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With the rapid expansion of interactive and multimedia applications on smartphones, 

real-time audio simulation has become one of the core components in user experience 

design. However, the inherent limitations of mobile platforms in terms of 

computational capacity, energy consumption, and strict real-time constraints have 

turned the design of stable and low-latency audio engines into a major technical 

challenge. The objective of the present study is to design and optimize an efficient 

architecture for a real-time audio simulation engine on mobile devices that can 

establish an appropriate balance between audio quality, real-time responsiveness, and 

resource consumption. This study was conducted using a design-oriented and 

experimental approach. First, a system-centered architecture based on the separation 

of real-time and non-real-time domains was developed. Subsequently, a set of 

optimization algorithms and techniques—including adaptive buffer management, 

voice capping and voice stealing policies, quality scaling, and conditional 

processing—were implemented. The proposed engine was developed on the Android 

platform using low-level audio APIs and evaluated through an interactive case study. 

The system’s performance was compared with that of a baseline implementation. The 

experimental results demonstrated that the proposed architecture significantly 

reduced latency and jitter while maintaining the real-time stability of the engine under 

high-load conditions. In addition, CPU usage and energy consumption were reduced 

in a controlled manner, and the degradation of audio quality was applied gradually 

and in a manner perceptually acceptable to users. Perceptual findings further 

indicated that users perceived controlled quality degradation as considerably more 

tolerable than audio instability or dropouts. The findings suggest that the design of 

real-time audio simulation engines on mobile platforms should be grounded in an 

architectural and adaptive approach. Emphasizing real-time pipeline management 

and intelligent control policies plays a more decisive role in achieving stable and 

efficient performance than increasing the complexity of digital signal processing 

(DSP) algorithms. 
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1. Introduction 

he contemporary digital ecosystem is increasingly 

shaped by immersive, interactive, and multimedia-rich 

applications, in which audio has emerged as a decisive factor 

in shaping user experience, engagement, and perceived 

realism. From mobile gaming and augmented reality (AR) to 

social media, virtual collaboration platforms, and the 

emerging audio metaverse, sound is no longer a secondary 

enhancement but a core functional component of system 

design (Collins, 2008; Jot et al., 2021; Sweet, 2014; Yang et 

al., 2022). Recent developments in human–computer 

interaction emphasize that users’ perception of system 

responsiveness, spatial presence, emotional engagement, 

and overall satisfaction are strongly mediated by the quality, 

stability, and real-time behavior of audio rendering pipelines 

(Fırat et al., 2022; Xue & Zheng, 2025; Yang et al., 2022). 

Consequently, the engineering of real-time audio systems 

has become a strategic concern for designers of mobile and 

interactive platforms. 

Mobile computing now dominates global digital 

interaction, yet mobile platforms impose severe constraints 

on computational resources, energy consumption, memory 

capacity, and timing determinism. These constraints directly 

challenge the feasibility of high-quality real-time audio 

simulation. The coexistence of heterogeneous hardware 

architectures, dynamic operating system scheduling, 

aggressive power management policies, and competing 

application workloads introduces nontrivial sources of 

latency, jitter, and instability in audio pipelines 

(Jahangashteh et al., 2022; Ota et al., 2017; Zhao et al., 

2022). While desktop-class systems can often tolerate 

inefficient designs through brute-force computing power, 

mobile systems demand carefully engineered architectures 

that explicitly balance performance, resource efficiency, and 

real-time reliability. 

At the same time, the functional role of audio has 

expanded dramatically. Modern applications increasingly 

rely on complex audio behaviors such as spatial sound 

rendering, adaptive soundscapes, interactive music systems, 

and procedural audio synthesis. These behaviors require 

continuous parameter modulation, low-latency response to 

user input, and seamless integration of multiple concurrent 

sound sources (Farnell, 2010; Lazzarini et al., 2016; Pulkki 

& Karjalainen, 2015). The growth of audio augmented 

reality and spatial audio for immersive environments further 

intensifies the computational burden placed on mobile audio 

engines (Fırat et al., 2022; Jot et al., 2021; Yang et al., 2022). 

These trends have elevated the design of real-time audio 

engines from a purely technical problem to a strategic design 

challenge that directly affects product success and user 

adoption. 

Concurrently, advances in machine learning and large-

scale audio modeling have begun to influence audio 

processing pipelines. Deep learning has enabled powerful 

new capabilities such as content-aware sound synthesis, 

intelligent noise suppression, adaptive sound classification, 

and perceptual optimization (Deng, 2019; Latif et al., 2023; 

Zhao et al., 2022). However, deploying such techniques on 

mobile devices introduces new constraints, as the 

computational and energy costs of deep neural models must 

be carefully managed in real time (Ota et al., 2017; Zhao et 

al., 2022). The integration of intelligent audio processing 

therefore magnifies the importance of architectural 

efficiency, adaptive resource management, and stable real-

time execution. 

Despite the central importance of audio, many mobile 

applications still rely on simplistic audio frameworks that 

were not designed for heavy interactive workloads. 

Traditional mobile audio APIs provide basic playback and 

mixing services but often lack advanced scheduling control, 

fine-grained resource management, and robust mechanisms 

for ensuring deterministic timing under load (Jahangashteh 

et al., 2022; Schobel et al., 2016). As application complexity 

grows, these limitations become increasingly visible to users 

through audible artifacts such as dropouts, clicks, 

inconsistent spatialization, delayed feedback, and unstable 

audio scenes. Empirical studies in interactive media 

demonstrate that such artifacts significantly degrade 

perceived quality and user engagement, even when visual 

performance remains high (Collins, 2008; Fırat et al., 2022; 

Sweet, 2014). 

The management implications of these technical 

challenges are substantial. For firms operating in 

competitive digital markets, the quality and reliability of 

interactive audio systems directly influence customer 

retention, brand perception, and market differentiation. 

