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The objective of this study is to propose an efficient hybrid framework for portfolio 

management that can simultaneously optimize investment returns and effectively 

control risk under both normal and turbulent market conditions. The primary focus is 

on improving the accuracy of asset return forecasting and transforming these 

forecasts into optimal portfolio weighting decisions. In this research, a hybrid 

approach is employed that combines a memory-instance–based gated transformer 

model for forecasting asset returns with a hybrid metaheuristic algorithm based on 

adaptive differential evolution and particle swarm optimization for portfolio 

optimization. Financial data from the Iranian capital market covering the period from 

2016 to 2024 were collected and, after preprocessing, cleaning, and feature 

extraction, were entered into the modeling process. The mean absolute error in the 

test period was 0.0068, and the root mean square error was 0.0100; these values 

exhibited a standard deviation of less than 0.0004 in cross-validation, indicating 

prediction stability. The optimal portfolio obtained by integrating these forecasts with 

the hybrid metaheuristic algorithm achieved an annualized return of 0.325 and an 

annualized standard deviation of 0.238, resulting in a Sharpe ratio of 1.16 and a 

Sortino ratio of 1.61. Tail risk measures also remained at controlled levels, such that 

the value at risk (VaR) at the 0.95 confidence level was 0.021 and the conditional 

value at risk (CVaR) was calculated as 0.0316. The paired Wilcoxon test conducted 

to compare the proposed model with benchmark methods yielded statistics above the 

significance threshold (for the Sharpe ratio, z = 2.51 and p = 0.012; for the Sortino 

ratio, z = 2.78 and p = 0.005), indicating a statistically significant improvement in 

performance. Based on the findings, it can be concluded that the proposed hybrid 

framework is capable of establishing an appropriate balance between return and risk 

in portfolio management by leveraging deep learning and metaheuristic optimization. 

The stability of the results across different temporal subsamples and the maintenance 

of acceptable performance under turbulent market conditions indicate that this 

approach possesses strong generalizability and practical applicability. 
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1. Introduction 

ortfolio management has long been recognized as a 

central pillar of modern financial decision-making, 

aiming to allocate limited capital among competing assets in 

a manner that balances expected return against risk. 

Classical portfolio theory, rooted in the mean–variance 

framework, assumes rational investors, normally distributed 

returns, and stable covariance structures. While this 

paradigm has provided a foundational benchmark for 

decades, empirical evidence from real markets increasingly 

demonstrates that these assumptions are frequently violated, 

especially in emerging and volatile financial systems. 

Behavioral biases, structural market frictions, regulatory 

constraints, technological disruption, and rapid information 

diffusion collectively complicate the portfolio optimization 

problem and reduce the practical effectiveness of purely 

classical approaches (Antony, 2019; Hadbaa, 2019). 

Consequently, contemporary portfolio management research 

has shifted toward more flexible, data-driven, and adaptive 

frameworks capable of capturing nonlinear dynamics, 

regime changes, and tail risks. 

One of the most significant challenges in portfolio 

management arises from the empirical characteristics of 

financial return distributions. Numerous studies have 

documented that asset returns are typically non-Gaussian, 

exhibiting skewness, excess kurtosis, volatility clustering, 

and time-varying correlations. These features are 

particularly pronounced in emerging markets, where 

liquidity constraints, information asymmetry, and 

macroeconomic instability intensify market fluctuations. As 

a result, reliance on variance alone as a risk measure may 

underestimate downside risk and fail to capture extreme loss 

scenarios, motivating the integration of tail-risk metrics such 

as Value at Risk and Conditional Value at Risk into portfolio 

optimization frameworks (Bahramian, 2022; Drenovak et 

al., 2020). The recognition of these empirical regularities has 

led to the development of multi-objective portfolio models 

that explicitly trade off return maximization against various 

dimensions of risk. 

In parallel with advances in financial theory, rapid 

progress in computational intelligence and machine learning 

has fundamentally reshaped the analytical toolkit available 

to portfolio managers. Machine learning models are 

particularly well suited to financial data because they can 

approximate complex nonlinear relationships, adapt to 

evolving data-generating processes, and integrate large 

volumes of heterogeneous information. Early applications 

focused on regression and classification tasks, such as 

predicting asset returns or identifying market regimes. More 

recent research has expanded toward end-to-end portfolio 

decision systems that combine forecasting, optimization, 

and execution within a unified framework (Johnson & 

Moore, 2019; Liang et al., 2018). These developments have 

coincided with the increasing availability of high-frequency 

data and computational resources, enabling more 

sophisticated modeling strategies. 

Among machine learning paradigms, deep learning has 

gained particular prominence due to its ability to learn 

hierarchical feature representations directly from raw data. 

Recurrent neural networks, long short-term memory models, 

and gated recurrent units have been widely applied to 

financial time series forecasting, demonstrating 

improvements over traditional econometric models in 

capturing temporal dependencies. However, these 

architectures often struggle with long-range dependencies 

and may suffer from vanishing gradients or limited 

interpretability. The transformer architecture, originally 

developed for natural language processing, addresses many 

of these limitations through attention mechanisms that allow 

the model to selectively focus on relevant past observations, 

regardless of their temporal distance (Han et al., 2024). This 

characteristic makes transformers especially attractive for 

financial forecasting, where market dynamics are influenced 

by both recent shocks and longer-term structural patterns. 

Recent studies have extended transformer-based models 

to financial applications, including stock price prediction, 

commodity price forecasting, and early warning systems for 

financial crises (Chen et al., 2024; W. Liu et al., 2024; Wang 

et al., 2024). These works consistently report superior 

predictive accuracy compared to conventional neural 

networks, particularly in volatile environments. 

Nevertheless, purely attention-based models may still be 

sensitive to noise and extreme events, and their performance 

can deteriorate when historical context needs to be 

selectively retained rather than uniformly attended to. To 

address this issue, hybrid architectures incorporating 

external memory components and gating mechanisms have 

been proposed, allowing models to store, retrieve, and 

regulate the influence of critical historical patterns. Such 

P 
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memory-augmented models enhance stability and 

robustness in non-stationary settings and align well with the 

episodic nature of financial markets (Burkart & Huber, 

2021). 

While forecasting accuracy is a necessary condition for 

effective portfolio management, it is not sufficient. Forecasts 

must be translated into actionable portfolio weights under 

real-world constraints, including budget balance, liquidity 

limits, regulatory requirements, and transaction costs. This 

translation step constitutes a high-dimensional, nonlinear 

optimization problem that is often non-convex and 

computationally intractable for exact methods. 

Metaheuristic algorithms have therefore become a popular 

choice for portfolio optimization, as they offer flexible 

search strategies that can explore complex solution spaces 

without requiring gradient information or restrictive 

assumptions about objective function structure (Ayari Salah, 

2025). Techniques such as genetic algorithms, particle 

swarm optimization, and differential evolution have been 

extensively studied and shown to outperform classical 

solvers in many portfolio settings. 

