MAN

PUBLISHING INSTITUTE

Article history:

Received 03 September 2025
Revised 03 December 2025

Accepted 06 January 2025

Published online 01 September 2026

Journal of Resource Management and

Y

Decision Engineering

\

Journal of
Resource Management and
Decision Engineering

Volume 5, Issve 3, pp 1-13

Design and Optimization of a Real-Time Audio Simulation Engine on

Mahdi. Habibi®*

, Amirhossein. Mirahmadi?

Mobile Devices

, Mohammad Mahdi. Jalili®

1 B.A., Department of Management, Karaj Sugar Production Company University of Applied Science and Technology, Karaj, Iran
2 M.A., Department of Computer Engineering, Shahid Bahonar University, Kerman, Iran
3 B.A., Department of Computer Engineering, Faculty of Computer Engineering, Hamadan University of Technology, Hamadan, Iran

* Corresponding author email address: themahdihabibi@gmail.com

Article Info

ABSTRACT

Article type:
Original Research

How to cite this article:

Habibi, M., Mirahmadi, A. & Jalili, M. M.
(2026). Design and Optimization of a Real-
Time Audio Simulation Engine on Mobile
Devices. Journal of Resource Management
and Decision Engineering, 5(3), 1-13.
https://doi.org/10.61838/kman.jrmde.5.3.237

© 2026 the authors. Published by KMAN
Publication Inc. (KMANPUB). This is an
open access article under the terms of the
Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-
NC 4.0) License.

With the rapid expansion of interactive and multimedia applications on smartphones,
real-time audio simulation has become one of the core components in user experience
design. However, the inherent limitations of mobile platforms in terms of
computational capacity, energy consumption, and strict real-time constraints have
turned the design of stable and low-latency audio engines into a major technical
challenge. The objective of the present study is to design and optimize an efficient
architecture for a real-time audio simulation engine on mobile devices that can
establish an appropriate balance between audio quality, real-time responsiveness, and
resource consumption. This study was conducted using a design-oriented and
experimental approach. First, a system-centered architecture based on the separation
of real-time and non-real-time domains was developed. Subsequently, a set of
optimization algorithms and techniques—including adaptive buffer management,
voice capping and voice stealing policies, quality scaling, and conditional
processing—were implemented. The proposed engine was developed on the Android
platform using low-level audio APIs and evaluated through an interactive case study.
The system’s performance was compared with that of a baseline implementation. The
experimental results demonstrated that the proposed architecture significantly
reduced latency and jitter while maintaining the real-time stability of the engine under
high-load conditions. In addition, CPU usage and energy consumption were reduced
in a controlled manner, and the degradation of audio quality was applied gradually
and in a manner perceptually acceptable to users. Perceptual findings further
indicated that users perceived controlled quality degradation as considerably more
tolerable than audio instability or dropouts. The findings suggest that the design of
real-time audio simulation engines on mobile platforms should be grounded in an
architectural and adaptive approach. Emphasizing real-time pipeline management
and intelligent control policies plays a more decisive role in achieving stable and
efficient performance than increasing the complexity of digital signal processing
(DSP) algorithms.

https://doi.org/10.61838/kman.jrmde.5.3.237
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0000-0003-4672-0516
https://orcid.org/0009-0003-4908-9958
https://orcid.org/0009-0002-6819-8618
https://crossmark.crossref.org/dialog/?doi=10.61838/kman.jrmde.4.2.5
http://creativecommons.org/licenses/by-nc/4.0

Habibi et al.
MAN

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

PUBLISHING INSTITUTE

Keywords: Real-Time Audio Processing; Mobile Audio Engine; Latency and
Jitter; Adaptive Optimization; Interactive Multimedia Systems

1. Introduction

he contemporary digital ecosystem is increasingly

shaped by immersive, interactive, and multimedia-rich
applications, in which audio has emerged as a decisive factor
in shaping user experience, engagement, and perceived
realism. From mobile gaming and augmented reality (AR) to
social media, virtual collaboration platforms, and the
emerging audio metaverse, sound is no longer a secondary
enhancement but a core functional component of system
design (Collins, 2008; Jot et al., 2021; Sweet, 2014; Yang et
al.,, 2022). Recent developments in human—computer
interaction emphasize that users’ perception of system
responsiveness, spatial presence, emotional engagement,
and overall satisfaction are strongly mediated by the quality,
stability, and real-time behavior of audio rendering pipelines
(Firat et al., 2022; Xue & Zheng, 2025; Yang et al., 2022).
Consequently, the engineering of real-time audio systems
has become a strategic concern for designers of mobile and
interactive platforms.