Audio failures in games, AR applications, or collaborative 

platforms can erode trust and reduce user adoption, while 

stable and immersive sound design can enhance perceived 

innovation and product value (Khan, 2024; Xue & Zheng, 

2025). Consequently, the design of real-time audio engines 

T 
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is no longer confined to engineering departments but has 

become a strategic asset that shapes product competitiveness 

and organizational performance. 

From a system design perspective, the core difficulty lies 

in maintaining strict real-time constraints while 

simultaneously executing complex audio processing, 

resource management, and application logic on limited 

mobile hardware. Real-time audio threads must complete 

their computations within hard deadlines imposed by buffer 

scheduling; failure to do so results in underruns and audible 

dropouts. Meanwhile, non-real-time application 

components—such as user interfaces, networking, file I/O, 

and analytics—compete for the same underlying resources, 

creating unpredictable execution patterns (Jahangashteh et 

al., 2022; Schobel et al., 2016). The absence of robust 

architectural separation between these domains remains a 

fundamental weakness of many existing systems. 

Prior research in audio engineering, computer music, and 

multimedia systems has established numerous foundational 

principles for real-time sound synthesis, signal processing, 

and spatial audio rendering (Farnell, 2010; Lazzarini et al., 

2016; Pulkki & Karjalainen, 2015). However, much of this 

literature was developed in contexts where computational 

resources were relatively abundant or where systems 

operated under controlled laboratory conditions. The 

translation of these principles into mobile environments—

characterized by energy constraints, heterogeneous 

hardware, and unpredictable operating system behavior—

requires significant architectural adaptation (Ota et al., 2017; 

Zhao et al., 2022). 

Recent surveys of mobile multimedia and deep learning 

on mobile devices highlight that efficient system-level 

optimization, rather than raw algorithmic sophistication, 

often determines practical success (Deng, 2019; Ota et al., 

2017; Zhao et al., 2022). This observation aligns with 

emerging work on lightweight mobile process engines and 

adaptive system architectures, which emphasizes the 

importance of minimizing critical execution paths, isolating 

time-sensitive workloads, and applying dynamic quality 

control to preserve responsiveness under fluctuating 

resource conditions (Schobel et al., 2016; Xue & Zheng, 

2025). In the audio domain, this suggests that architectural 

design and resource governance may play a more decisive 

role in achieving stable performance than incremental 

improvements in signal processing algorithms alone. 

Moreover, the evolution of immersive media 

ecosystems—particularly AR, VR, and the audio 

metaverse—has introduced new requirements for 

interoperability, spatial coherence, and perceptual 

consistency across devices and platforms (Fırat et al., 2022; 

Jot et al., 2021; Yang et al., 2022). These requirements 

further complicate mobile audio engine design by 

demanding scalability, adaptability, and cross-platform 

compatibility, all within the strict confines of mobile 

hardware constraints. 

Despite these developments, the literature reveals a 

notable gap: while substantial research addresses individual 

components of audio processing, spatialization, or mobile 

optimization, comparatively little work has proposed 

integrated architectural frameworks that holistically address 

latency, jitter, resource efficiency, and perceptual quality in 

real-time mobile audio engines. Existing studies often focus 

either on high-level interaction design (Collins, 2008; Sweet, 

2014), low-level signal processing (Farnell, 2010; Pulkki & 

Karjalainen, 2015), or mobile system optimization (Ota et 

al., 2017; Zhao et al., 2022), without unifying these 

perspectives into a coherent real-time engine architecture. 

In addition, as audio content becomes increasingly 

procedural, adaptive, and data-driven, the complexity of 

real-time control systems grows accordingly. Advanced 

audio behaviors now depend on dynamic parameter 

scheduling, real-time event handling, and continuous 

environmental feedback, all of which impose new 

constraints on engine stability and performance (Jot et al., 

2021; Latif et al., 2023; Yang et al., 2022). Without 

systematic architectural support, these features risk 

overwhelming mobile platforms and undermining user 

experience. 

From a managerial viewpoint, the lack of robust 

architectural solutions introduces operational risks. 

Development teams may resort to ad hoc optimizations that 

yield short-term improvements but lack scalability and 

maintainability. Such approaches increase technical debt, 

prolong development cycles, and complicate future product 

evolution. In contrast, well-designed audio engine 

architectures can serve as reusable organizational assets, 

reducing development cost, accelerating innovation, and 

supporting long-term product strategies (Khan, 2024; Xue & 

Zheng, 2025). 

Taken together, these considerations underscore the 

urgent need for systematic, architecture-driven approaches 

to the design of real-time audio simulation engines for 

mobile platforms. Such approaches must explicitly address 

latency and jitter control, adaptive resource management, 

scalability under dynamic workloads, and preservation of 

perceptual quality, while remaining compatible with the 

https://journals.kmanpub.com/index.php/jppr/index
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practical constraints of mobile hardware and operating 

systems (Ota et al., 2017; Schobel et al., 2016; Xue & Zheng, 

2025; Zhao et al., 2022). 

Accordingly, this study is situated at the intersection of 

interactive media engineering, mobile computing, and 

management-oriented system design. By integrating insights 

from audio engineering, multimedia systems, and mobile 

optimization research, it seeks to contribute both technically 

and strategically to the development of more reliable and 

efficient mobile audio infrastructures (Farnell, 2010; Khan, 

2024; Lazzarini et al., 2016; Pulkki & Karjalainen, 2015; 

Zhao et al., 2022). 

The aim of this study is to design and empirically evaluate 

an adaptive, architecture-driven real-time audio simulation 

engine for mobile platforms that minimizes latency and jitter 

while optimizing resource consumption and preserving 

perceptual audio quality under dynamic workload 

conditions. 

2. Methods and Materials 

Design of the Audio Simulation Engine Architecture 

The proposed architecture for a real-time audio 

simulation engine on mobile devices is presented; an 

architecture whose objective is to reduce latency and jitter, 

ensure output stability, and optimize CPU, memory, and 

energy consumption under real-world operating conditions. 