Each metaheuristic method, however, has inherent 

strengths and weaknesses. Genetic algorithms excel at global 

exploration but may converge slowly; particle swarm 

optimization offers rapid convergence but risks premature 

stagnation; differential evolution provides robust mutation 

strategies but may lose diversity over time. Recent research 

has thus emphasized hybrid metaheuristic frameworks that 

combine complementary mechanisms to balance exploration 

and exploitation more effectively. Empirical evidence 

suggests that such hybrid algorithms can achieve faster 

convergence, greater solution stability, and improved risk–

return trade-offs in portfolio optimization problems 

(Montazeralhaj & Rezaei Shouraki, 2023; Rouhi Sara et al., 

2023). These findings underscore the importance of 

algorithmic design in determining portfolio performance, 

particularly in volatile and information-rich markets. 

Another critical dimension in contemporary portfolio 

management is the broader institutional and technological 

environment in which financial decisions are made. The rise 

of FinTech platforms, algorithmic trading, and digital 

financial infrastructures has transformed market 

microstructure and regulatory landscapes. Platform-based 

financial systems introduce new sources of systemic risk 

while simultaneously enabling faster information processing 

and more granular portfolio control (Langley & Leyshon, 

2023). At the same time, sustainability considerations and 

strategic alignment at the organizational level increasingly 

influence portfolio construction, as investors seek to 

integrate financial performance with long-term 

environmental and social objectives (Silvius & Marnewick, 

2022). These trends further motivate the development of 

adaptive, transparent, and robust portfolio management 

frameworks that can operate effectively under complex 

constraints. 

Explainability and transparency have also emerged as 

essential concerns in machine-learning-driven finance. As 

models become more complex, understanding their decision 

logic becomes increasingly challenging, raising issues of 

trust, accountability, and regulatory compliance. Research 

on explainable artificial intelligence highlights the need for 

models that not only perform well but also provide 

interpretable insights into their predictions and decisions 

(Burkart & Huber, 2021). Memory-augmented and 

attention-based architectures offer a partial solution by 

allowing analysts to inspect attention weights and memory 

activations, thereby gaining insight into which historical 

patterns influence portfolio decisions. This interpretability is 

particularly valuable in risk management contexts, where 

understanding the drivers of extreme losses is as important 

as achieving high returns. 

Despite substantial progress, several gaps remain in the 

existing literature. First, many studies focus either on 

forecasting accuracy or on optimization performance in 

isolation, without fully integrating these components into a 

coherent end-to-end portfolio management framework. 

Second, empirical evaluations are often conducted in 

developed markets, leaving uncertainty about the 

applicability of proposed methods to emerging markets 

characterized by higher volatility, structural breaks, and 

behavioral effects. Third, relatively few studies 

systematically assess the stability and robustness of hybrid 

models across different market regimes and validation 

schemes (Hosseini et al., 2020; Safaeian et al., 2024). 

Addressing these gaps requires a comprehensive approach 

that combines advanced forecasting models, hybrid 

optimization algorithms, rigorous validation, and application 

to real-world market data. 

Recent contributions have begun to move in this direction 

by proposing integrated machine-learning-based portfolio 

frameworks and evaluating them under realistic constraints. 

Meta-analytical evidence indicates that hybrid and ensemble 

learning approaches consistently outperform single-model 

strategies in active portfolio management, particularly when 

transaction costs and risk controls are explicitly incorporated 

(Ayari Salah, 2025). Moreover, empirical studies in the 

https://journals.kmanpub.com/index.php/jppr/index
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Iranian capital market highlight the relevance of hybrid 

algorithms for managing financial instability and predicting 

crisis conditions (Ghodrzi et al., 2024; Rouhi Sara et al., 

2023). These findings suggest that emerging markets 

provide a valuable testing ground for advanced portfolio 

methodologies. 

Building on this evolving body of research, the present 

study situates itself at the intersection of deep learning–

based return forecasting and hybrid metaheuristic portfolio 

optimization. By leveraging a memory-instance–based gated 

transformer architecture for return prediction and integrating 

its outputs into a hybrid adaptive differential evolution–

particle swarm optimization framework, this study seeks to 

construct an end-to-end portfolio management system 

capable of balancing return maximization and risk control 

under non-stationary market conditions. The focus on robust 

validation, tail-risk measures, and realistic transaction costs 

aims to enhance both the academic contribution and the 

practical relevance of the proposed approach. 

The aim of this study is to develop and empirically 

evaluate a hybrid artificial intelligence–based portfolio 

management framework that integrates memory-augmented 

transformer return forecasting with hybrid metaheuristic 

optimization to achieve a stable and risk-controlled trade-off 

between return and risk in a volatile capital market. 

2. Methods and Materials 

This study is quantitative and hybrid in nature, adopting 

an approach aimed at proposing a hybrid artificial 

intelligence model in which a memory-instance–based gated 

transformer algorithm is used to forecast asset returns. The 

statistical population of the study includes all tradable 

financial assets in the Iranian capital market (stocks listed on 

the Tehran Stock Exchange, Iran Fara Bourse, investment 

funds, and other common financial instruments) over the 

period from 2016 to 2024. Sampling was conducted 

purposively, in compliance with inclusion criteria 

(completeness of historical price and volume data, sufficient 

liquidity, and acceptable average daily trading volume), in 

order to select a representative and high-quality sample from 

different industries and market sectors. The research 

methodology was designed in two main stages: (1) collection 

and preprocessing of financial time-series data, and (2) 

design and implementation of a memory-instance–based 

gated transformer model to extract long-term patterns and 

accurately predict returns. This methodological framework 

was developed with the aim of achieving an optimal 

portfolio with maximum return and minimum risk, while 

also enabling reproducibility and validation of results by 

other researchers. 

Dependent variables 

Portfolio return is calculated as the weighted sum of the 

returns of the assets included in the portfolio over a specified 

time period. The computation is performed in Python using 

price data from the Tehran Stock Exchange obtained via 

TSETMC or Excel files exported from the CODAL system. 

(1) 

𝑅𝑝 =∑𝑤𝑖 ∙ 𝑅𝑖

𝑛

𝑖=1

 

 

where 𝑅𝑝denotes total portfolio return, 𝑤𝑖is the weight of 

asset 𝑖in the portfolio, 𝑅𝑖is the return of asset 𝑖, and 𝑛is the 

number of assets. Portfolio risk is measured as the variance 

of portfolio returns or by indices such as Value at Risk 

(VaR). The calculation is performed in Python using the 

covariance matrix of returns based on Equation (2). 

