized hybrid metaheuristic frameworks that
combine complementary mechanisms to balance exploration
and exploitation more effectively. Empirical evidence
suggests that such hybrid algorithms can achieve faster
convergence, greater solution stability, and improved risk—
return trade-offs in portfolio optimization problems
(Montazeralhaj & Rezaei Shouraki, 2023; Rouhi Sara et al.,
2023). These findings underscore the importance of
algorithmic design in determining portfolio performance,
particularly in volatile and information-rich markets.

Another critical dimension in contemporary portfolio
management is the broader institutional and technological
environment in which financial decisions are made. The rise
of FinTech platforms, algorithmic trading, and digital
financial  infrastructures has transformed  market
microstructure and regulatory landscapes. Platform-based
financial systems introduce new sources of systemic risk
while simultaneously enabling faster information processing
and more granular portfolio control (Langley & Leyshon,
2023). At the same time, sustainability considerations and
strategic alignment at the organizational level increasingly
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influence portfolio construction, as investors seek to
integrate  financial ~ performance  with  long-term
environmental and social objectives (Silvius & Marnewick,
2022). These trends further motivate the development of
adaptive, transparent, and robust portfolio management
frameworks that can operate effectively under complex
constraints.

Explainability and transparency have also emerged as
essential concerns in machine-learning-driven finance. As
models become more complex, understanding their decision
logic becomes increasingly challenging, raising issues of
trust, accountability, and regulatory compliance. Research
on explainable artificial intelligence highlights the need for
models that not only perform well but also provide
interpretable insights into their predictions and decisions
(Burkart & Huber, 2021). Memory-augmented and
attention-based architectures offer a partial solution by
allowing analysts to inspect attention weights and memory
activations, thereby gaining insight into which historical
patterns influence portfolio decisions. This interpretability is
particularly valuable in risk management contexts, where
understanding the drivers of extreme losses is as important
as achieving high returns.

Despite substantial progress, several gaps remain in the
existing literature. First, many studies focus either on
forecasting accuracy or on optimization performance in
isolation, without fully integrating these components into a
coherent end-to-end portfolio management framework.
Second, empirical evaluations are often conducted in
developed markets, leaving uncertainty about the
applicability of proposed methods to emerging markets
characterized by higher volatility, structural breaks, and
behavioral effects. Third, relatively few studies
systematically assess the stability and robustness of hybrid
models across different market regimes and validation
schemes (Hosseini et al., 2020; Safaeian et al., 2024).
Addressing these gaps requires a comprehensive approach
that combines advanced forecasting models, hybrid
optimization algorithms, rigorous validation, and application
to real-world market data.

Recent contributions have begun to move in this direction
by proposing integrated machine-learning-based portfolio
frameworks and evaluating them under realistic constraints.
Meta-analytical evidence indicates that hybrid and ensemble
learning approaches consistently outperform single-model
strategies in active portfolio management, particularly when
transaction costs and risk controls are explicitly incorporated
(Ayari Salah, 2025). Moreover, empirical studies in the
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Iranian capital market highlight the relevance of hybrid
algorithms for managing financial instability and predicting
crisis conditions (Ghodrzi et al., 2024; Rouhi Sara et al.,
2023). These findings suggest that emerging markets
provide a valuable testing ground for advanced portfolio
methodologies.

Building on this evolving body of research, the present
study situates itself at the intersection of deep learning—
based return forecasting and hybrid metaheuristic portfolio
optimization. By leveraging a memory-instance—based gated
transformer architecture for return prediction and integrating
its outputs into a hybrid adaptive differential evolution—
particle swarm optimization framework, this study seeks to
construct an end-to-end portfolio management system
capable of balancing return maximization and risk control
under non-stationary market conditions. The focus on robust
validation, tail-risk measures, and realistic transaction costs
aims to enhance both the academic contribution and the
practical relevance of the proposed approach.

The aim of this study is to develop and empirically
evaluate a hybrid artificial intelligence—based portfolio
management framework that integrates memory-augmented
transformer return forecasting with hybrid metaheuristic
optimization to achieve a stable and risk-controlled trade-off
between return and risk in a volatile capital market.

2. Methods and Materials

This study is quantitative and hybrid in nature, adopting
an approach aimed at proposing a hybrid artificial
intelligence model in which a memory-instance—based gated
transformer algorithm is used to forecast asset returns. The
statistical population of the study includes all tradable
financial assets in the Iranian capital market (stocks listed on
the Tehran Stock Exchange, Iran Fara Bourse, investment
funds, and other common financial instruments) over the
period from 2016 to 2024. Sampling was conducted
purposively, in compliance with inclusion criteria
(completeness of historical price and volume data, sufficient
liquidity, and acceptable average daily trading volume), in
order to select a representative and high-quality sample from
different industries and market sectors. The research
methodology was designed in two main stages: (1) collection
and preprocessing of financial time-series data, and (2)
design and implementation of a memory-instance—based
gated transformer model to extract long-term patterns and
accurately predict returns. This methodological framework
was developed with the aim of achieving an optimal
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portfolio with maximum return and minimum risk, while
also enabling reproducibility and validation of results by
other researchers.

Dependent variables

Portfolio return is calculated as the weighted sum of the
returns of the assets included in the portfolio over a specified
time period. The computation is performed in Python using
price data from the Tehran Stock Exchange obtained via
TSETMC or Excel files exported from the CODAL system.

@
n
Rp = Z w; - Ri
i=1

4

where R, denotes total portfolio return, w;is the weight of
asset iin the portfolio, R;is the return of asset i, and nis the
number of assets. Portfolio risk is measured as the variance
of portfolio returns or by indices such as Value at Risk
(VaR). The calculation is performed in Python using the
covariance matrix of returns based on Equation (2).