Mobile computing now dominates global digital
interaction, yet mobile platforms impose severe constraints
on computational resources, energy consumption, memory
capacity, and timing determinism. These constraints directly
challenge the feasibility of high-quality real-time audio
simulation. The coexistence of heterogeneous hardware
architectures, dynamic operating system scheduling,
aggressive power management policies, and competing
application workloads introduces nontrivial sources of
latency, jitter, and instability in audio pipelines
(Jahangashteh et al., 2022; Ota et al., 2017; Zhao et al.,
2022). While desktop-class systems can often tolerate
inefficient designs through brute-force computing power,
mobile systems demand carefully engineered architectures
that explicitly balance performance, resource efficiency, and
real-time reliability.

At the same time, the functional role of audio has
expanded dramatically. Modern applications increasingly
rely on complex audio behaviors such as spatial sound
rendering, adaptive soundscapes, interactive music systems,
and procedural audio synthesis. These behaviors require
continuous parameter modulation, low-latency response to
user input, and seamless integration of multiple concurrent
sound sources (Farnell, 2010; Lazzarini et al., 2016; Pulkki
& Karjalainen, 2015). The growth of audio augmented
reality and spatial audio for immersive environments further

intensifies the computational burden placed on mobile audio
engines (Firat et al., 2022; Jotetal., 2021; Yang et al., 2022).
These trends have elevated the design of real-time audio
engines from a purely technical problem to a strategic design
challenge that directly affects product success and user
adoption.

Concurrently, advances in machine learning and large-
scale audio modeling have begun to influence audio
processing pipelines. Deep learning has enabled powerful
new capabilities such as content-aware sound synthesis,
intelligent noise suppression, adaptive sound classification,
and perceptual optimization (Deng, 2019; Latif et al., 2023;
Zhao et al., 2022). However, deploying such techniques on
mobile devices introduces new constraints, as the
computational and energy costs of deep neural models must
be carefully managed in real time (Ota et al., 2017; Zhao et
al., 2022). The integration of intelligent audio processing
therefore magnifies the importance of architectural
efficiency, adaptive resource management, and stable real-
time execution.

Despite the central importance of audio, many mobile
applications still rely on simplistic audio frameworks that
were not designed for heavy interactive workloads.
Traditional mobile audio APIs provide basic playback and
mixing services but often lack advanced scheduling control,
fine-grained resource management, and robust mechanisms
for ensuring deterministic timing under load (Jahangashteh
etal., 2022; Schobel et al., 2016). As application complexity
grows, these limitations become increasingly visible to users
through audible artifacts such as dropouts, clicks,
inconsistent spatialization, delayed feedback, and unstable
audio scenes. Empirical studies in interactive media
demonstrate that such artifacts significantly degrade
perceived quality and user engagement, even when visual
performance remains high (Collins, 2008; Firat et al., 2022;
Sweet, 2014).

The management implications of these technical
challenges are substantial. For firms operating in
competitive digital markets, the quality and reliability of
interactive audio systems directly influence customer
retention, brand perception, and market differentiation.
Audio failures in games, AR applications, or collaborative
platforms can erode trust and reduce user adoption, while
stable and immersive sound design can enhance perceived
innovation and product value (Khan, 2024; Xue & Zheng,
2025). Consequently, the design of real-time audio engines

https://journals.kmanpub.com/index.php/jppr/index

Habibi et al.
MAN

PUBLISHING INSTITUTE

is no longer confined to engineering departments but has
become a strategic asset that shapes product competitiveness
and organizational performance.

From a system design perspective, the core difficulty lies
in maintaining strict real-time constraints while
simultaneously executing complex audio processing,
resource management, and application logic on limited
mobile hardware. Real-time audio threads must complete
their computations within hard deadlines imposed by buffer
scheduling; failure to do so results in underruns and audible
dropouts. Meanwhile, non-real-time application
components—such as user interfaces, networking, file 1/0,
and analytics—compete for the same underlying resources,
creating unpredictable execution patterns (Jahangashteh et
al., 2022; Schobel et al., 2016). The absence of robust
architectural separation between these domains remains a
fundamental weakness of many existing systems.