(2) 

𝜎𝑝
2 =∑∑𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

 

where 𝜎𝑝
2is the variance of portfolio returns, 𝑤𝑖𝑤𝑗are the 

weights of assets 𝑖and 𝑗, and 𝜎𝑖𝑗is the covariance between 

the returns of assets 𝑖and 𝑗. According to Equation (3), VaR 

is calculated as follows: 

(3) 

VaR𝛼 = −[𝜇𝑝 + 𝑧𝛼𝜎𝑝] 

 

where 𝜇𝑝is the mean portfolio return, 𝜎𝑝is the standard 

deviation of portfolio returns, and 𝑧𝛼is the critical value of 

the normal distribution at confidence level 𝛼. This variable 

is estimated in Python. The Sharpe ratio measures the excess 

return of the portfolio relative to the risk-free rate per unit of 

risk (standard deviation of portfolio returns). The calculation 

is performed in Excel, with the risk-free rate obtained from 

Central Bank reports, based on Equation (4) (Arterit et al., 

2021). 

(4) 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝
 

 

where 𝑅𝑝is portfolio return, 𝑅𝑓is the risk-free rate of 

return, and 𝜎𝑝is the standard deviation of portfolio returns. 

https://journals.kmanpub.com/index.php/jppr/index


 Haji Ebrahim Tehrani et al.                                                                               Journal of Resource Management and Decision Engineering 5:3 (2026) 1-20 

 

 5 

Independent variables 

The architectural parameters of the memory-instance–

based gated transformer are defined as numerical values, 

such as the number of attention layers, the dimensions of 

external memory, and the learning rate, which are specified 

and initialized during model implementation in the software 

environment. 

Control variables 

The risk-free rate represents the return of a risk-free 

investment. In this study, data related to the risk-free rate 

were extracted from the official system of the Central Bank 

of the Islamic Republic of Iran and, where necessary for 

validation, averaged using statistics published by the 

Statistical Center of Iran. 

The time horizon of analysis includes financial data 

covering the period from 2016 to 2024, analyzed on a daily 

basis and, in some cases, on a weekly basis to reduce data 

noise. Portfolio constraints play a decisive role in 

maintaining economic logic and the stability of the portfolio 

structure. 

The number and diversity of assets were determined with 

the aim of achieving a balance between portfolio return and 

risk. The selection of these stocks was based on criteria such 

as high liquidity, sufficient trading history, relative price 

stability, and representation of different economic sectors. 

Stock Returns 

In this study, stock returns are calculated using adjusted 

closing prices from Tehran Stock Exchange data (2016–

2024) through either simple or logarithmic return methods, 

in order to account for corporate events and high volatility. 

Portfolio returns are then derived based on asset weights, net 

of transaction costs (approximately 1%), and performance 

indicators such as the Sharpe ratio and Value at Risk are 

computed using Python libraries (pandas, numpy). The steps 

and formulas for measuring stock returns are as follows: 

At this stage, the return of stock 𝑖on day 𝑡is calculated as 

the difference between the current day’s closing price and 

the previous day’s closing price divided by the previous 

day’s price. This formula indicates the percentage change in 

stock price relative to the previous day. A positive return 

indicates growth, whereas a negative return indicates a 

decline. 

(5) 

𝑅𝑡 =
𝑃𝑡 − 𝑃𝑡−1
𝑃𝑡−1

 

 

Logarithmic return (in cases of high volatility): When 

price fluctuations are large or data deviate from normality, 

logarithmic returns are used. Logarithmic returns provide 

greater statistical stability and allow simpler aggregation of 

multi-period returns. 

(6) 

Average stock return over the period: After computing 

daily returns for each stock, the average return over the 

entire study period is calculated. This value represents the 

mean return of the stock across the full time span (e.g., from 

2016 to 2024). 

(7) 

Standard deviation of stock returns (idiosyncratic 

risk): To measure volatility and individual stock risk, the 

standard deviation of returns is calculated. A larger value 

indicates higher risk and greater volatility. 

(8) 

Covariance between two stocks: Covariance indicates 

how two stocks move relative to each other. A positive value 

suggests that the stocks generally move in the same 

direction, whereas a negative value indicates opposite 

movements. This measure is essential for portfolio risk 

calculation. 

(9) 

In the data preparation phase, historical closing price data 

for selected Tehran Stock Exchange companies, trading 

volumes, and macroeconomic variables (exchange rate, 

interest rate, and inflation) were first collected from reliable 

sources such as CODAL, the Tehran Stock Exchange, and 

the Central Bank for the period from 2016 to 2024. Outliers 

were then identified and removed using the Isolation Forest 

algorithm, in which observations with anomaly scores close 

to one are considered outliers. Missing data were imputed 

using the K-nearest neighbors (KNN) method, replacing 

missing values with weighted averages of the nearest 

neighbors to preserve time-series continuity. Finally, all 

variables were normalized using z-score standardization 

(mean zero and standard deviation one) to eliminate scale 

effects and enhance training stability. These steps ensure 

data quality, completeness, and consistency for 

implementing the hybrid transformer and metaheuristic 

model. 

(10) 

𝑧𝑖 =
𝑥𝑖 − 𝜇

𝜎
 

 

where 𝑥𝑖is the observed value, 𝜇is the mean, and 𝜎is the 

standard deviation of the data. 

https://journals.kmanpub.com/index.php/jppr/index
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Feature extraction: Finally, key features were extracted 

for each asset to provide richer inputs for modeling. The 

simple return of each asset is calculated as follows: 

(11) 

𝑅𝑡 =
𝑃𝑡 − 𝑃𝑡−1
𝑃𝑡−1

 

 

where 𝑃𝑡denotes the price at time 𝑡. Cumulative return is 

obtained using the following relationship: 

(12) 

𝐶𝑅𝑡 =∏(1+𝑅𝑖) − 1

𝑡

𝑖=1

 

 

In addition, volatility is measured as the standard 

deviation of returns over a specific time window 𝑇: 

(13) 

𝜎𝑡 = √
1

𝑇 − 1
∑(𝑅𝑖 − 𝑅̄)2
𝑇

𝑖=1

 

 

where 𝑅̄represents the mean return. These extracted 

features—simple return, cumulative return, and volatility—

serve as essential inputs to the memory-instance–based 

gated transformer model for accurate forecasting. 

Figure 1 

Stages of the data preparation and preprocessing phase 

 

 

In this phase, the architecture of the memory-instance–

based gated transformer is designed with multi-head 

attention layers and external memory to extract long-term 

dependencies in financial data. The model is trained using 

preprocessed data, including prices, returns, and volatility, 

and converges through hybrid optimization techniques 

(accelerated methods and adaptive learning rates). To 

prevent overfitting, early stopping and dropout techniques 

are employed to preserve generalization capability. Key 

parameters such as learning rate, feature dimensions, and 

memory size are also optimized to enhance predictive 

accuracy. Ultimately, in addition to forecasting future asset 

returns, the model generates deep feature vectors as market 

signals that serve as inputs to the portfolio optimization 

phase. 