@

n
o2 = W;W;0;;
P iWj0ij
j=1

where a7 is the variance of portfolio returns, w;w;are the
weights of assets iand j, and g;;is the covariance between
the returns of assets iand j. According to Equation (3), VaR
is calculated as follows:
®)
VaR, = —[u, + z,0,]

where u,is the mean portfolio return, o,is the standard
deviation of portfolio returns, and z,is the critical value of
the normal distribution at confidence level a. This variable
is estimated in Python. The Sharpe ratio measures the excess
return of the portfolio relative to the risk-free rate per unit of
risk (standard deviation of portfolio returns). The calculation
is performed in Excel, with the risk-free rate obtained from
Central Bank reports, based on Equation (4) (Arterit et al.,
2021).

(4)

Sharpe Ratio = M
Op

where R,is portfolio return, Ryis the risk-free rate of
return, and ay,is the standard deviation of portfolio returns.
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Independent variables

The architectural parameters of the memory-instance—
based gated transformer are defined as numerical values,
such as the number of attention layers, the dimensions of
external memory, and the learning rate, which are specified
and initialized during model implementation in the software
environment.

Control variables

The risk-free rate represents the return of a risk-free
investment. In this study, data related to the risk-free rate
were extracted from the official system of the Central Bank
of the Islamic Republic of Iran and, where necessary for
validation, averaged using statistics published by the
Statistical Center of Iran.

The time horizon of analysis includes financial data
covering the period from 2016 to 2024, analyzed on a daily
basis and, in some cases, on a weekly basis to reduce data
noise. Portfolio constraints play a decisive role in
maintaining economic logic and the stability of the portfolio
structure.

The number and diversity of assets were determined with
the aim of achieving a balance between portfolio return and
risk. The selection of these stocks was based on criteria such
as high liquidity, sufficient trading history, relative price
stability, and representation of different economic sectors.

Stock Returns

In this study, stock returns are calculated using adjusted
closing prices from Tehran Stock Exchange data (2016—
2024) through either simple or logarithmic return methods,
in order to account for corporate events and high volatility.
Portfolio returns are then derived based on asset weights, net
of transaction costs (approximately 1%), and performance
indicators such as the Sharpe ratio and Value at Risk are
computed using Python libraries (pandas, numpy). The steps
and formulas for measuring stock returns are as follows:

At this stage, the return of stock ion day tis calculated as
the difference between the current day’s closing price and
the previous day’s closing price divided by the previous
day’s price. This formula indicates the percentage change in
stock price relative to the previous day. A positive return
indicates growth, whereas a negative return indicates a
decline.

(®)

Rt — Pt - Pt—l
Pt—l

Logarithmic return (in cases of high volatility): When

price fluctuations are large or data deviate from normality,
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logarithmic returns are used. Logarithmic returns provide
greater statistical stability and allow simpler aggregation of
multi-period returns.

(6)

Average stock return over the period: After computing
daily returns for each stock, the average return over the
entire study period is calculated. This value represents the
mean return of the stock across the full time span (e.g., from
2016 to 2024).

)

Standard deviation of stock returns (idiosyncratic
risk): To measure volatility and individual stock risk, the
standard deviation of returns is calculated. A larger value
indicates higher risk and greater volatility.

8

Covariance between two stocks: Covariance indicates
how two stocks move relative to each other. A positive value
suggests that the stocks generally move in the same
direction, whereas a negative value indicates opposite
movements. This measure is essential for portfolio risk
calculation.

9)

In the data preparation phase, historical closing price data
for selected Tehran Stock Exchange companies, trading
volumes, and macroeconomic variables (exchange rate,
interest rate, and inflation) were first collected from reliable
sources such as CODAL, the Tehran Stock Exchange, and
the Central Bank for the period from 2016 to 2024. Outliers
were then identified and removed using the Isolation Forest
algorithm, in which observations with anomaly scores close
to one are considered outliers. Missing data were imputed
using the K-nearest neighbors (KNN) method, replacing
missing values with weighted averages of the nearest
neighbors to preserve time-series continuity. Finally, all
variables were normalized using z-score standardization
(mean zero and standard deviation one) to eliminate scale
effects and enhance training stability. These steps ensure
data quality, completeness, and consistency for
implementing the hybrid transformer and metaheuristic
model.

(10)

where x;is the observed value, pis the mean, and gis the
standard deviation of the data.
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Feature extraction: Finally, key features were extracted
for each asset to provide richer inputs for modeling. The
simple return of each asset is calculated as follows:

(11)

P, — P;_
Rt — t t-1
Pt—l

where P.denotes the price at time t. Cumulative return is
obtained using the following relationship:

(12)

t
CR, = 1_[(1+Ri) ~1
i=1

Figure 1

Stages of the data preparation and preprocessing phase
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In addition, volatility is measured as the standard
deviation of returns over a specific time window T:
(13)

T
1 Z _
= —_— . — 2
Ot T—l. 1(RL R)
i=

where Rrepresents the mean return. These extracted
features—simple return, cumulative return, and volatility—
serve as essential inputs to the memory-instance—based
gated transformer model for accurate forecasting.