Prior research in audio engineering, computer music, and
multimedia systems has established numerous foundational
principles for real-time sound synthesis, signal processing,
and spatial audio rendering (Farnell, 2010; Lazzarini et al.,
2016; Pulkki & Karjalainen, 2015). However, much of this
literature was developed in contexts where computational
resources were relatively abundant or where systems
operated under controlled laboratory conditions. The
translation of these principles into mobile environments—
characterized by energy constraints, heterogeneous
hardware, and unpredictable operating system behavior—
requires significant architectural adaptation (Ota et al., 2017,
Zhao et al., 2022).

Recent surveys of mobile multimedia and deep learning
on mobile devices highlight that efficient system-level
optimization, rather than raw algorithmic sophistication,
often determines practical success (Deng, 2019; Ota et al.,
2017; Zhao et al., 2022). This observation aligns with
emerging work on lightweight mobile process engines and
adaptive system architectures, which emphasizes the
importance of minimizing critical execution paths, isolating
time-sensitive workloads, and applying dynamic quality
control to preserve responsiveness under fluctuating
resource conditions (Schobel et al., 2016; Xue & Zheng,
2025). In the audio domain, this suggests that architectural
design and resource governance may play a more decisive
role in achieving stable performance than incremental
improvements in signal processing algorithms alone.

Moreover, the evolution of immersive media
ecosystems—particularly AR, VR, and the audio
metaverse—has introduced new requirements for

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

interoperability, spatial coherence, and perceptual
consistency across devices and platforms (Firat et al., 2022;
Jot et al., 2021; Yang et al., 2022). These requirements
further complicate mobile audio engine design by
demanding scalability, adaptability, and cross-platform
compatibility, all within the strict confines of mobile
hardware constraints.

Despite these developments, the literature reveals a
notable gap: while substantial research addresses individual
components of audio processing, spatialization, or mobile
optimization, comparatively little work has proposed
integrated architectural frameworks that holistically address
latency, jitter, resource efficiency, and perceptual quality in
real-time mobile audio engines. Existing studies often focus
either on high-level interaction design (Collins, 2008; Sweet,
2014), low-level signal processing (Farnell, 2010; Pulkki &
Karjalainen, 2015), or mobile system optimization (Ota et
al.,, 2017; Zhao et al., 2022), without unifying these
perspectives into a coherent real-time engine architecture.

In addition, as audio content becomes increasingly
procedural, adaptive, and data-driven, the complexity of
real-time control systems grows accordingly. Advanced
audio behaviors now depend on dynamic parameter
scheduling, real-time event handling, and continuous
environmental feedback, all of which impose new
constraints on engine stability and performance (Jot et al.,
2021; Latif et al.,, 2023; Yang et al., 2022). Without
systematic architectural support, these features risk
overwhelming mobile platforms and undermining user
experience.

From a managerial viewpoint, the lack of robust
architectural solutions introduces operational risks.
Development teams may resort to ad hoc optimizations that
yield short-term improvements but lack scalability and
maintainability. Such approaches increase technical debt,
prolong development cycles, and complicate future product
evolution. In contrast, well-designed audio engine
architectures can serve as reusable organizational assets,
reducing development cost, accelerating innovation, and
supporting long-term product strategies (Khan, 2024; Xue &
Zheng, 2025).

Taken together, these considerations underscore the
urgent need for systematic, architecture-driven approaches
to the design of real-time audio simulation engines for
mobile platforms. Such approaches must explicitly address
latency and jitter control, adaptive resource management,
scalability under dynamic workloads, and preservation of
perceptual quality, while remaining compatible with the

https://journals.kmanpub.com/index.php/jppr/index

Habibi et al.
MAN

PUBLISHING INSTITUTE

practical constraints of mobile hardware and operating
systems (Ota et al., 2017; Schobel et al., 2016; Xue & Zheng,
2025; Zhao et al., 2022).