 

 

 

 

 

Data CollectionOutlier Removal
Missing Data 
Imputation

Data Normalization Feature Extraction

https://journals.kmanpub.com/index.php/jppr/index
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Figure 2 

Stages of the modeling and return forecasting phase using the memory-instance–based gated transformer model 

 

 

The research framework began with the extraction and 

specialized preprocessing of historical data, including 

prices, returns, trading volumes, and macroeconomic 

variables, in which normalization, relative stationarization, 

and feature engineering (such as moving averages and 

historical volatility) were applied to reduce noise and 

enhance nonlinear pattern extraction. In the forecasting 

phase, the memory-instance–based gated transformer 

(MIGT) model was designed and trained with three main 

components: an attention layer to learn the importance of 

temporal points, instance memory to store critical events and 

long-term patterns, and gating mechanisms to control 

information flow, thereby producing asset return forecasts. 

The constraint and objective function definition phase 

involved specifying a dual-objective function to maximize 

expected return and minimize risk (using variance, 

semivariance, and Value at Risk measures), along with 

operational constraints such as full investment (weights 

summing to one), investment caps, and liquidity 

requirements. In the hybrid optimization phase, the proposed 

AMDE-PSO algorithm was implemented by integrating 

adaptive differential evolution mechanisms (with dynamic 

mutation rates and competitive selection) and particle swarm 

optimization (to enhance local search via individual and 

social learning), thereby achieving an optimal balance 

between exploration and exploitation. The performance 

evaluation phase included calculating risk–return indicators 

(Sharpe ratio, Sortino ratio, realized return), conducting the 

Wilcoxon test to confirm statistical significance of 

improvements, and performing cross-validation to ensure 

model generalizability to out-of-sample data. Parameter 

sensitivity analysis was also conducted using Monte Carlo 

simulation to identify critical parameters and assess their 

impact on model outputs. The entire execution chain, from 

data preprocessing to final optimization, was formed 

through direct interaction between the accurate forecasting 

engine (MIGT) and the intelligent search engine (AMDE-

PSO) to optimize decision-making under real-market 

constraints. This hybrid framework, by overcoming the 

limitations of classical single-stage approaches, enhanced 

decision-making efficiency by linking accurate forecasting 

to multi-objective optimization under the non-stationary 

conditions of the Iranian capital market. 

Design of the MIGT Model Architecture

Model Training with Preprocessed Data

Parameter Optimization

Overfitting Prevention

Output Generation and Extraction of 
Market Signal Vectors

https://journals.kmanpub.com/index.php/jppr/index
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Figure 3 

Stages of the hybrid optimization phase using the combined algorithm 

 

3. Findings and Results 

The empirical data comprised time series of returns, 

volatility, and trading volume for 20 to 30 listed stocks over 

the period 2016 to 2024. After cleaning and synchronization, 

approximately 2,100 to 2,300 gap-free daily observations 

were obtained for each ticker. Mean daily returns were close 

to zero (−0.02% to +0.08%), and the median was lower than 

the mean, indicating the presence of asymmetric jumps in 

the series, while the one-day return range expanded to 

approximately −8% to +6%. Daily volatility, with a standard 

deviation between 0.012 and 0.032 (1.2% to 3.2%), showed 

substantial cross-industry differences; assuming a standard 

deviation of 0.02, annualized volatility reached 

approximately 32%. The trading-volume distribution was 

clearly right-skewed: the median (1.2 to 4.8 million shares) 

was markedly lower than the mean (3.5 to 12.0 million 

shares), reflecting the influence of event-driven high-volume 

days. Returns deviated from normality and exhibited 

skewness (−1.1 to +0.7) and high kurtosis (3.8 to 8.6), 

justifying the use of downside-risk measures such as 

semivariance and Value at Risk. The average pairwise 

correlation was about 0.22, with a range from −0.15 to 

+0.70; together with dense intra-industry clusters 

(correlations of 0.45 to 0.55) versus low inter-group 

correlations (0.10 to 0.25), this structure enabled effective 

diversification. These statistical properties formed the basis 

for defining liquidity constraints, weight caps, and multi-

objective risk measures within the portfolio optimization 

framework. 

Preparation of algorithm 
inputs

Generation of the initial 
population

Execution of the adaptive 
differential evolution 

mechanism

Enhancement of the 
search process using the 

PSO algorithm

Stopping criterion and 
final convergence
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Figure 4 

Distribution of Asset Returns 

 

Figure 4 displays the empirical distribution of daily 

returns, characterized by a strong concentration around zero 

and heavy tails on both sides, indicating frequent small 

returns alongside an unavoidable occurrence of extreme 

returns at lower frequencies. The presence of heavy and 

asymmetric tails suggests price shocks and abrupt volatility, 

undermining the normality assumption and motivating the 

application of downside-risk measures such as Value at Risk 

and semivariance. 

The forecasting accuracy of the Memory-Instance–Based 

Gated Transformer (MIGT) model, evaluated using out-of-

sample metrics, yielded RMSE = 0.0099 and MAE = 0.0068, 

indicating that the model tracks short- and medium-term 

return dynamics with acceptable precision. The meaningful 

discrepancy between the two metrics reflects the presence of 

larger errors on shock days or during periods of intense 

volatility, consistent with the non-stationary nature of the 

market; this suggests that the model learns general market 

behavior effectively but is more sensitive to extreme events. 

Model performance varied across assets, with MAE ranging 

from 0.0049 to 0.0094 and RMSE ranging from 0.0071 to 

0.0136; higher-liquidity tickers with more stable volume 

exhibited lower errors, whereas highly volatile assets or 

those strongly responsive to macroeconomic news produced 

larger errors. Despite absolute errors, the model correctly 

predicted the return direction on approximately 61% of 

trading days, which has practical value for portfolio-weight 

allocation decisions. Overall, these findings indicate that 

MIGT provides a reliable forecasting backbone for the 

optimization phase, although additional mechanisms may be 

required to control errors under crisis conditions. 

Figure 5 

Comparison of Actual and Predicted Asset Returns 
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Figure 5 shows substantial overlap between the actual 

return curve and the MIGT-predicted return curve during the 

test period, indicating the model’s ability to track dominant 

patterns and short-term fluctuations, particularly in periods 

of relative market stability. 

The MIGT model exhibited selective and market-regime-

dependent temporal pattern extraction. In calm periods, 

attention weights were distributed more uniformly (entropy 

= 2.41), whereas in turbulent periods, concentration on key 

time points increased (weight-concentration index rising 

from 0.34 to 0.46 and entropy decreasing to 1.86). Time-lag 

importance analysis showed that, on average, the model 

allocated 58% of attention weight to the short-term window 

(1–10 days), 27% to the medium-term window (11–30 days), 

and 15% to the long-term window (31–60 days); during 

regime shifts, the long-term share increased to 

approximately 22%. Instance memory activated selectively 

(mean activation rate = 0.29, increasing to 0.41 in turbulent 

periods) and entered decision-making only when historical 

context was needed (effective retrieval rate = 0.33). An 

ablation analysis confirmed the critical role of memory: 

disabling it increased MAE and RMSE from 0.0068 and 

0.0099 to 0.0076 and 0.0112, respectively, and amplified the 

loss of accuracy at longer forecasting horizons. Overall, the 

attention mechanism is responsible for selecting salient past 

time points, while instance memory stabilizes the influence 

of important events; together, they enable simultaneous 

utilization of short- and long-term dependencies in return 

forecasting. 