Missing Data
Imputation

Outlier Removal

Data Collection

Data Normalization

Feature Extraction

In this phase, the architecture of the memory-instance—
based gated transformer is designed with multi-head
attention layers and external memory to extract long-term
dependencies in financial data. The model is trained using
preprocessed data, including prices, returns, and volatility,
and converges through hybrid optimization techniques
(accelerated methods and adaptive learning rates). To
prevent overfitting, early stopping and dropout techniques

are employed to preserve generalization capability. Key
parameters such as learning rate, feature dimensions, and
memory size are also optimized to enhance predictive
accuracy. Ultimately, in addition to forecasting future asset
returns, the model generates deep feature vectors as market
signals that serve as inputs to the portfolio optimization
phase.


https://journals.kmanpub.com/index.php/jppr/index

Haji Ebrahim Tehrani et al.
MAN

PUBLISHING INSTITUTE

Figure 2
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Stages of the modeling and return forecasting phase using the memory-instance—based gated transformer model

Design of the MIGT Model Architecture

Model Training with Preprocessed Data

Parameter Optimization

Overfitting Prevention

Output Generation and Extraction of
Market Signal Vectors

The research framework began with the extraction and
specialized preprocessing of historical data, including
prices, returns, trading volumes, and macroeconomic
variables, in which normalization, relative stationarization,
and feature engineering (such as moving averages and
historical volatility) were applied to reduce noise and
enhance nonlinear pattern extraction. In the forecasting
phase, the memory-instance-based gated transformer
(MIGT) model was designed and trained with three main
components: an attention layer to learn the importance of
temporal points, instance memory to store critical events and
long-term patterns, and gating mechanisms to control
information flow, thereby producing asset return forecasts.
The constraint and objective function definition phase
involved specifying a dual-objective function to maximize
expected return and minimize risk (using variance,
semivariance, and Value at Risk measures), along with
operational constraints such as full investment (weights
summing to one), investment caps, and liquidity
requirements. In the hybrid optimization phase, the proposed
AMDE-PSO algorithm was implemented by integrating
adaptive differential evolution mechanisms (with dynamic

mutation rates and competitive selection) and particle swarm
optimization (to enhance local search via individual and
social learning), thereby achieving an optimal balance
between exploration and exploitation. The performance
evaluation phase included calculating risk—return indicators
(Sharpe ratio, Sortino ratio, realized return), conducting the
Wilcoxon test to confirm statistical significance of
improvements, and performing cross-validation to ensure
model generalizability to out-of-sample data. Parameter
sensitivity analysis was also conducted using Monte Carlo
simulation to identify critical parameters and assess their
impact on model outputs. The entire execution chain, from
data preprocessing to final optimization, was formed
through direct interaction between the accurate forecasting
engine (MIGT) and the intelligent search engine (AMDE-
PSO) to optimize decision-making under real-market
constraints. This hybrid framework, by overcoming the
limitations of classical single-stage approaches, enhanced
decision-making efficiency by linking accurate forecasting
to multi-objective optimization under the non-stationary
conditions of the Iranian capital market.
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Figure 3

Stages of the hybrid optimization phase using the combined algorithm
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Preparation of algorithm
inputs

Generation of the initial
population

<

Execution of the adaptive
differential evolution
mechanism

Enhancement of the

search process using the
PSO algorithm

Stopping criterion and
final convergence

<

3. Findings and Results

The empirical data comprised time series of returns,
volatility, and trading volume for 20 to 30 listed stocks over
the period 2016 to 2024. After cleaning and synchronization,
approximately 2,100 to 2,300 gap-free daily observations
were obtained for each ticker. Mean daily returns were close
to zero (—0.02% to +0.08%), and the median was lower than
the mean, indicating the presence of asymmetric jumps in
the series, while the one-day return range expanded to
approximately —8% to +6%. Daily volatility, with a standard
deviation between 0.012 and 0.032 (1.2% to 3.2%), showed
substantial cross-industry differences; assuming a standard
deviation of 0.02, annualized volatility reached
approximately 32%. The trading-volume distribution was

clearly right-skewed: the median (1.2 to 4.8 million shares)
was markedly lower than the mean (3.5 to 12.0 million
shares), reflecting the influence of event-driven high-volume
days. Returns deviated from normality and exhibited
skewness (—1.1 to +0.7) and high kurtosis (3.8 to 8.6),
justifying the use of downside-risk measures such as
semivariance and Value at Risk. The average pairwise
correlation was about 0.22, with a range from —0.15 to
+0.70; together with dense intra-industry clusters
(correlations of 0.45 to 0.55) versus low inter-group
correlations (0.10 to 0.25), this structure enabled effective
diversification. These statistical properties formed the basis
for defining liquidity constraints, weight caps, and multi-
objective risk measures within the portfolio optimization
framework.
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Figure 4

Distribution of Asset Returns
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Figure 4 displays the empirical distribution of daily
returns, characterized by a strong concentration around zero
and heavy tails on both sides, indicating frequent small
returns alongside an unavoidable occurrence of extreme
returns at lower frequencies. The presence of heavy and
asymmetric tails suggests price shocks and abrupt volatility,
undermining the normality assumption and motivating the
application of downside-risk measures such as Value at Risk
and semivariance.

The forecasting accuracy of the Memory-Instance—Based
Gated Transformer (MIGT) model, evaluated using out-of-
sample metrics, yielded RMSE = 0.0099 and MAE = 0.0068,
indicating that the model tracks short- and medium-term
return dynamics with acceptable precision. The meaningful
discrepancy between the two metrics reflects the presence of
larger errors on shock days or during periods of intense

Figure 5

Comparison of Actual and Predicted Asset Returns

T T T
0.05 0.10 0.15 0.20

Daily Returns

volatility, consistent with the non-stationary nature of the
market; this suggests that the model learns general market
behavior effectively but is more sensitive to extreme events.
Model performance varied across assets, with MAE ranging
from 0.0049 to 0.0094 and RMSE ranging from 0.0071 to
0.0136; higher-liquidity tickers with more stable volume
exhibited lower errors, whereas highly volatile assets or
those strongly responsive to macroeconomic news produced
larger errors. Despite absolute errors, the model correctly
predicted the return direction on approximately 61% of
trading days, which has practical value for portfolio-weight
allocation decisions. Overall, these findings indicate that
MIGT provides a reliable forecasting backbone for the
optimization phase, although additional mechanisms may be
required to control errors under crisis conditions.
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Figure 5 shows substantial overlap between the actual
return curve and the MIGT-predicted return curve during the
test period, indicating the model’s ability to track dominant
patterns and short-term fluctuations, particularly in periods
of relative market stability.