The central design concept is the construction of a short, 

predictable, and low-overhead processing path that is 

decoupled from application logic and executed within an 

independent audio loop. The primary objectives include real-

time responsiveness, temporal stability, lightweight 

operation, and controlled scalability. 

Mobile Platform Constraints 

Mobile platforms impose strict constraints, including 

limited CPU and GPU resources, operating system energy 

management policies, thread scheduling restrictions, and 

substantial heterogeneity in hardware and audio APIs. The 

architecture is therefore designed as a layered pipeline 

comprising two distinct execution domains: 

Audio Thread 

A real-time loop responsible exclusively for time-critical 

operations: 

Mixing → DSP → Output Buffer 

Control Thread 

Handles resource loading, audio scene management, 

analytics, input/output operations, networking, and user 

interface processing. This separation ensures that 

application-level interruptions and heavy workloads exert 

minimal influence on audio output stability. 

Core System Modules 

Audio I/O Backend 

Interface with the operating system’s audio output. 

Android: AAudio (preferred) or OpenSL ES 

iOS: Core Audio / Audio Units 

Its function is to respond to output buffer fill requests and 

provide PCM frames. 

Audio Graph / Routing 

The engine is conceptually modeled as an audio graph: 

Nodes: Source, Mixer, Effect, Spatializer, Output 

Edges: Signal paths 

This model enables structured composition of sources and 

effects without introducing complexity into the real-time 

loop. 

Audio Resource Management 

Management of concurrent channels and implementation 

of voice stealing policies. Prioritization is enforced (e.g., 

UI/interaction sounds supersede ambience), low-importance 

sources are attenuated or terminated under CPU pressure, 

and computational overload in dense scenes is prevented. 

Event and Parameter System 

Application events are transformed into audio commands 

(Play/Stop, parameter changes). Commands are transmitted 

to the Audio Thread using lock-free or minimally locked 

structures to minimize blocking latency. 

DSP Engine 

Signal processing chain: 

Resampling 

Filtering / Equalization 

Dynamics / Compression 

Lightweight or convolution-based reverb 

Spatialization (Stereo Panning / HRTF) 

The DSP design is block-oriented and dynamically 

enabled or disabled in response to system load. 

Buffer Manager 

Manages input/output buffers and prevents underruns: 

Double/Triple buffering 

Ring buffers for inter-thread data exchange 

This module is essential for latency control while 

preserving system stability. 

Resource and Streaming Manager (Non-Real-Time) 

Handles file loading, decoding (AAC/Opus/MP3), 

caching, and streaming. The output is delivered as 

preprocessed buffers to the Audio Thread. 

Data and Control Flow 

https://journals.kmanpub.com/index.php/jppr/index
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Control flow: The application generates an event (e.g., 

“collision sound”) → the event is placed in the Event Queue 

→ the Audio Thread retrieves the queue at the start of each 

callback and updates state without heavy processing. 

Data flow: Voices generate or read samples → signals are 

summed in the Mixer → DSP is applied → the output buffer 

is filled and delivered to the Backend. 

Concurrency and Threading Design 

Minimum recommended configuration: one real-time 

thread, one control thread, and one optional auxiliary thread. 

Core Principles 

No memory allocation within callbacks, no file/network 

I/O, no heavy locks or long mutex operations, and strictly 

predictable execution time. Ring buffers are employed for 

continuous data streams, and lock-free or ultra-lightweight 

queues are used for control messages. 

Key Design Decisions for Latency and Jitter 

Reduction 

Critical path minimization: All non-essential operations 

are removed from the Audio Thread. 

Adaptive buffer sizing: Under CPU pressure, the buffer is 

moderately increased to avoid underruns; under stable 

conditions, it is reduced to minimize latency. 

Adaptive quality control: Computationally intensive 

effects are disabled or degraded when system load rises. 

Precomputation and caching: Wavetables, filter 

coefficients, routing paths, and lookup tables are prepared in 

advance. 

Voice capping and stealing: Upper bounds are imposed 

on concurrent voices, with intelligent removal policies. 

To ensure implementability and testability, the engine’s 

internal API is recommended to expose the following 

interfaces: 

Engine.init 

Engine.submitEvent 

Engine.setParam 

Engine.render 

Engine.setQualityMode 

Architectural Validity Criteria 

The architecture is considered successful if callbacks 

consistently complete before their deadlines, jitter remains 

low and stable, performance degradation is gradual and 

controlled as voice count increases, and perceptual audio 

quality in real-world scenarios is preserved or degrades in a 

“justifiable and manageable” manner. The proposed 

architecture is founded on a single critical principle: strict 

separation of the real-time domain from the control and non-

real-time domain. Any operation that is potentially time-

consuming, unpredictable, or I/O-dependent is excluded 

from the audio execution path to minimize latency and jitter 

and guarantee system stability. 

Primary Execution Domains 

A) Audio Thread 

This thread is invoked by the operating system (via 

callback or pull model) to fill the output buffer and executes 

only time-critical tasks: ingestion of lightweight control 

messages, generation or reading of active voice samples, 

multichannel mixing, lightweight and configurable DSP 

(EQ, filtering, spatialization, reverb), output buffer 

population, and delivery to the Audio Backend. 

Strict Constraints: no memory allocation, no I/O, no 

heavy locking, no unpredictable operations. 

B) Control / Application Thread (Non-Real-Time) 

All operations that may induce blocking or timing 

variability are handled here: application and game logic, user 

interface processing, file loading, effect and parameter 

preparation, high-level decision making, logging, and 

system monitoring. 

Core System Blocks 

Operating system audio API bridge (AAudio/OpenSL ES 

on Android, Core Audio on iOS) responsible for buffer 

exchange and preservation of sample rate and format 

integrity. 