Figure 6 

Distribution of Attention Weights Across Different Time Horizons 

 

Figure 6 presents the distribution of MIGT attention 

weights across three horizons: approximately 58% to short-

term (1–10 days), 27% to medium-term (11–30 days), and 

15% to long-term (31–60 days). This distribution reflects the 

model’s balance between sensitivity to recent information 

for rapid adaptation and reliance on historical patterns—

particularly via instance memory—to maintain forecasting 

stability during market-regime changes. 

Comparing MIGT with benchmark models (LSTM, 

GRU, and a classical transformer) using out-of-sample 

RMSE and MAE indicated the statistical superiority of the 

proposed model. Specifically, MIGT achieved MAE = 

0.0068 and RMSE = 0.0099, corresponding to 

improvements of 16% relative to LSTM, 12% relative to 

GRU, and 5–6% relative to the classical transformer. The 

larger performance gap versus recurrent models than versus 

the transformer suggests that the primary advantage of 

MIGT stems from the attention mechanism, with 

incremental gains attributable to instance memory and 

gating. The RMSE/MAE ratio of approximately 1.46 across 

models indicates that all models are affected by price jumps; 

however, MIGT maintains a lower absolute error under such 

conditions, implying more effective control of extreme 

errors and reduced unstable reactions to noise. Practically, 

even small reductions in forecasting error can meaningfully 

improve weight-allocation accuracy and reduce bias in 

expected-return estimates during multi-objective 

optimization. 
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Figure 7 

Comparison of Forecasting Errors Across Different Models 

 

Figure 7 illustrates the superiority of MIGT relative to 

benchmark models (LSTM, GRU, and the classical 

transformer), with the lowest MAE (0.0068) and RMSE 

(0.0099), while LSTM recorded the largest errors. The 

simultaneous reduction of both metrics under MIGT 

indicates more effective control of both average error and 

extreme errors, which is particularly important for financial 

data characterized by heavy tails and sudden shocks. 

Convergence analysis of the AMDE-PSO hybrid 

algorithm showed that after 300 iterations, the best 

objective-function value decreased from 1.000 to 0.523 (a 

47.7% improvement), with more than half of this 

improvement achieved within the first 100 iterations. The 

controlled reduction in the population “mean-to-best” gap 

(from 0.214 to 0.080) indicates that diversity was preserved 

and premature convergence to local optima was avoided. In 

the second half of the process, the particle swarm component 

prevented prolonged stagnation and accelerated stable 

convergence, with an average improvement of 0.012 per 10 

iterations (versus 0.007 in the pure differential-evolution 

variant). Convergence stability was confirmed by changes of 

less than 0.006 in the final 30 iterations and high 

repeatability (standard deviation = 0.0065 across three 

independent runs). This dual convergence behavior—rapid 

early gains followed by gradual refinement—supports the 

efficiency of the hybrid framework in balancing exploration 

and exploitation. 

Figure 8 

Convergence Plot of the AMDE-PSO Optimization Algorithm 
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Figure 8 shows the stable convergence of the AMDE-

PSO hybrid algorithm, with a steep initial decline in the 

objective function (broad exploration) followed by a gradual 

flattening in later stages (local exploitation). The smooth 

trajectory without severe oscillations and the final 

stabilization of the objective value confirm an effective 

exploration–exploitation balance and a reduced likelihood of 

entrapment in local optima. 

The final optimal portfolio included 25 assets, with 22 

positive weights and 3 zero weights, indicating the exclusion 

of undesirable assets in terms of risk–return and liquidity. 

The weight distribution, with a maximum of 0.0800 and a 

minimum positive weight of 0.0120, reflects a layered 

structure with genuine diversification; the cumulative 

weights of the top five and top ten assets were 0.3460 and 

0.6120, respectively. The Herfindahl index of 0.0584 

confirms moderate concentration and the absence of 

dominance by specific assets. All operational constraints—

including full investment (sum of weights = 1.0000), no 

short selling, a weight cap of 0.08, and liquidity 

compliance—were strictly enforced. This combined 

structure provides a desirable balance between extracting 

return signals, controlling idiosyncratic risk, and ensuring 

implementability in a real market setting. 

Figure 9 

Distribution of Asset Weights in the Optimal Portfolio 

 

Figure 9 shows a descending and gradual distribution of 

asset weights in the optimal portfolio, starting from a 

maximum weight of 0.08 and decreasing progressively to 

0.042. This distribution pattern indicates the ranking of 

assets based on forecast-signal quality and risk–return 

characteristics, while the limited spread among top weights 

prevents excessive concentration and preserves genuine 

diversification. Simultaneous enforcement of the weight-cap 

and non-negativity constraints—without weights becoming 

near-zero or excessively large—ensures a balanced and 

implementable structure. This distribution reduces 

idiosyncratic risk via capital dispersion while allowing 

assets with stronger signals to drive portfolio performance. 

The AMDE-PSO hybrid algorithm, with an objective-

function value of 0.523, outperformed DE (0.556), PSO 

(0.571), GA (0.589), and the Markowitz model (0.603), 

achieving a 5.94% improvement relative to the closest 

metaheuristic competitor and a 13.27% improvement 

relative to Markowitz. The portfolio produced by AMDE-

PSO recorded an annualized return of 0.324 and a risk level 

of 0.238, simultaneously increasing return by 12.89% and 

reducing risk by 12.18% relative to Markowitz. A Sharpe 

ratio of 1.16 and a Sortino ratio of 1.58 confirm its 

superiority in risk-adjusted performance and in controlling 

undesirable volatility. The daily Value at Risk (95% 

confidence level) was 0.021 for AMDE-PSO, compared to 

higher values for competing methods, indicating more 

effective control of tail losses. AMDE-PSO reached an 

objective-function value of 0.550 in 190 iterations, whereas 

PSO required 250 iterations to achieve the same level. 
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Figure 10 

Performance Comparison of Optimization Methods Based on the Sharpe Ratio 

 

The results shown in Figure 10 indicate that the AMDE-

PSO hybrid algorithm achieved the highest risk-adjusted 

performance with a Sharpe ratio of 1.16, generating greater 

excess return per unit of risk. DE (1.02) and PSO (0.98) 

ranked next, while GA (0.92) and the Markowitz model 

(0.84) exhibited weaker performance. This downward 

pattern reflects the limitations of simpler approaches in 

achieving a stable balance between return and risk control 

when applied to highly volatile real-world data. The lower 

Sharpe ratio under Markowitz may stem from reliance on 

classical variance-based risk structures and sensitivity to 

covariance-matrix estimation, whereas the hybrid algorithm 

exhibits greater adaptability to the nonlinear weight space 

through evolutionary search. 