The MIGT model exhibited selective and market-regime-
dependent temporal pattern extraction. In calm periods,
attention weights were distributed more uniformly (entropy
= 2.41), whereas in turbulent periods, concentration on key
time points increased (weight-concentration index rising
from 0.34 to 0.46 and entropy decreasing to 1.86). Time-lag
importance analysis showed that, on average, the model
allocated 58% of attention weight to the short-term window
(1-10 days), 27% to the medium-term window (11-30 days),
and 15% to the long-term window (31-60 days); during

Figure 6

Distribution of Attention Weights Across Different Time Horizons
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regime shifts, the long-term share increased to
approximately 22%. Instance memory activated selectively
(mean activation rate = 0.29, increasing to 0.41 in turbulent
periods) and entered decision-making only when historical
context was needed (effective retrieval rate = 0.33). An
ablation analysis confirmed the critical role of memory:
disabling it increased MAE and RMSE from 0.0068 and
0.0099 to 0.0076 and 0.0112, respectively, and amplified the
loss of accuracy at longer forecasting horizons. Overall, the
attention mechanism is responsible for selecting salient past
time points, while instance memory stabilizes the influence
of important events; together, they enable simultaneous
utilization of short- and long-term dependencies in return
forecasting.

60

Average Attention Weight (%)

Short-term (1-10)

Figure 6 presents the distribution of MIGT attention
weights across three horizons: approximately 58% to short-
term (1-10 days), 27% to medium-term (11-30 days), and
15% to long-term (31-60 days). This distribution reflects the
model’s balance between sensitivity to recent information
for rapid adaptation and reliance on historical patterns—
particularly via instance memory—to maintain forecasting
stability during market-regime changes.

Comparing MIGT with benchmark models (LSTM,
GRU, and a classical transformer) using out-of-sample
RMSE and MAE indicated the statistical superiority of the
proposed model. Specifically, MIGT achieved MAE =
0.0068 and RMSE = 0.0099, corresponding to
improvements of 16% relative to LSTM, 12% relative to

10

Mid-term (11-30)
Temporal Horizon

Long-term (31-60)

GRU, and 5-6% relative to the classical transformer. The
larger performance gap versus recurrent models than versus
the transformer suggests that the primary advantage of
MIGT stems from the attention mechanism, with
incremental gains attributable to instance memory and
gating. The RMSE/MAE ratio of approximately 1.46 across
models indicates that all models are affected by price jumps;
however, MIGT maintains a lower absolute error under such
conditions, implying more effective control of extreme
errors and reduced unstable reactions to noise. Practically,
even small reductions in forecasting error can meaningfully
improve weight-allocation accuracy and reduce bias in
expected-return  estimates  during multi-objective
optimization.
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Figure 7

Comparison of Forecasting Errors Across Different Models
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Figure 7 illustrates the superiority of MIGT relative to
benchmark models (LSTM, GRU, and the classical
transformer), with the lowest MAE (0.0068) and RMSE
(0.0099), while LSTM recorded the largest errors. The
simultaneous reduction of both metrics under MIGT
indicates more effective control of both average error and
extreme errors, which is particularly important for financial
data characterized by heavy tails and sudden shocks.

Convergence analysis of the AMDE-PSO hybrid
algorithm showed that after 300 iterations, the best
objective-function value decreased from 1.000 to 0.523 (a
47.7% improvement), with more than half of this
improvement achieved within the first 100 iterations. The
controlled reduction in the population “mean-to-best” gap

Figure 8

Convergence Plot of the AMDE-PSO Optimization Algorithm
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(from 0.214 to 0.080) indicates that diversity was preserved
and premature convergence to local optima was avoided. In
the second half of the process, the particle swarm component
prevented prolonged stagnation and accelerated stable
convergence, with an average improvement of 0.012 per 10
iterations (versus 0.007 in the pure differential-evolution
variant). Convergence stability was confirmed by changes of
less than 0.006 in the final 30 iterations and high
repeatability (standard deviation = 0.0065 across three
independent runs). This dual convergence behavior—rapid
early gains followed by gradual refinement—supports the
efficiency of the hybrid framework in balancing exploration
and exploitation.
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Figure 8 shows the stable convergence of the AMDE-
PSO hybrid algorithm, with a steep initial decline in the
objective function (broad exploration) followed by a gradual
flattening in later stages (local exploitation). The smooth
trajectory without severe oscillations and the final
stabilization of the objective value confirm an effective
exploration—exploitation balance and a reduced likelihood of
entrapment in local optima.

The final optimal portfolio included 25 assets, with 22
positive weights and 3 zero weights, indicating the exclusion
of undesirable assets in terms of risk—return and liquidity.
The weight distribution, with a maximum of 0.0800 and a

Figure 9

Distribution of Asset Weights in the Optimal Portfolio
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minimum positive weight of 0.0120, reflects a layered
structure with genuine diversification; the cumulative
weights of the top five and top ten assets were 0.3460 and
0.6120, respectively. The Herfindahl index of 0.0584
confirms moderate concentration and the absence of
dominance by specific assets. All operational constraints—
including full investment (sum of weights = 1.0000), no
short selling, a weight cap of 0.08, and liquidity
compliance—were strictly enforced. This combined
structure provides a desirable balance between extracting
return signals, controlling idiosyncratic risk, and ensuring
implementability in a real market setting.