Accordingly, this study is situated at the intersection of
interactive media engineering, mobile computing, and
management-oriented system design. By integrating insights
from audio engineering, multimedia systems, and mobile
optimization research, it seeks to contribute both technically
and strategically to the development of more reliable and
efficient mobile audio infrastructures (Farnell, 2010; Khan,
2024; Lazzarini et al., 2016; Pulkki & Karjalainen, 2015;
Zhao et al., 2022).

The aim of this study is to design and empirically evaluate
an adaptive, architecture-driven real-time audio simulation
engine for mobile platforms that minimizes latency and jitter
while optimizing resource consumption and preserving
perceptual audio quality under dynamic workload
conditions.

2. Methods and Materials

Design of the Audio Simulation Engine Architecture

The proposed architecture for a real-time audio
simulation engine on mobile devices is presented; an
architecture whose objective is to reduce latency and jitter,
ensure output stability, and optimize CPU, memory, and
energy consumption under real-world operating conditions.
The central design concept is the construction of a short,
predictable, and low-overhead processing path that is
decoupled from application logic and executed within an
independent audio loop. The primary objectives include real-
time responsiveness, temporal stability, lightweight
operation, and controlled scalability.

Mobile Platform Constraints

Mobile platforms impose strict constraints, including
limited CPU and GPU resources, operating system energy
management policies, thread scheduling restrictions, and
substantial heterogeneity in hardware and audio APIs. The
architecture is therefore designed as a layered pipeline
comprising two distinct execution domains:

Audio Thread

A real-time loop responsible exclusively for time-critical
operations:

Mixing — DSP — Output Buffer

Control Thread

Handles resource loading, audio scene management,
analytics, input/output operations, networking, and user
interface processing. This separation ensures that

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

application-level interruptions and heavy workloads exert
minimal influence on audio output stability.

Core System Modules

Audio 1/0 Backend

Interface with the operating system’s audio output.

Android: AAudio (preferred) or OpenSL ES

iOS: Core Audio / Audio Units

Its function is to respond to output buffer fill requests and
provide PCM frames.

Audio Graph / Routing

The engine is conceptually modeled as an audio graph:

Nodes: Source, Mixer, Effect, Spatializer, Output

Edges: Signal paths

This model enables structured composition of sources and
effects without introducing complexity into the real-time
loop.

Audio Resource Management

Management of concurrent channels and implementation
of voice stealing policies. Prioritization is enforced (e.g.,
Ul/interaction sounds supersede ambience), low-importance
sources are attenuated or terminated under CPU pressure,
and computational overload in dense scenes is prevented.

Event and Parameter System

Application events are transformed into audio commands
(Play/Stop, parameter changes). Commands are transmitted
to the Audio Thread using lock-free or minimally locked
structures to minimize blocking latency.

DSP Engine

Signal processing chain:

Resampling

Filtering / Equalization

Dynamics / Compression

Lightweight or convolution-based reverb

Spatialization (Stereo Panning / HRTF)

The DSP design is block-oriented and dynamically
enabled or disabled in response to system load.

Buffer Manager

Manages input/output buffers and prevents underruns:

Double/Triple buffering

Ring buffers for inter-thread data exchange

This module is essential for latency control while
preserving system stability.

Resource and Streaming Manager (Non-Real-Time)

Handles file loading, decoding (AAC/Opus/MP3),
caching, and streaming. The output is delivered as
preprocessed buffers to the Audio Thread.

Data and Control Flow

https://journals.kmanpub.com/index.php/jppr/index

Habibi et al.
MAN

PUBLISHING INSTITUTE

Control flow: The application generates an event (e.g.,
“collision sound”) — the event is placed in the Event Queue
— the Audio Thread retrieves the queue at the start of each
callback and updates state without heavy processing.

Data flow: Voices generate or read samples — signals are
summed in the Mixer — DSP is applied — the output buffer
is filled and delivered to the Backend.

Concurrency and Threading Design

Minimum recommended configuration: one real-time
thread, one control thread, and one optional auxiliary thread.

Core Principles

No memory allocation within callbacks, no file/network
1/0, no heavy locks or long mutex operations, and strictly
predictable execution time. Ring buffers are employed for
continuous data streams, and lock-free or ultra-lightweight
queues are used for control messages.