The optimal portfolio’s daily return had a mean of 

0.00129 (0.129%), and the annualized return was computed 

as 0.325, derived net of transaction costs of approximately 

0.01. The median daily return was 0.00093, and the 

proportion of positive-return days was 0.57, indicating 

relatively stable performance; notably, even during turbulent 

periods, the mean daily return remained positive at 0.00072. 

The final cumulative return was 0.418 and the maximum 

drawdown was 0.109, confirming the portfolio’s ability to 

generate 41.8% growth while controlling path-dependent 

losses. Monthly return ranged from 0.112 to −0.076, 

indicating sensitivity to market fluctuations in some 

intervals; however, the mean monthly return of 0.023 and the 

standard deviation of 0.041 reflect an overall positive 

performance. This combination of substantial returns and 

controlled drawdowns supports the effectiveness of MIGT-

forecast–based optimal weighting in the out-of-sample 

period. 

Figure 11 

Cumulative Return of the Optimal Portfolio 
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Figure 11 shows an upward and relatively smooth 

trajectory of cumulative returns. In the first quarter of the 

period, the portfolio began with gradual and stable growth, 

indicating balanced performance under normal market 

conditions. By mid-period, cumulative return reached 

approximately 0.15, demonstrating the strategy’s ability to 

sustain returns over time. In the second half, despite episodic 

fluctuations associated with turbulent market conditions, the 

overall trajectory remained upward, with cumulative return 

ending around 0.34–0.35. The observed drawdowns were 

neither deep nor persistent, and the portfolio returned to its 

growth path within a short time, indicating effective risk 

control and avoidance of severe losses. 

The portfolio’s daily standard deviation was 0.0150 and 

the annualized standard deviation was 0.238, indicating 

controlled volatility risk alongside proportionate returns. 

Daily VaR at the 95% confidence level was estimated as 

0.021 empirically and 0.023 parametrically, suggesting 

bounded losses under worst “normal” conditions. The 

conditional Value at Risk (CVaR) of 0.031 indicates that the 

average loss in the worst 5% of days was about 3.10%, and 

the 0.010 gap between CVaR and VaR confirms heavier loss 

tails. Daily semivariance was 0.000117 and the annualized 

downside standard deviation was 0.171, indicating that the 

intensity of undesirable fluctuations is more limited than 

total risk (0.238). The smaller downside risk relative to total 

risk implies that a substantial portion of portfolio variability 

is attributable to positive movements or two-sided 

fluctuations. 

Figure 12 

Risk Profile of the Optimal Portfolio 

 

Based on Figure 12, the annualized standard deviation of 

0.238 as a measure of overall risk, together with the 

annualized downside standard deviation of 0.171, indicates 

that a substantial share of portfolio variability arises from 

two-sided and positive changes, with undesirable 

fluctuations contributing less. The daily variance of 

0.000225 is consistent with the reported standard deviation 

and shows that risk was computed from realized data. VaR 

at the 95% confidence level was 0.021 and CVaR at the same 

level was 0.031; the fact that CVaR exceeds VaR confirms 

the presence of heavier loss tails. 

With an annualized portfolio return of 0.325, annualized 

standard deviation of 0.238, and a risk-free rate of 0.049, the 

portfolio produced an excess return of 0.276 and a Sharpe 

ratio of 1.16, indicating adequate efficiency in generating 

excess return relative to total risk. The Sortino ratio was 

1.61, computed using the annualized downside standard 

deviation of 0.171; its being noticeably higher than the 

Sharpe ratio suggests that a significant portion of portfolio 

volatility stems from two-sided or positive fluctuations, 

while downside volatility remains relatively limited. In 

quarterly calculations, the Sharpe ratio ranged from 0.94 to 

1.28 and the Sortino ratio ranged from 1.29 to 1.88; the 

absence of a severe drop in the Sharpe ratio below 0.80 

supports the stability of risk-adjusted performance across 

subperiods. In turbulent quarters, Sharpe declined to 0.94, 

but Sortino remained at 1.29, indicating that the performance 

decrease was mainly driven by increased two-sided volatility 
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rather than a substantial intensification of downside losses. 

Overall, Sharpe = 1.16 and Sortino = 1.61 confirm the 

proposed framework’s ability to produce meaningful excess 

returns while controlling risk, especially downside risk. 

Figure 13 

Risk-Adjusted Performance of the Optimal Portfolio 

 

Figure 13 shows that a Sharpe ratio of 1.16 reflects 

substantial excess return over the risk-free rate per unit of 

total risk; being above 1.00 indicates that the optimal 

portfolio is efficient not only in achieving positive returns 

but also in terms of overall risk. The Sortino ratio of 1.61 is 

notably higher than the Sharpe ratio, indicating that a large 

portion of portfolio volatility is two-sided or positive in 

nature, while downside risk remains comparatively limited. 

This pattern confirms that the optimal portfolio not only 

controls total volatility but also performs better in mitigating 

adverse drawdowns. 

The out-of-sample data were partitioned into 12 monthly 

subperiods, and the Wilcoxon test was conducted at a 0.05 

significance level. For the Sharpe ratio, the median 

difference was 0.14, with p = 0.012 and effect size r = 0.72, 

indicating a statistically significant improvement for the 

proposed method. For the Sortino ratio, the median 

difference was 0.19, with p = 0.005 and r = 0.80, confirming 

stronger significance for improvements in the loss-oriented 

measure. Improvements in monthly return (p = 0.021) and 

reductions in CVaR (p = 0.009; median reduction = 0.0028) 

were also statistically significant. 

Figure 14 

Wilcoxon Test Results for Assessing the Statistical Significance of Performance Improvements 
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The test statistics for the Sharpe ratio (2.51), Sortino ratio 

(2.78), realized return (2.31), and CVaR (2.62) all exceed the 

threshold line of 1.96, corresponding to a 0.05 significance 

level. Since all indices surpass this threshold, the null 

hypothesis of “no significant performance difference” is 

rejected across all evaluated criteria. The statistic of 2.78 for 

Sortino and 2.62 for CVaR indicates that the proposed model 

not only improves overall risk-adjusted returns but also 

achieves significantly better control of drawdowns and 

severe losses. 

Five-fold time-based cross-validation confirmed the 

stability of the entire “forecasting → optimization” pipeline. 

The mean forecasting MAE and RMSE were 0.00684 (SD = 

0.00022) and 0.00998 (SD = 0.00033), respectively, 

indicating stable MIGT performance at the forecasting stage. 

The portfolio’s annualized return averaged 0.321 (SD = 

0.014) and annualized risk averaged 0.240 (SD = 0.008), 

demonstrating the hybrid algorithm’s ability to maintain a 

consistent return–risk balance under different market 

conditions. The Sharpe ratio averaged 1.13 (SD = 0.10) and 

the Sortino ratio averaged 1.55 (SD = 0.15), indicating 

preservation of risk-adjusted performance across all folds. 

Mean CVaR was 0.0316 (SD = 0.0014), and the limited 

variation in VaR (0.020 to 0.023) indicates that tail risks also 

remained stable. The simultaneous increase in risk, decrease 

in Sharpe, and increase in CVaR in the third fold is 

consistent with turbulent conditions or a market-regime 

shift. 