Portfolio Weight
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L S SR R S S e

Assets

Figure 9 shows a descending and gradual distribution of
asset weights in the optimal portfolio, starting from a
maximum weight of 0.08 and decreasing progressively to
0.042. This distribution pattern indicates the ranking of
assets based on forecast-signal quality and risk—return
characteristics, while the limited spread among top weights
prevents excessive concentration and preserves genuine
diversification. Simultaneous enforcement of the weight-cap
and non-negativity constraints—without weights becoming
near-zero or excessively large—ensures a balanced and
implementable  structure. This distribution reduces
idiosyncratic risk via capital dispersion while allowing
assets with stronger signals to drive portfolio performance.

The AMDE-PSO hybrid algorithm, with an objective-
function value of 0.523, outperformed DE (0.556), PSO

12

¥

(0.571), GA (0.589), and the Markowitz model (0.603),
achieving a 5.94% improvement relative to the closest
metaheuristic competitor and a 13.27% improvement
relative to Markowitz. The portfolio produced by AMDE-
PSO recorded an annualized return of 0.324 and a risk level
of 0.238, simultaneously increasing return by 12.89% and
reducing risk by 12.18% relative to Markowitz. A Sharpe
ratio of 1.16 and a Sortino ratio of 1.58 confirm its
superiority in risk-adjusted performance and in controlling
undesirable volatility. The daily Value at Risk (95%
confidence level) was 0.021 for AMDE-PSO, compared to
higher values for competing methods, indicating more
effective control of tail losses. AMDE-PSO reached an
objective-function value of 0.550 in 190 iterations, whereas
PSO required 250 iterations to achieve the same level.
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Figure 10
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Performance Comparison of Optimization Methods Based on the Sharpe Ratio
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The results shown in Figure 10 indicate that the AMDE-
PSO hybrid algorithm achieved the highest risk-adjusted
performance with a Sharpe ratio of 1.16, generating greater
excess return per unit of risk. DE (1.02) and PSO (0.98)
ranked next, while GA (0.92) and the Markowitz model
(0.84) exhibited weaker performance. This downward
pattern reflects the limitations of simpler approaches in
achieving a stable balance between return and risk control
when applied to highly volatile real-world data. The lower
Sharpe ratio under Markowitz may stem from reliance on
classical variance-based risk structures and sensitivity to
covariance-matrix estimation, whereas the hybrid algorithm
exhibits greater adaptability to the nonlinear weight space
through evolutionary search.

The optimal portfolio’s daily return had a mean of
0.00129 (0.129%), and the annualized return was computed

Figure 11

Cumulative Return of the Optimal Portfolio

as 0.325, derived net of transaction costs of approximately
0.01. The median daily return was 0.00093, and the
proportion of positive-return days was 0.57, indicating
relatively stable performance; notably, even during turbulent
periods, the mean daily return remained positive at 0.00072.
The final cumulative return was 0.418 and the maximum
drawdown was 0.109, confirming the portfolio’s ability to
generate 41.8% growth while controlling path-dependent
losses. Monthly return ranged from 0.112 to —0.076,
indicating sensitivity to market fluctuations in some
intervals; however, the mean monthly return of 0.023 and the
standard deviation of 0.041 reflect an overall positive
performance. This combination of substantial returns and
controlled drawdowns supports the effectiveness of MIGT-
forecast-based optimal weighting in the out-of-sample
period.
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Figure 11 shows an upward and relatively smooth
trajectory of cumulative returns. In the first quarter of the
period, the portfolio began with gradual and stable growth,
indicating balanced performance under normal market
conditions. By mid-period, cumulative return reached
approximately 0.15, demonstrating the strategy’s ability to
sustain returns over time. In the second half, despite episodic
fluctuations associated with turbulent market conditions, the
overall trajectory remained upward, with cumulative return
ending around 0.34-0.35. The observed drawdowns were
neither deep nor persistent, and the portfolio returned to its
growth path within a short time, indicating effective risk
control and avoidance of severe losses.

The portfolio’s daily standard deviation was 0.0150 and
the annualized standard deviation was 0.238, indicating

Figure 12

Risk Profile of the Optimal Portfolio
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controlled volatility risk alongside proportionate returns.
Daily VaR at the 95% confidence level was estimated as
0.021 empirically and 0.023 parametrically, suggesting
bounded losses under worst “normal” conditions. The
conditional Value at Risk (CVaR) of 0.031 indicates that the
average loss in the worst 5% of days was about 3.10%, and
the 0.010 gap between CVaR and VaR confirms heavier loss
tails. Daily semivariance was 0.000117 and the annualized
downside standard deviation was 0.171, indicating that the
intensity of undesirable fluctuations is more limited than
total risk (0.238). The smaller downside risk relative to total
risk implies that a substantial portion of portfolio variability
is attributable to positive movements or two-sided
fluctuations.

0.201
0.15
v
=2
£
0.10
0.051
0.00 -
& el
Qa(\a"‘ ‘:‘F}O

Based on Figure 12, the annualized standard deviation of
0.238 as a measure of overall risk, together with the
annualized downside standard deviation of 0.171, indicates
that a substantial share of portfolio variability arises from
two-sided and positive changes, with undesirable
fluctuations contributing less. The daily variance of
0.000225 is consistent with the reported standard deviation
and shows that risk was computed from realized data. VaR
at the 95% confidence level was 0.021 and CVaR at the same
level was 0.031; the fact that CVaR exceeds VaR confirms
the presence of heavier loss tails.