The real-time core consists of: 

Real-Time Engine Core 

Event / Command Ingest 

Voice Manager 

Mixer 

DSP Chain 

Buffer Manager 

Command Queue 

A lightweight, preferably lock-free, command 

transmission path is established from the Control Thread to 

the Audio Thread for: 

Play/Stop 

SetParameter (gain, pitch, position, filter) 

ChangeScene / Route 

Resource and Streaming Subsystem (Non-Real-Time) 

Handles loading, decoding, caching, and streaming of 

audio assets; outputs “consumption-ready buffers” for 

Voices. 

Profiler and Monitor (Non-Real-Time) 

Collects metrics including CPU load, underrun count, 

callback execution time, jitter, estimated latency, and 

adaptive quality decisions. 

Overall Data and Control Flow 

https://journals.kmanpub.com/index.php/jppr/index
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Control flow: Application generates an event → event is 

converted into an audio command → command enters the 

Command Queue → Audio Thread retrieves the command 

at callback start and updates state. 

Data flow: Voices generate or read samples → Mixer 

combines output → DSP applies processing → Buffer 

Manager manages the buffer → Audio Backend transmits 

the buffer to hardware. 

Conceptual Architecture Representation 

Non-Real-Time Domain 

App/UI/Game Logic 

Resource Loader / Decoder / Streamer 

Profiler and Quality Controller 

↓ (Commands / Parameters) 

Command Queue (RT-Safe) 

↓ 

Real-Time Domain 

Event Ingest 

Voice Manager 

Mixer 

DSP Chain 

Buffer Manager 

↓ 

Audio Backend (AAudio / Core Audio) 

↓ 

Speaker / Headphones 

Stability and Optimization Logic in the Overall 

Architecture 

Real-time loop remains short and predictable: only 

essential processing occurs within callbacks. 

Quality scaling: if CPU load increases, heavy effects are 

degraded or disabled to prevent underruns. 

Voice capping and stealing: concurrent voices are capped 

and low-priority sources are removed. 

Adaptive buffering: buffer size is adjusted within 

permissible limits to balance latency and stability. 

Resource pre-decoding and preparation outside the real-

time domain to prevent jitter. 

Optimization Algorithms and Methods 

This section presents a set of implementable methods for 

optimizing the audio engine that directly affect latency, 

jitter, output stability, and CPU/memory/energy 

consumption. The overarching approach is to tightly control 

the “critical path” (Audio Thread) and migrate any non-

deterministic or heavy operations to the non-real-time 

domain. 

Latency Reduction at the Architectural and Buffer 

Levels 

Real-time performance optimization in audio processing 

engines requires coordinated decisions at the architecture, 

scheduling, and resource-management levels, with a core 

emphasis on reducing delay and controlling temporal 

variability. One of the most fundamental elements in this 

pathway is buffer-size optimization because buffer latency 

is directly proportional to buffer size. Specifically, if the 

sampling rate is 𝑓𝑠and the buffer size is 𝑁, the buffer-induced 

delay is approximately Latency
𝑏𝑢𝑓𝑓𝑒𝑟

≈ 𝑁/𝑓𝑠. Accordingly, 

the optimal strategy is to select the smallest stable buffer size 

and then, through continuous monitoring of underrun events, 

dynamically apply a bounded increase in buffer size under 

computational pressure—an approach commonly referred to 

as adaptive buffering. 

Alongside buffer management, shortening the audio 

output path is of particular importance. In practice, 

unnecessary format conversions—such as repeated float-to-

int and int-to-float casts—should be avoided within the 

Audio Thread. Likewise, resampling should be eliminated 

from the real-time path; if resampling is unavoidable, only 

lightweight, low-cost, preconfigured resamplers should be 

used to prevent unpredictable computational load. 

From the perspective of perceived audio quality, smooth 

parameter scheduling is critical. Changes to gain, pitch, or 

filter parameters should not be applied abruptly; instead, 

linear or exponential ramps should be applied over multiple 

consecutive frames to prevent clicks and artifacts. 

Jitter control and real-time stability also require RT-safe 

design, meaning that no non-deterministic operations occur 

within the Audio Thread. Concretely, the use of malloc/new, 

file or network I/O, heavy logging, complex string 

operations (e.g., regex processing or string formatting), and 

long-held mutex locks should be strictly prohibited. In 

contrast, only constant-time computations, direct array 

accesses, and lock-free queue structures should be permitted. 

Consistent with this design logic, using a lock-free or 

minimally locked message queue for communication 

between the Control Thread and the Audio Thread is 

recommended. Commands such as Play, Stop, and SetParam 

should be generated on the Control Thread, while the Audio 

Thread should consume them in batches at the beginning of 

each callback. 

In addition, file decoding and network streaming should 

be delegated to separate threads, and decoded output should 

be prepared as PCM chunks in a ring buffer, such that the 

Audio Thread is responsible solely for reading ready-to-

consume data. 

https://journals.kmanpub.com/index.php/jppr/index
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Finally, configuring the scheduling policy and priority of 

the audio thread—within the constraints imposed by the 

operating system—is highly consequential. A reasonable 

elevation of Audio Thread priority can reduce preemption 

and callback execution variability, thereby materially 

improving real-time stability and perceived audio quality. 

Algorithm-Level DSP Optimization 

Algorithm-level optimization of digital signal processing 

(DSP) is among the most effective strategies for achieving 

stable, low-latency performance in audio engines, 

particularly on mobile platforms where compute and energy 

constraints make algorithm design a critical challenge. In 

this context, block-based processing (as opposed to sample-

by-sample processing) plays a central role in reducing 

computational overhead. Applying effects to blocks of audio 

frames improves memory locality and significantly reduces 

the overhead of repeated function calls. 

Consistent with this approach, designing simple loops, 

using small and inline functions, and avoiding complex 

conditional and heavily branched execution paths can make 

execution time more predictable and reduce jitter on the 

Audio Thread. 