Figure 15 

Stability of the Sharpe Ratio in Cross-Validation 

 

The Sharpe ratio remained above 0.99 in all folds, with 

an overall mean of 1.13, indicating sustained excess return 

relative to risk across most temporal slices of the data. The 

highest Sharpe value was observed in the second fold (1.25), 

reflecting very strong model performance in that segment, 

while the lowest value occurred in the third fold (0.99). This 

relative decline can be attributed to a market-regime change 

or heightened short-term volatility during that interval; 

however, the index remaining near one indicates that 

portfolio risk–return efficiency was preserved even under 

adverse conditions. The Sharpe ratio variability across folds 

was limited and controlled, with a standard deviation of 

approximately 0.10, which is relatively small for financial 

data. The rebound of the Sharpe ratio in the fourth (1.19) and 

fifth (1.16) folds indicates that the decline in the third fold 

was not persistent and that the model re-established a 

favorable return–risk balance. This behavioral pattern 

confirms that the proposed framework—based on MIGT and 

the hybrid optimization algorithm—is not excessively 

sensitive to structural changes in the data and that its results 

are not dependent on a single fold. 

The research findings, following rigorous data 

preprocessing, confirmed the heterogeneity of return 

distributions—characterized by high skewness and 

kurtosis—and statistically meaningful correlations among 

certain assets, which clarified the necessity of employing 

tail-risk measures and enforcing diversification constraints. 

The experimental configuration, using distinct time 

windows for training, validation, and testing, prevented 

information leakage and ensured the stability of results in the 
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Python environment while accounting for a transaction cost 

of 0.01. The memory-instance–based gated transformer 

achieved high out-of-sample accuracy with a mean absolute 

error of 0.0068 and a root mean square error of 0.0099, and 

it demonstrated constrained extreme errors by reducing the 

gap between these two metrics. This performance not only 

prevented noisy signals from propagating into the 

optimization phase, but also produced a 12% to 16% 

improvement in error metrics relative to benchmark models. 

Overall, the findings indicate that the proposed hybrid model 

structure, while aligning with the non-stationary nature of 

financial data, provides a reliable forecasting infrastructure 

for multi-objective return–risk optimization. 

The optimization-phase findings showed that the AMDE-

PSO hybrid algorithm delivers stable and controlled 

convergence, and that the objective-function decline follows 

a two-stage pattern. The best objective-function value 

decreased from 1.000 at initialization to 0.742 at iteration 50 

and then to 0.615 at iteration 100, ultimately reaching 0.523 

at the end of the run, corresponding to an overall 

improvement of 47.70%. The rapid initial decline reflects 

strong global search capability and effective screening of 

candidate solutions, whereas the slower decrease in the final 

stages indicates entry into a local refinement phase and 

solution stabilization (Bernete et al., 2021). The reduction in 

the gap between the population mean objective value and the 

best value from 0.214 to 0.080 further indicated that the 

algorithm moved toward convergence without fully losing 

diversity. In addition, repeatability results—based on 

multiple runs and a standard deviation of 0.0065 in the final 

objective value—showed that the algorithm’s output is not 

dependent on a single run. Regarding the weight 

composition of the optimal portfolio, the findings indicated 

that the final solution is suitable in terms of diversification 

and implementability, and that operational constraints were 

enforced precisely (Bieboldt et al., 2021). In the final 

portfolio, out of 25 assets, 22 received positive weights and 

3 received zero weights, indicating that the algorithm acted 

selectively in asset selection and excluded unsuitable assets. 

The maximum weight was 0.0800, the minimum positive 

weight was 0.0120, and the sum of weights was exactly 

1.0000; therefore, neither excessive concentration nor a 

violation of the budget constraint occurred. Moreover, the 

non-negativity of weights indicates the absence of short 

selling, making the solution operationally consistent with 

common market constraints. The reduced concentration 

index and layered distribution of weights further suggest that 

assets with stronger signals play the primary role, while 

complementary assets retain meaningful allocations to 

reduce co-movement and manage risk (Boulert et al., 2021). 

Comparing the hybrid algorithm with baseline methods 

showed that performance improvements at the level of 

financial and risk-adjusted indicators are substantial and 

meaningful. The Sharpe ratio for the proposed method was 

1.16, whereas it was reported as 1.02 for differential 

evolution, 0.98 for particle swarm optimization, 0.92 for the 

genetic algorithm, and 0.84 for Markowitz. This difference 

indicates that combining adaptive mutation and collective 

learning mechanisms improves solution quality, enabling the 

resulting portfolio to generate higher excess return per unit 

of risk. In addition, VaR and CVaR values for the proposed 

method were lower than those of baseline methods, 

indicating improved tail-risk control. Importantly, the 

proposed method increased returns while simultaneously 

reducing risk, rather than achieving higher returns merely by 

taking on higher risk. 

The evaluation of returns and risk for the optimal 

portfolio showed that the proposed framework was able to 

generate sustained growth while controlling path-dependent 

drawdowns. The portfolio’s annualized return was 0.325 and 

the final cumulative return was 0.418, indicating a 

meaningful increase in investment value during the test 

period. In contrast, the maximum drawdown was 0.109, 

which, given the nature of the market, can be considered 

controlled and indicates that the cumulative-return growth 

was not accompanied by deep losses. On the risk side, 

overall risk was reported as an annualized standard deviation 

of 0.238, while tail-risk indicators showed VaR(0.95) = 

0.021 and CVaR(0.95) = 0.0316. The annualized downside 

standard deviation of 0.171 further indicates that downside 

risk is more limited than total risk, consistent with a Sortino 

ratio of 1.61. Validation and stability tests indicated that the 

results are generalizable and do not collapse across 

subsamples or under turbulent conditions. In cross-

validation, the Sharpe ratio remained within 0.99 to 1.25, the 

Sortino ratio within 1.31 to 1.72, and CVaR fluctuated 

between 0.030 and 0.034, indicating performance stability. 

The Wilcoxon test further showed that improvements in key 

indicators are statistically significant; specifically, Sharpe 

yielded z = 2.51 and p = 0.012, and Sortino yielded z = 2.78 

and p = 0.005, leading to rejection of the null hypothesis. 

Under turbulent market conditions, the portfolio’s daily 

volatility increased from 0.0131 to 0.0218; however, the 

mean daily return net of transaction costs remained positive 

at 0.00072. 
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4. Discussion and Conclusion 

The results of this study demonstrate that integrating a 

memory-instance–based gated transformer for return 

forecasting with a hybrid metaheuristic optimization 

algorithm yields a coherent and empirically robust portfolio 

management framework. At the forecasting stage, the low 

MAE and RMSE obtained in the out-of-sample period 

indicate that the proposed deep learning architecture is 

capable of capturing both short-term market fluctuations and 

more persistent temporal patterns. This finding is consistent 

with recent evidence suggesting that attention-based 

architectures outperform traditional recurrent models in 

financial time-series prediction by selectively focusing on 

informative past observations rather than relying on fixed 

sequential memory (Han et al., 2024; L. Liu et al., 2024). 