With an annualized portfolio return of 0.325, annualized
standard deviation of 0.238, and a risk-free rate of 0.049, the
portfolio produced an excess return of 0.276 and a Sharpe
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ratio of 1.16, indicating adequate efficiency in generating
excess return relative to total risk. The Sortino ratio was
1.61, computed using the annualized downside standard
deviation of 0.171; its being noticeably higher than the
Sharpe ratio suggests that a significant portion of portfolio
volatility stems from two-sided or positive fluctuations,
while downside volatility remains relatively limited. In
quarterly calculations, the Sharpe ratio ranged from 0.94 to
1.28 and the Sortino ratio ranged from 1.29 to 1.88; the
absence of a severe drop in the Sharpe ratio below 0.80
supports the stability of risk-adjusted performance across
subperiods. In turbulent quarters, Sharpe declined to 0.94,
but Sortino remained at 1.29, indicating that the performance
decrease was mainly driven by increased two-sided volatility
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rather than a substantial intensification of downside losses.
Overall, Sharpe = 1.16 and Sortino = 1.61 confirm the

Figure 13

Risk-Adjusted Performance of the Optimal Portfolio
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proposed framework’s ability to produce meaningful excess
returns while controlling risk, especially downside risk.

Value

Sharpe Ratio

sortino Ratio

Performance Metrics

Figure 13 shows that a Sharpe ratio of 1.16 reflects
substantial excess return over the risk-free rate per unit of
total risk; being above 1.00 indicates that the optimal
portfolio is efficient not only in achieving positive returns
but also in terms of overall risk. The Sortino ratio of 1.61 is
notably higher than the Sharpe ratio, indicating that a large
portion of portfolio volatility is two-sided or positive in
nature, while downside risk remains comparatively limited.
This pattern confirms that the optimal portfolio not only
controls total volatility but also performs better in mitigating
adverse drawdowns.

Figure 14

The out-of-sample data were partitioned into 12 monthly
subperiods, and the Wilcoxon test was conducted at a 0.05
significance level. For the Sharpe ratio, the median
difference was 0.14, with p = 0.012 and effect size r = 0.72,
indicating a statistically significant improvement for the
proposed method. For the Sortino ratio, the median
difference was 0.19, with p = 0.005 and r = 0.80, confirming
stronger significance for improvements in the loss-oriented
measure. Improvements in monthly return (p = 0.021) and
reductions in CVaR (p = 0.009; median reduction = 0.0028)
were also statistically significant.

Wilcoxon Test Results for Assessing the Statistical Significance of Performance Improvements
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The test statistics for the Sharpe ratio (2.51), Sortino ratio
(2.78), realized return (2.31), and CVaR (2.62) all exceed the
threshold line of 1.96, corresponding to a 0.05 significance
level. Since all indices surpass this threshold, the null
hypothesis of “no significant performance difference” is
rejected across all evaluated criteria. The statistic of 2.78 for
Sortino and 2.62 for CVaR indicates that the proposed model
not only improves overall risk-adjusted returns but also
achieves significantly better control of drawdowns and
severe losses.

Five-fold time-based cross-validation confirmed the
stability of the entire “forecasting — optimization” pipeline.
The mean forecasting MAE and RMSE were 0.00684 (SD =
0.00022) and 0.00998 (SD = 0.00033), respectively,

Figure 15

Stability of the Sharpe Ratio in Cross-Validation
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indicating stable MIGT performance at the forecasting stage.
The portfolio’s annualized return averaged 0.321 (SD =
0.014) and annualized risk averaged 0.240 (SD = 0.008),
demonstrating the hybrid algorithm’s ability to maintain a
consistent return—risk balance under different market
conditions. The Sharpe ratio averaged 1.13 (SD = 0.10) and
the Sortino ratio averaged 1.55 (SD = 0.15), indicating
preservation of risk-adjusted performance across all folds.
Mean CVaR was 0.0316 (SD = 0.0014), and the limited
variation in VaR (0.020 to 0.023) indicates that tail risks also
remained stable. The simultaneous increase in risk, decrease
in Sharpe, and increase in CVaR in the third fold is
consistent with turbulent conditions or a market-regime
shift.
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The Sharpe ratio remained above 0.99 in all folds, with
an overall mean of 1.13, indicating sustained excess return
relative to risk across most temporal slices of the data. The
highest Sharpe value was observed in the second fold (1.25),
reflecting very strong model performance in that segment,
while the lowest value occurred in the third fold (0.99). This
relative decline can be attributed to a market-regime change
or heightened short-term volatility during that interval;
however, the index remaining near one indicates that
portfolio risk—return efficiency was preserved even under
adverse conditions. The Sharpe ratio variability across folds
was limited and controlled, with a standard deviation of
approximately 0.10, which is relatively small for financial
data. The rebound of the Sharpe ratio in the fourth (1.19) and
fifth (1.16) folds indicates that the decline in the third fold

16

was not persistent and that the model re-established a
favorable return—risk balance. This behavioral pattern
confirms that the proposed framework—based on MIGT and
the hybrid optimization algorithm—is not excessively
sensitive to structural changes in the data and that its results
are not dependent on a single fold.

The research findings, following rigorous data
preprocessing, confirmed the heterogeneity of return
distributions—characterized by high skewness and
kurtosis—and statistically meaningful correlations among
certain assets, which clarified the necessity of employing
tail-risk measures and enforcing diversification constraints.
The experimental configuration, using distinct time
windows for training, validation, and testing, prevented
information leakage and ensured the stability of results in the
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Python environment while accounting for a transaction cost
of 0.01. The memory-instance—based gated transformer
achieved high out-of-sample accuracy with a mean absolute
error of 0.0068 and a root mean square error of 0.0099, and
it demonstrated constrained extreme errors by reducing the
gap between these two metrics. This performance not only
prevented noisy signals from propagating into the
optimization phase, but also produced a 12% to 16%
improvement in error metrics relative to benchmark models.
Overall, the findings indicate that the proposed hybrid model
structure, while aligning with the non-stationary nature of
financial data, provides a reliable forecasting infrastructure
for multi-objective return—risk optimization.