Effect selection should also be guided by a mobile-first, 

lightweight mindset. For example, while full convolution 

reverb with long impulse responses can be perceptually 

superior, it is computationally expensive and typically 

unsuitable for most mobile use cases. Instead, lightweight 

structures such as Schroeder reverberators or feedback delay 

networks (FDNs) with a limited number of taps can offer a 

practical balance between quality and efficiency. 

Similarly, in spatialization, many mobile scenarios are 

adequately served by simple stereo panning combined with 

distance attenuation. Full head-related transfer function 

(HRTF) processing should be restricted to high-quality 

modes or specific conditions to avoid unnecessary 

computational cost. 

A subtle but operationally important challenge in 

floating-point DSP is the presence of denormal numbers—

very small floating-point values that can cause severe CPU 

slowdowns. This issue commonly appears in filters and 

reverb tails and, if unaddressed, can compromise real-time 

stability. Common mitigation techniques include adding a 

very small, controlled noise floor to the signal or enabling 

flush-to-zero (FTZ) and denormals-are-zero (DAZ) modes 

on platforms and processors that support these features. 

Finally, intelligent use of precomputation and lookup 

tables (LUTs) is among the most effective techniques for 

reducing real-time computational load. Expensive functions 

such as sine/cosine for LFOs, envelope curves, and constant 

filter coefficients should be precomputed and stored in tables 

rather than repeatedly evaluated within the Audio Thread. 

By removing repetitive high-cost operations from the real-

time path, this approach improves throughput, enhances 

temporal stability, and supports overall DSP engine quality. 

Low-Level Computational Optimization 

Low-level computational optimization is a critical layer 

in real-time audio engine design that directly affects 

performance, energy usage, and temporal stability, 

particularly on mobile hardware. One of the most effective 

tools at this level is exploiting SIMD capabilities—

especially NEON on ARM architectures and Android 

devices. SIMD enables parallel execution of repeated, 

independent operations such as signal mixing, gain 

application, short FIR filtering, and other vector 

computations across multiple audio samples simultaneously. 

The greatest benefit is achieved in tight loops that process 

contiguous arrays of PCM samples, where parallelism can 

significantly reduce CPU cycles and increase execution-time 

predictability. However, effective SIMD usage requires 

careful data layout and appropriate memory alignment to 

avoid unintended overhead. 

In addition to floating-point computation, selective use of 

fixed-point arithmetic in specific components can be an 

effective strategy for reducing CPU load, especially on 

lower-end devices or in effects with constrained dynamic 

range and simpler computational patterns. Although fixed-

point can offer speed and energy advantages compared with 

float, it introduces nontrivial trade-offs: algorithm design, 

scaling, and calibration become more complex, and the risks 

of reduced numerical precision and clipping increase. 

Therefore, fixed-point should be used selectively and only 

after a careful analysis of hardware constraints and quality 

requirements. 

At the level of data architecture and control flow, 

reducing branching and cache misses plays a decisive role in 

real-time performance. Excessive conditional branching can 

degrade branch prediction and introduce variability in 

callback execution time; thus, branchless designs or minimal 

conditional logic—particularly in the real-time path—are 

recommended. 

Memory layout is equally important. Storing voice data 

and mixing parameters in cache-friendly structures can 

increase cache hit rates. In this context, adopting a structure-

of-arrays (SoA) pattern rather than an array-of-structures 

(AoS) is often more efficient for mixing loops because it 

https://journals.kmanpub.com/index.php/jppr/index
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facilitates sequential access to homogeneous arrays and 

reduces unnecessary data loads. 

Finally, heavy polymorphism, virtual functions, and 

dynamic dispatch should be avoided in the real-time path 

because they increase branching and reduce execution-time 

predictability, which is inconsistent with the strict 

constraints of real-time audio processing. 

Optimization of Audio Resource Management 

Managing concurrent voices and computational resources 

in real-time audio engines becomes determinative when the 

number of audio events exceeds hardware capacity. Voice 

control strategies can therefore distinguish between stable 

output and a user experience dominated by underruns and 

quality degradation. 

As a foundational policy, voice capping limits the 

maximum number of simultaneous voices based on device 

capability (e.g., 16, 24, or 32) to prevent saturation. 

However, because real-world demand may exceed this cap, 

the system must apply intelligent eviction strategies. 

Priority- and perceptually informed voice stealing is 

crucial in this context. Lower-priority sounds are sacrificed 

before critical UI or high-salience effects (e.g., UI > SFX > 

ambience). Current signal amplitude is also a practical 

criterion: quieter voices are removed first to minimize 

perceptual disruption. Distance from the listener is another 

scene-based perceptual metric; more distant sources are 

typically removed at lower perceptual cost. Many systems 

additionally consider “time remaining to completion,” as 

retaining a nearly finished sound can prevent abrupt and 

artificial cutoffs. 

Beyond removal, virtualization is a more nuanced 

strategy for distant or low-importance sources. Instead of 

executing the full DSP chain, the engine updates only the 

logical state while keeping the actual output at or near zero. 

This preserves scene coherence (e.g., enabling natural re-

entry when the listener approaches) while minimizing 

processing cost. 

In parallel, memory optimization and eliminating 

allocations in the real-time path are essential. Using memory 

pools or object pools for entities such as voices, events, and 

buffers removes dynamic allocation from the Audio Thread 

and improves temporal predictability. 

Zero-copy buffering is also valuable: by reducing multi-

stage copying, it lowers CPU overhead and memory 

bandwidth pressure. The ideal data path is that decoded 

audio is written directly into a ring buffer and then 

transferred to the output buffer during render/mix without 

additional intermediate copies. 

From an energy perspective, energy-aware audio design 

enables the engine to scale quality dynamically based on 

processor load and battery conditions. Defining 

Low/Medium/High modes and using triggers such as CPU 

load, underrun rate, device temperature, and battery state 

supports dynamic decision-making. Practically, the engine 

can disable reverb, reduce oversampling, simplify 

spatialization, or even lower the voice cap to prevent thermal 

throttling and rapid battery drain. 