Key Design Decisions for Latency and Jitter
Reduction

Critical path minimization: All non-essential operations
are removed from the Audio Thread.

Adaptive buffer sizing: Under CPU pressure, the buffer is
moderately increased to avoid underruns; under stable
conditions, it is reduced to minimize latency.

Adaptive quality control: Computationally intensive
effects are disabled or degraded when system load rises.

Precomputation and caching: Wavetables, filter
coefficients, routing paths, and lookup tables are prepared in
advance.

Voice capping and stealing: Upper bounds are imposed
on concurrent voices, with intelligent removal policies.

To ensure implementability and testability, the engine’s
internal API is recommended to expose the following
interfaces:

Engine.init

Engine.submitEvent

Engine.setParam

Engine.render

Engine.setQualityMode

Architectural Validity Criteria

The architecture is considered successful if callbacks
consistently complete before their deadlines, jitter remains
low and stable, performance degradation is gradual and
controlled as voice count increases, and perceptual audio
quality in real-world scenarios is preserved or degrades in a
“justifiable and manageable” manner. The proposed
architecture is founded on a single critical principle: strict
separation of the real-time domain from the control and non-
real-time domain. Any operation that is potentially time-

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

consuming, unpredictable, or 1/O-dependent is excluded
from the audio execution path to minimize latency and jitter
and guarantee system stability.

Primary Execution Domains

A) Audio Thread

This thread is invoked by the operating system (via
callback or pull model) to fill the output buffer and executes
only time-critical tasks: ingestion of lightweight control
messages, generation or reading of active voice samples,
multichannel mixing, lightweight and configurable DSP
(EQ, filtering, spatialization, reverb), output buffer
population, and delivery to the Audio Backend.

Strict Constraints: no memory allocation, no /O, no
heavy locking, no unpredictable operations.

B) Control / Application Thread (Non-Real-Time)

All operations that may induce blocking or timing
variability are handled here: application and game logic, user
interface processing, file loading, effect and parameter
preparation, high-level decision making, logging, and
system monitoring.

Core System Blocks

Operating system audio API bridge (AAudio/OpenSL ES
on Android, Core Audio on iOS) responsible for buffer
exchange and preservation of sample rate and format
integrity.

The real-time core consists of:

Real-Time Engine Core

Event / Command Ingest

Voice Manager

Mixer

DSP Chain

Buffer Manager

Command Queue

A lightweight, preferably lock-free, command
transmission path is established from the Control Thread to
the Audio Thread for:

Play/Stop

SetParameter (gain, pitch, position, filter)

ChangeScene / Route

Resource and Streaming Subsystem (Non-Real-Time)

Handles loading, decoding, caching, and streaming of
audio assets; outputs ‘“consumption-ready buffers” for
Voices.

Profiler and Monitor (Non-Real-Time)

Collects metrics including CPU load, underrun count,
callback execution time, jitter, estimated latency, and
adaptive quality decisions.

Overall Data and Control Flow

https://journals.kmanpub.com/index.php/jppr/index

Habibi et al.
MAN

PUBLISHING INSTITUTE

Control flow: Application generates an event — event is
converted into an audio command — command enters the
Command Queue — Audio Thread retrieves the command
at callback start and updates state.

Data flow: Voices generate or read samples — Mixer
combines output — DSP applies processing — Buffer
Manager manages the buffer — Audio Backend transmits
the buffer to hardware.

Conceptual Architecture Representation

Non-Real-Time Domain

App/Ul/Game Logic

Resource Loader / Decoder / Streamer

Profiler and Quality Controller

| (Commands / Parameters)

Command Queue (RT-Safe)

l

Real-Time Domain

Event Ingest

Voice Manager

Mixer

DSP Chain

Buffer Manager

I
Audio Backend (AAudio / Core Audio)

l

Speaker / Headphones

Stability and Optimization Logic in the Overall
Architecture

Real-time loop remains short and predictable: only
essential processing occurs within callbacks.

Quality scaling: if CPU load increases, heavy effects are
degraded or disabled to prevent underruns.

Voice capping and stealing: concurrent voices are capped
and low-priority sources are removed.

Adaptive buffering: buffer size is adjusted within
permissible limits to balance latency and stability.

Resource pre-decoding and preparation outside the real-
time domain to prevent jitter.