The optimization-phase findings showed that the AMDE-
PSO hybrid algorithm delivers stable and controlled
convergence, and that the objective-function decline follows
a two-stage pattern. The best objective-function value
decreased from 1.000 at initialization to 0.742 at iteration 50
and then to 0.615 at iteration 100, ultimately reaching 0.523
at the end of the run, corresponding to an overall
improvement of 47.70%. The rapid initial decline reflects
strong global search capability and effective screening of
candidate solutions, whereas the slower decrease in the final
stages indicates entry into a local refinement phase and
solution stabilization (Bernete et al., 2021). The reduction in
the gap between the population mean objective value and the
best value from 0.214 to 0.080 further indicated that the
algorithm moved toward convergence without fully losing
diversity. In addition, repeatability results—based on
multiple runs and a standard deviation of 0.0065 in the final
objective value—showed that the algorithm’s output is not
dependent on a single run. Regarding the weight
composition of the optimal portfolio, the findings indicated
that the final solution is suitable in terms of diversification
and implementability, and that operational constraints were
enforced precisely (Bieboldt et al., 2021). In the final
portfolio, out of 25 assets, 22 received positive weights and
3 received zero weights, indicating that the algorithm acted
selectively in asset selection and excluded unsuitable assets.
The maximum weight was 0.0800, the minimum positive
weight was 0.0120, and the sum of weights was exactly
1.0000; therefore, neither excessive concentration nor a
violation of the budget constraint occurred. Moreover, the
non-negativity of weights indicates the absence of short
selling, making the solution operationally consistent with
common market constraints. The reduced concentration
index and layered distribution of weights further suggest that
assets with stronger signals play the primary role, while
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complementary assets retain meaningful allocations to
reduce co-movement and manage risk (Boulert et al., 2021).
Comparing the hybrid algorithm with baseline methods
showed that performance improvements at the level of
financial and risk-adjusted indicators are substantial and
meaningful. The Sharpe ratio for the proposed method was
1.16, whereas it was reported as 1.02 for differential
evolution, 0.98 for particle swarm optimization, 0.92 for the
genetic algorithm, and 0.84 for Markowitz. This difference
indicates that combining adaptive mutation and collective
learning mechanisms improves solution quality, enabling the
resulting portfolio to generate higher excess return per unit
of risk. In addition, VaR and CVaR values for the proposed
method were lower than those of baseline methods,
indicating improved tail-risk control. Importantly, the
proposed method increased returns while simultaneously
reducing risk, rather than achieving higher returns merely by
taking on higher risk.

The evaluation of returns and risk for the optimal
portfolio showed that the proposed framework was able to
generate sustained growth while controlling path-dependent
drawdowns. The portfolio’s annualized return was 0.325 and
the final cumulative return was 0.418, indicating a
meaningful increase in investment value during the test
period. In contrast, the maximum drawdown was 0.109,
which, given the nature of the market, can be considered
controlled and indicates that the cumulative-return growth
was not accompanied by deep losses. On the risk side,
overall risk was reported as an annualized standard deviation
of 0.238, while tail-risk indicators showed VaR(0.95) =
0.021 and CVaR(0.95) = 0.0316. The annualized downside
standard deviation of 0.171 further indicates that downside
risk is more limited than total risk, consistent with a Sortino
ratio of 1.61. Validation and stability tests indicated that the
results are generalizable and do not collapse across
subsamples or wunder turbulent conditions. In cross-
validation, the Sharpe ratio remained within 0.99 to 1.25, the
Sortino ratio within 1.31 to 1.72, and CVaR fluctuated
between 0.030 and 0.034, indicating performance stability.
The Wilcoxon test further showed that improvements in key
indicators are statistically significant; specifically, Sharpe
yielded z = 2.51 and p = 0.012, and Sortino yielded z = 2.78
and p = 0.005, leading to rejection of the null hypothesis.
Under turbulent market conditions, the portfolio’s daily
volatility increased from 0.0131 to 0.0218; however, the
mean daily return net of transaction costs remained positive
at 0.00072.
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4. Discussion and Conclusion

The results of this study demonstrate that integrating a
memory-instance-based gated transformer for return
forecasting with a hybrid metaheuristic optimization
algorithm yields a coherent and empirically robust portfolio
management framework. At the forecasting stage, the low
MAE and RMSE obtained in the out-of-sample period
indicate that the proposed deep learning architecture is
capable of capturing both short-term market fluctuations and
more persistent temporal patterns. This finding is consistent
with recent evidence suggesting that attention-based
architectures outperform traditional recurrent models in
financial time-series prediction by selectively focusing on
informative past observations rather than relying on fixed
sequential memory (Han et al., 2024; L. Liu et al., 2024).
The reduced gap between MAE and RMSE further suggests
that the model effectively limits the influence of extreme
forecast errors, which is particularly important in markets
characterized by heavy-tailed return distributions and abrupt
regime shifts. Similar improvements in robustness have been
reported in studies employing hybrid or memory-augmented
learning structures, where external memory components
help preserve the influence of critical historical events
during volatile periods (Ayari Salah, 2025; Burkart & Huber,
2021).