The reduced gap between MAE and RMSE further suggests 

that the model effectively limits the influence of extreme 

forecast errors, which is particularly important in markets 

characterized by heavy-tailed return distributions and abrupt 

regime shifts. Similar improvements in robustness have been 

reported in studies employing hybrid or memory-augmented 

learning structures, where external memory components 

help preserve the influence of critical historical events 

during volatile periods (Ayari Salah, 2025; Burkart & Huber, 

2021). 

Beyond predictive accuracy, the results highlight the 

importance of translating forecasts into optimal portfolio 

weights under realistic constraints. The hybrid AMDE-PSO 

algorithm exhibited stable and controlled convergence, 

achieving a substantial reduction in the objective function 

while maintaining population diversity. This two-phase 

convergence behavior—rapid global exploration followed 

by gradual local refinement—aligns with theoretical and 

empirical findings in the metaheuristic literature, which 

emphasize that effective portfolio optimization requires a 

careful balance between exploration and exploitation (Ayari 

Salah, 2025; Hosseini et al., 2020). The observed 

improvement over standalone DE, PSO, GA, and the 

classical Markowitz approach confirms that combining 

adaptive mutation mechanisms with collective learning 

dynamics enhances search efficiency in high-dimensional, 

nonlinear weight spaces. Prior studies in active portfolio 

management similarly report that hybrid evolutionary 

algorithms outperform single-method approaches, 

particularly when transaction costs, liquidity constraints, and 

non-convex risk measures are incorporated (Montazeralhaj 

& Rezaei Shouraki, 2023; Rouhi Sara et al., 2023). 

The superior risk-adjusted performance of the optimized 

portfolio, as reflected in higher Sharpe and Sortino ratios, 

provides further insight into the effectiveness of the 

proposed framework. Achieving a Sharpe ratio above one 

while simultaneously reducing downside risk indicates that 

the model does not merely increase returns by accepting 

higher volatility, but rather improves the quality of return 

generation per unit of risk. This result is consistent with 

behavioral portfolio theory, which argues that investors are 

particularly sensitive to downside outcomes and that models 

explicitly controlling unfavorable volatility are more aligned 

with real decision-making behavior (Antony, 2019; Hadbaa, 

2019). The lower VaR and CVaR values obtained relative to 

benchmark methods also confirm that the hybrid approach 

improves tail-risk management, a finding that resonates with 

regulatory-oriented studies emphasizing the need for robust 

downside protection under stressed market conditions 

(Drenovak et al., 2020). In emerging markets, where return 

distributions are often asymmetric and correlations shift 

rapidly, such improvements in tail-risk control are especially 

valuable. 

The weight composition of the optimal portfolio further 

illustrates the practical relevance of the proposed method. 

The absence of extreme concentration, strict adherence to 

non-negativity and budget constraints, and selective 

exclusion of weak assets indicate that the algorithm produces 

implementable solutions compatible with real-world trading 

conditions. This layered allocation structure—where assets 

with stronger predictive signals receive higher but bounded 

weights while complementary assets contribute to 

diversification—supports findings from previous research 

showing that intelligent diversification can reduce co-

movement risk without diluting return potential (Bahramian, 

2022; Silvius & Marnewick, 2022). The results also align 

with evidence that portfolio frameworks integrating 

predictive signals with evolutionary optimization are better 

suited to dynamic markets than static variance-based 

allocations, particularly in environments influenced by 

behavioral factors and information asymmetry (Ghodrzi et 

al., 2024; Montazeralhaj & Rezaei Shouraki, 2023). 

Another important implication of the findings relates to 

stability and generalizability. Cross-validation results show 

that performance metrics remain within a relatively narrow 

range across subsamples, even during turbulent periods, 

suggesting that the proposed framework is not overfitted to 

a specific market regime. This robustness addresses a 

common limitation in machine-learning-based portfolio 

studies, where impressive in-sample results often deteriorate 
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sharply out of sample. The observed stability supports 

arguments in the literature that combining forecasting and 

optimization within an integrated pipeline—rather than 

treating them as independent tasks—enhances overall 

system resilience (Johnson & Moore, 2019; Liang et al., 

2018). Moreover, the statistical significance confirmed by 

the Wilcoxon test strengthens the claim that the observed 

improvements are not attributable to random variation but 

reflect systematic advantages of the hybrid design. 

From a broader perspective, the findings contribute to 

ongoing debates about the role of advanced analytics and 

digital technologies in modern financial systems. As 

financial markets become increasingly platform-based and 

algorithmically driven, portfolio management tools must 

adapt to faster information flows, higher volatility, and 

evolving regulatory expectations (Langley & Leyshon, 

2023). The explainable components of the proposed 

framework—such as attention weights and memory 

activations—also respond to growing concerns about 

transparency and accountability in AI-driven finance, 

echoing calls for interpretable models that can support both 

performance and governance objectives (Burkart & Huber, 

2021). In this sense, the study not only demonstrates 

technical effectiveness but also aligns with broader strategic 

and institutional considerations shaping contemporary 

portfolio management. 

Despite these contributions, several limitations should be 

acknowledged. First, the empirical analysis is based on a 

specific market context and asset universe, which may limit 

the direct transferability of results to other markets with 

different liquidity structures, regulatory regimes, or investor 

compositions. Second, although transaction costs were 

incorporated, other real-world frictions such as market 

impact, short-term liquidity shocks, and execution delays 

were not explicitly modeled. Third, while the hybrid 

framework improves robustness, extreme crisis scenarios 

beyond the observed sample may still pose challenges for 

both forecasting accuracy and optimization stability. 

Future research could extend this work in several 

directions. One avenue is to apply the proposed framework 

to multiple international markets and asset classes to assess 

its cross-market robustness and scalability. Another 

promising direction involves enriching the input feature 

space with alternative data sources, such as macroeconomic 

indicators, sentiment measures, or textual information, 

which may further enhance predictive power. Additionally, 

future studies could explore dynamic rebalancing strategies 

and online learning mechanisms to allow the model to adapt 

continuously as new data arrive, particularly under rapidly 

changing market conditions. 

From a practical standpoint, the findings suggest several 

implications for portfolio managers and financial 

institutions. Integrating advanced forecasting models with 

hybrid optimization algorithms can materially improve risk-

adjusted performance while maintaining implementable 

portfolios. Practitioners should consider adopting multi-

objective optimization frameworks that explicitly control 

downside risk rather than relying solely on variance-based 

measures. Moreover, embedding transparency and 

validation mechanisms into AI-driven portfolio systems can 

enhance trust and facilitate regulatory compliance. Overall, 

the proposed approach provides a viable blueprint for 

deploying intelligent, adaptive, and risk-aware portfolio 

management systems in volatile financial environments. 
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