Conditional processing is also highly effective. If the 

output is silent or near-silent, parts of the DSP chain can be 

bypassed; if no voices are active, the engine can enter a sleep 

state to avoid wasting compute cycles and energy. 

To ensure these decisions are genuinely “intelligent,” a 

lightweight feedback loop should run in the non-real-time 

domain to monitor indicators such as callback time (mean 

and 95th percentile), underrun count, CPU usage, latency 

estimates, and active voice count. Based on these signals, the 

system can adaptively apply actions such as changing the 

quality mode, bounded buffer-size adjustment, decreasing or 

increasing the voice cap, and enabling or disabling effects. 

3. Findings and Results 

Study Model Design 

To empirically assess the proposed architecture, a case 

study with characteristics closely aligned with real-world 

applications was designed to systematically evaluate the 

behavior of the real-time audio simulation engine under 

dynamic and high-load conditions. The selected scenario is 

an interactive audio scene similar to a game or augmented 

reality (AR) environment, in which the user generates 

frequent audio events by tapping the screen or through 

collisions among virtual objects. Each event triggers a short 

sound effect (SFX) with variable parameters, such that 

loudness is a function of collision speed or impact intensity, 

pitch depends on distance or object type, and panning 

depends on the horizontal position of the audio source. 

Concurrently, a background ambience layer and a 

lightweight looped music track are played to approximate a 

realistic application workload. The number of events is 

increased in a controlled manner to evaluate the engine 

across multiple load levels. Accordingly, three test profiles 

were defined: in the low-load condition, with 4–8 

simultaneous voices and minimal DSP, the engine is 

expected to operate with negligible latency and temporal 

variability; in the medium-load condition, with 16–24 

simultaneous voices and active filtering and panning, 

https://journals.kmanpub.com/index.php/jppr/index
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stability and resource consumption are examined more 

rigorously; and in the high-load condition, with more than 

32 simultaneous voices and lightweight reverb and 

simplified spatialization enabled, adaptive mechanisms such 

as voice stealing and quality scaling are expected to engage. 

For precise evaluation, a set of real-time metrics—including 

callback execution time (mean and 95th percentile), 

underrun count, and jitter—were recorded as primary 

indicators of real-time success or failure. In parallel, 

resource metrics such as average and peak CPU utilization, 

memory footprint attributable to pools and buffers, and—

where feasible—energy indicators or battery discharge rate 

were monitored. The perceptual quality dimension was also 

considered through listening checks to identify clicks, 

dropouts, or distortion, and to evaluate whether quality 

reductions during scaling occurred gradually. Finally, to 

ensure the case study was not merely demonstrative, a 

pressure-response control policy was defined. As callback 

time approached a risk threshold or an underrun occurred, 

the system first reduced effect quality or disabled reverb, 

then lowered the voice cap, activated priority- and 

amplitude-based voice stealing, and—if pressure 

persisted—applied a bounded increase to framesPerBuffer 

within allowable limits. This policy illustrates how the 

engine establishes a deliberate and managed trade-off 

between latency and stability. 

Applied Scenario 

In this scenario, the user generates multiple audio events 

via screen taps or collisions among virtual objects. Each 

event triggers a short sound effect (SFX) with dynamic 

parameters, such that loudness depends on collision speed, 

pitch depends on distance or object type, and panning 

depends on the horizontal position of the audio source. 

Simultaneously, a background ambience layer and a 

lightweight looped music track are played to establish a 

stable workload consistent with realistic conditions. Event 

frequency is controllable to examine engine behavior under 

different levels of pressure. Three load profiles were 

defined: in the low-load condition, with 4–8 simultaneous 

voices and minimal DSP, the engine is expected to exhibit 

minimal latency and temporal variability; in the medium-

load condition, with 16–24 simultaneous voices and filtering 

and panning enabled, stability and resource usage are 

evaluated more stringently; and in the high-load condition, 

with more than 32 simultaneous voices and lightweight 

reverb and simplified spatialization enabled, adaptive 

mechanisms such as voice stealing and quality scaling are 

expected to activate. The evaluation is based on three classes 

of metrics: real-time metrics (callback execution time—

mean and 95th percentile—underrun count, and jitter), 

resource metrics (CPU consumption, memory footprint, and 

energy indicators), and perceptual metrics assessing 

listening quality, the presence of clicks or dropouts, and the 

manner in which quality degrades during scaling. To prevent 

abrupt real-time failure, a pressure-response policy is 

triggered when callback time approaches a risk threshold or 

when an underrun occurs. This policy sequentially includes 

reducing or bypassing reverb, lowering the voice cap, 

activating voice stealing based on priority and signal 

amplitude, and—if pressure persists—applying a bounded 

increase in buffer size. This control logic demonstrates that 

the engine manages the latency–stability trade-off 

deliberately rather than incidentally. 

Implementation 

Android was selected as the primary implementation 

platform because its hardware diversity and well-known 

latency and jitter challenges make it an appropriate 

environment for evaluating real-time architectures. The 

engine’s audio output was implemented using AAudio, with 

a compatibility path to OpenSL ES enabled on devices 

where AAudio is unavailable. A target sampling rate of 48 

kHz was adopted, with planned compatibility for 44.1 kHz. 

The real-time core and DSP components were developed in 

C/C++ to ensure strict control over execution time and 

memory behavior, while the application layer was 

implemented in Kotlin/Java, using a build system based on 

CMake and the Android NDK. 

The real-time core operates within a callback loop that 

performs only time-sensitive operations. At the start of each 

callback, control messages are consumed in batches from a 

real-time-safe queue. Next, each voice state—including 

activation status, envelope, and spatial parameters—is 

updated; samples are generated or read; multi-source mixing 

is performed; and a minimal DSP chain is applied. Finally, 

the output data are written into the output buffer and 

delivered to the backend. No dynamic memory allocation, 

I/O operations, or heavy locks are used in this section to 

preserve execution-time predictability. 