Beyond predictive accuracy, the results highlight the
importance of translating forecasts into optimal portfolio
weights under realistic constraints. The hybrid AMDE-PSO
algorithm exhibited stable and controlled convergence,
achieving a substantial reduction in the objective function
while maintaining population diversity. This two-phase
convergence behavior—rapid global exploration followed
by gradual local refinement—aligns with theoretical and
empirical findings in the metaheuristic literature, which
emphasize that effective portfolio optimization requires a
careful balance between exploration and exploitation (Ayari
Salah, 2025; Hosseini et al.,, 2020). The observed
improvement over standalone DE, PSO, GA, and the
classical Markowitz approach confirms that combining
adaptive mutation mechanisms with collective learning
dynamics enhances search efficiency in high-dimensional,
nonlinear weight spaces. Prior studies in active portfolio
management similarly report that hybrid evolutionary
algorithms  outperform  single-method  approaches,
particularly when transaction costs, liquidity constraints, and
non-convex risk measures are incorporated (Montazeralhaj
& Rezaei Shouraki, 2023; Rouhi Sara et al., 2023).
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The superior risk-adjusted performance of the optimized
portfolio, as reflected in higher Sharpe and Sortino ratios,
provides further insight into the effectiveness of the
proposed framework. Achieving a Sharpe ratio above one
while simultaneously reducing downside risk indicates that
the model does not merely increase returns by accepting
higher volatility, but rather improves the quality of return
generation per unit of risk. This result is consistent with
behavioral portfolio theory, which argues that investors are
particularly sensitive to downside outcomes and that models
explicitly controlling unfavorable volatility are more aligned
with real decision-making behavior (Antony, 2019; Hadbaa,
2019). The lower VaR and CVaR values obtained relative to
benchmark methods also confirm that the hybrid approach
improves tail-risk management, a finding that resonates with
regulatory-oriented studies emphasizing the need for robust
downside protection under stressed market conditions
(Drenovak et al., 2020). In emerging markets, where return
distributions are often asymmetric and correlations shift
rapidly, such improvements in tail-risk control are especially
valuable.

The weight composition of the optimal portfolio further
illustrates the practical relevance of the proposed method.
The absence of extreme concentration, strict adherence to
non-negativity and budget constraints, and selective
exclusion of weak assets indicate that the algorithm produces
implementable solutions compatible with real-world trading
conditions. This layered allocation structure—where assets
with stronger predictive signals receive higher but bounded
weights while complementary assets contribute to
diversification—supports findings from previous research
showing that intelligent diversification can reduce co-
movement risk without diluting return potential (Bahramian,
2022; Silvius & Marnewick, 2022). The results also align
with evidence that portfolio frameworks integrating
predictive signals with evolutionary optimization are better
suited to dynamic markets than static variance-based
allocations, particularly in environments influenced by
behavioral factors and information asymmetry (Ghodrzi et
al., 2024; Montazeralhaj & Rezaei Shouraki, 2023).

Another important implication of the findings relates to
stability and generalizability. Cross-validation results show
that performance metrics remain within a relatively narrow
range across subsamples, even during turbulent periods,
suggesting that the proposed framework is not overfitted to
a specific market regime. This robustness addresses a
common limitation in machine-learning-based portfolio
studies, where impressive in-sample results often deteriorate
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sharply out of sample. The observed stability supports
arguments in the literature that combining forecasting and
optimization within an integrated pipeline—rather than
treating them as independent tasks—enhances overall
system resilience (Johnson & Moore, 2019; Liang et al.,
2018). Moreover, the statistical significance confirmed by
the Wilcoxon test strengthens the claim that the observed
improvements are not attributable to random variation but
reflect systematic advantages of the hybrid design.

From a broader perspective, the findings contribute to
ongoing debates about the role of advanced analytics and
digital technologies in modern financial systems. As
financial markets become increasingly platform-based and
algorithmically driven, portfolio management tools must
adapt to faster information flows, higher volatility, and
evolving regulatory expectations (Langley & Leyshon,
2023). The explainable components of the proposed
framework—such as attention weights and memory
activations—also respond to growing concerns about
transparency and accountability in Al-driven finance,
echoing calls for interpretable models that can support both
performance and governance objectives (Burkart & Huber,
2021). In this sense, the study not only demonstrates
technical effectiveness but also aligns with broader strategic
and institutional considerations shaping contemporary
portfolio management.

Despite these contributions, several limitations should be
acknowledged. First, the empirical analysis is based on a
specific market context and asset universe, which may limit
the direct transferability of results to other markets with
different liquidity structures, regulatory regimes, or investor
compositions. Second, although transaction costs were
incorporated, other real-world frictions such as market
impact, short-term liquidity shocks, and execution delays
were not explicitly modeled. Third, while the hybrid
framework improves robustness, extreme crisis scenarios
beyond the observed sample may still pose challenges for
both forecasting accuracy and optimization stability.

Future research could extend this work in several
directions. One avenue is to apply the proposed framework
to multiple international markets and asset classes to assess
its cross-market robustness and scalability. Another
promising direction involves enriching the input feature
space with alternative data sources, such as macroeconomic
indicators, sentiment measures, or textual information,
which may further enhance predictive power. Additionally,
future studies could explore dynamic rebalancing strategies
and online learning mechanisms to allow the model to adapt
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continuously as new data arrive, particularly under rapidly
changing market conditions.

From a practical standpoint, the findings suggest several
implications for portfolio managers and financial
institutions. Integrating advanced forecasting models with
hybrid optimization algorithms can materially improve risk-
adjusted performance while maintaining implementable
portfolios. Practitioners should consider adopting multi-
objective optimization frameworks that explicitly control
downside risk rather than relying solely on variance-based
measures. Moreover, embedding transparency and
validation mechanisms into Al-driven portfolio systems can
enhance trust and facilitate regulatory compliance. Overall,
the proposed approach provides a viable blueprint for
deploying intelligent, adaptive, and risk-aware portfolio
management systems in volatile financial environments.
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