The Control layer executes on a non-real-time thread and 

is responsible for receiving application events, translating 

them into audio commands (e.g., Play/Stop), and applying 

adaptive policies such as quality scaling and voice capping. 

Audio file loading, decoding, and streaming are handled in 

the Resource/Streaming layer, and their outputs are placed 

as ready-to-consume PCM chunks in a ring buffer, ensuring 

that the Audio Thread functions purely as a data consumer. 

https://journals.kmanpub.com/index.php/jppr/index
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To ensure stability, a lightweight monitoring loop in the 

non-real-time domain tracks indicators such as callback 

time, underrun count, and CPU consumption, and applies 

decisions such as reducing effect quality, adjusting the voice 

cap, or making bounded buffer-size changes. This 

implemented approach indicates that the proposed 

architecture can maintain a managed balance among latency, 

stability, and resource consumption in real executions. 

Evaluation and Experimental Results 

Experiments were conducted on multiple Android 

devices with different hardware tiers, including mid-range 

and high-end devices, to assess engine behavior across 

heterogeneous conditions. The system sampling rate was set 

to 48 kHz, and the initial buffer size was configured at 256 

frames. Each experiment ran for at least 120 seconds to 

enable evaluation of temporal stability over extended 

intervals. For a fair comparison, two reference 

configurations were defined: (1) a baseline implementation 

consisting of a simple audio engine with no adaptive 

policies, fixed DSP, and no voice stealing mechanisms; and 

(2) the proposed implementation incorporating all 

architectural components described above, including 

adaptive buffering, voice capping and stealing, 

virtualization, and quality scaling. 

The evaluation used four classes of metrics. Timing 

metrics included end-to-end latency, audio callback 

execution time (mean and 95th percentile), and jitter as the 

measure of temporal variability. Stability metrics included 

underrun counts and perceptually detectable dropout events. 

Resource metrics included average and peak CPU usage, 

memory footprint, and energy indicators or battery discharge 

rate (where supported by the operating system). Finally, 

perceptual metrics were assessed via listening evaluations to 

detect clicks, noise, rhythmic instability, and quality 

degradation under load. 

The timing results indicated that, in the proposed 

implementation, effective system latency decreased 

substantially. Under low-load scenarios, latency remained 

within a range that was effectively imperceptible to users, 

whereas the baseline implementation exhibited a gradual and 

noticeable latency increase as the number of simultaneous 

voices grew. Callback execution-time analysis further 

showed that the optimized configuration not only reduced 

mean callback time but also reduced temporal dispersion. In 

particular, the 95th percentile of callback time remained at a 

safer margin from the buffer deadline, indicating higher 

predictability and a lower risk of real-time failure. 

In the assessment of real-time stability and load 

management, the difference between the two approaches 

became explicit. Under high-load conditions—more than 32 

simultaneous voices with effects enabled—the baseline 

implementation experienced multiple underruns, manifested 

as perceptible audio dropouts. In contrast, the proposed 

architecture prevented sustained underruns by activating 

voice stealing in a timely manner and gradually reducing 

effect quality. These results indicate that the adaptive 

approach can manage the trade-off between audio quality 

and real-time stability in a controlled and predictable 

manner, rather than allowing abrupt system failure. 

4. Discussion and Conclusion 

The present study examined the effectiveness of an 

adaptive, architecture-driven real-time audio simulation 

engine on mobile platforms with respect to latency, jitter, 

system stability, resource consumption, and perceptual 

audio quality. The empirical findings demonstrate that the 

proposed architecture substantially improves real-time 

performance compared with a baseline mobile audio engine 

lacking adaptive mechanisms. Specifically, the optimized 

engine achieved significantly lower end-to-end latency, 

reduced temporal variability in callback execution, near-

elimination of sustained underruns under high load, and a 

controlled, perceptually acceptable degradation of audio 

quality when system pressure increased. These outcomes 

validate the central premise of this research: that 

architectural design and adaptive control strategies are 

decisive factors in achieving reliable and efficient real-time 

audio processing on constrained mobile hardware. 

One of the most prominent findings was the marked 

reduction in effective latency and jitter in the optimized 

implementation. The lower mean callback execution time 

and the narrower dispersion of callback timing—particularly 

the improved 95th percentile margin relative to buffer 

deadlines—indicate a substantial increase in execution-time 

predictability. This aligns with prior research emphasizing 

that minimizing the critical execution path and isolating 

time-sensitive workloads are essential for stable mobile 

multimedia performance (Schobel et al., 2016; Xue & 

Zheng, 2025). The present results extend this principle 

specifically to interactive audio systems, demonstrating that 

architectural separation between real-time and non-real-time 

domains materially improves timing determinism in 

practice. These findings are also consistent with broader 

mobile optimization studies that identify system-level 

https://journals.kmanpub.com/index.php/jppr/index
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design as a stronger determinant of real-time behavior than 

isolated algorithmic improvements (Ota et al., 2017; Zhao et 

al., 2022). 

The observed improvements in real-time stability, 

particularly under high-load conditions, further reinforce the 

value of adaptive resource management. Whereas the 

baseline engine experienced repeated underruns and audible 

dropouts when the number of concurrent voices exceeded 

32, the proposed engine maintained stable output through 

timely activation of voice stealing, gradual effect quality 

reduction, and bounded buffer-size adjustments. This 

behavior reflects the adaptive control philosophy advocated 

in recent mobile systems research, which stresses dynamic 

workload management and graceful degradation as 

necessary responses to resource variability (Deng, 2019; 

Zhao et al., 2022). In the audio domain, the present findings 

confirm that such adaptive strategies not only preserve 

system stability but also prevent abrupt perceptual failures 

that are highly detrimental to user experience (Collins, 2008; 

Sweet, 2014). 

Importantly, the perceptual evaluation component 

revealed that users consistently preferred controlled quality 

reduction over audible instability or dropouts. This result 

corroborates long-standing observations in game audio and 

interactive media that continuity and responsiveness 

dominate user satisfaction more strongly than absolute 

fidelity (Collins, 2008; Sweet, 2014). It also aligns with 

contemporary work in spatial and immersive audio, which 

emphasizes perceptual coherence and temporal consistency 

as key determinants of presence and engagement (Fırat et al., 

2022; Jot et al., 2021; Yang et al., 2022). The present study 

thus provides empirical support for prioritizing perceptual 

stability over raw processing complexity in mobile audio 

engine design. 

From a technical perspective, the success of the proposed 

engine can be attributed largely to its architecture-driven 

design. The strict isolation of the Audio Thread from non-

deterministic operations—such as I/O, dynamic memory 

allocation, and heavy synchronization—proved instrumental 

in maintaining predictable execution. This result is 

consistent with the design principles articulated in real-time 

audio engineering and computer music literature, which 

emphasize constant-time operations, minimal branching, 

and deterministic scheduling as prerequisites for reliable 

real-time sound processing (Farnell, 2010; Lazzarini et al., 

2016; Pulkki & Karjalainen, 2015). However, the present 

study advances this literature by demonstrating how these 

principles can be operationalized within the constraints of 

mobile operating systems and heterogeneous hardware. 

The integration of adaptive quality scaling further 

contributed to system robustness. By selectively degrading 

computationally intensive effects such as reverb and 

spatialization under load, the engine preserved timing 

guarantees without fully sacrificing auditory coherence. This 

strategy resonates with findings from immersive audio 

research, which highlight that simplified spatial models and 

lightweight reverberation often provide sufficient perceptual 

realism in mobile and AR contexts (Fırat et al., 2022; Yang 

et al., 2022). It also aligns with emerging trends in mobile 

deep learning and multimedia optimization, where dynamic 

model scaling and conditional execution are increasingly 

employed to balance performance and resource constraints 

(Latif et al., 2023; Zhao et al., 2022). 

Resource consumption metrics further validate the 

effectiveness of the proposed approach. The controlled 

reduction in CPU utilization and memory footprint under 

high-load conditions confirms that adaptive voice 

management, virtualization, and zero-copy buffering 

significantly enhance computational efficiency. These 

results mirror conclusions from mobile multimedia research, 

which identifies memory bandwidth and CPU cycles as 

critical bottlenecks on handheld devices (Deng, 2019; Ota et 

al., 2017). The present findings demonstrate that careful 

architectural choices at the audio engine level can 

meaningfully mitigate these constraints without 

compromising interactive responsiveness. 

From a broader system design and management 

perspective, the implications of these findings are 

substantial. As interactive audio becomes a central feature of 

mobile applications—ranging from entertainment and social 

platforms to AR, training, and collaborative systems—the 

reliability of real-time audio infrastructure directly 

influences product success and organizational 

competitiveness (Khan, 2024; Xue & Zheng, 2025). The 

demonstrated gains in stability, efficiency, and perceptual 

quality suggest that investment in robust audio engine 

architecture yields tangible value at both the technical and 

strategic levels. This reinforces recent management-oriented 

perspectives that treat system architecture not merely as an 

engineering artifact but as a strategic organizational resource 

(Khan, 2024; Xue & Zheng, 2025). 

Furthermore, the study’s results complement emerging 

research on the future of audio ecosystems, including the 

audio metaverse and interoperable immersive environments. 

These domains demand scalable, adaptive, and cross-
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platform audio infrastructures capable of delivering 

consistent real-time experiences across diverse devices (Jot 

et al., 2021; Yang et al., 2022). The proposed architecture, 

with its emphasis on modular design, adaptive control, and 

platform-aware optimization, provides a practical 

foundation for meeting these emerging requirements. 

In summary, the empirical evidence supports the 

conclusion that architecture-driven, adaptive real-time audio 

engine design significantly enhances performance, stability, 

and user experience on mobile platforms. The convergence 

of reduced latency, minimized jitter, improved resource 

efficiency, and perceptually acceptable quality degradation 

demonstrates that robust system design can overcome many 

of the inherent limitations of mobile hardware. These 

findings contribute to both the technical literature on real-

time audio processing and the managerial discourse on 

system design as a strategic capability. 

This study is subject to several limitations. First, although 

multiple Android devices were tested, the hardware sample 

cannot fully represent the vast diversity of mobile devices 

and operating system configurations currently in use. 

Second, the perceptual evaluation relied on controlled 

listening assessments rather than large-scale user studies, 

which may limit the generalizability of the subjective 

findings. Third, the experiments focused primarily on 

interactive audio workloads similar to games and AR 

scenarios; results may differ for other application domains 

such as teleconferencing or large-scale collaborative 

systems. Finally, long-term energy consumption effects 

under prolonged real-world usage were not comprehensively 

assessed. 

Future research should extend this work by conducting 

large-scale user studies to quantify perceptual outcomes 

across diverse demographic groups and usage contexts. 

Comparative evaluations on additional mobile platforms and 

operating systems would strengthen external validity. 

Further investigation into the integration of machine 

learning–based audio processing within adaptive real-time 

architectures could yield valuable insights, particularly 

regarding dynamic quality control and predictive resource 

management. Longitudinal studies examining battery health, 

thermal behavior, and user retention over extended 

deployment periods are also recommended. 

Practitioners should prioritize architectural separation 

between real-time and non-real-time domains when 

designing mobile audio systems. Adaptive control 

mechanisms should be treated as first-class components 

rather than optional optimizations. Development teams are 

encouraged to invest in profiling, monitoring, and automated 

quality-scaling pipelines early in the product lifecycle. 

Finally, management should recognize audio infrastructure 

as a strategic asset that directly influences product quality, 

user satisfaction, and competitive advantage. 
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