Optimization Algorithms and Methods

This section presents a set of implementable methods for
optimizing the audio engine that directly affect latency,
jitter, output stability, and CPU/memory/energy
consumption. The overarching approach is to tightly control
the “critical path” (Audio Thread) and migrate any non-
deterministic or heavy operations to the non-real-time
domain.

Latency Reduction at the Architectural and Buffer
Levels

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

Real-time performance optimization in audio processing
engines requires coordinated decisions at the architecture,
scheduling, and resource-management levels, with a core
emphasis on reducing delay and controlling temporal
variability. One of the most fundamental elements in this
pathway is buffer-size optimization because buffer latency
is directly proportional to buffer size. Specifically, if the
sampling rate is f;and the buffer size is N, the buffer-induced
delay is approximately Latencybuffer =~ N/f;. Accordingly,

the optimal strategy is to select the smallest stable buffer size
and then, through continuous monitoring of underrun events,
dynamically apply a bounded increase in buffer size under
computational pressure—an approach commonly referred to
as adaptive buffering.

Alongside buffer management, shortening the audio
output path is of particular importance. In practice,
unnecessary format conversions—such as repeated float-to-
int and int-to-float casts—should be avoided within the
Audio Thread. Likewise, resampling should be eliminated
from the real-time path; if resampling is unavoidable, only
lightweight, low-cost, preconfigured resamplers should be
used to prevent unpredictable computational load.

From the perspective of perceived audio quality, smooth
parameter scheduling is critical. Changes to gain, pitch, or
filter parameters should not be applied abruptly; instead,
linear or exponential ramps should be applied over multiple
consecutive frames to prevent clicks and artifacts.

Jitter control and real-time stability also require RT-safe
design, meaning that no non-deterministic operations occur
within the Audio Thread. Concretely, the use of malloc/new,
file or network 1/0, heavy logging, complex string
operations (e.g., regex processing or string formatting), and
long-held mutex locks should be strictly prohibited. In
contrast, only constant-time computations, direct array
accesses, and lock-free queue structures should be permitted.

Consistent with this design logic, using a lock-free or
minimally locked message queue for communication
between the Control Thread and the Audio Thread is
recommended. Commands such as Play, Stop, and SetParam
should be generated on the Control Thread, while the Audio
Thread should consume them in batches at the beginning of
each callback.

In addition, file decoding and network streaming should
be delegated to separate threads, and decoded output should
be prepared as PCM chunks in a ring buffer, such that the
Audio Thread is responsible solely for reading ready-to-
consume data.

https://journals.kmanpub.com/index.php/jppr/index

Habibi et al.
MAN

PUBLISHING INSTITUTE

Finally, configuring the scheduling policy and priority of
the audio thread—within the constraints imposed by the
operating system—is highly consequential. A reasonable
elevation of Audio Thread priority can reduce preemption
and callback execution variability, thereby materially
improving real-time stability and perceived audio quality.

Algorithm-Level DSP Optimization

Algorithm-level optimization of digital signal processing
(DSP) is among the most effective strategies for achieving
stable, low-latency performance in audio engines,
particularly on mobile platforms where compute and energy
constraints make algorithm design a critical challenge. In
this context, block-based processing (as opposed to sample-
by-sample processing) plays a central role in reducing
computational overhead. Applying effects to blocks of audio
frames improves memory locality and significantly reduces
the overhead of repeated function calls.

Consistent with this approach, designing simple loops,
using small and inline functions, and avoiding complex
conditional and heavily branched execution paths can make
execution time more predictable and reduce jitter on the
Audio Thread.

Effect selection should also be guided by a mobile-first,
lightweight mindset. For example, while full convolution
reverb with long impulse responses can be perceptually
superior, it is computationally expensive and typically
unsuitable for most mobile use cases. Instead, lightweight
structures such as Schroeder reverberators or feedback delay
networks (FDNs) with a limited number of taps can offer a
practical balance between quality and efficiency.

Similarly, in spatialization, many mobile scenarios are
adequately served by simple stereo panning combined with
distance attenuation. Full head-related transfer function
(HRTF) processing should be restricted to high-quality
modes or specific conditions to avoid unnecessary
computational cost.

A subtle but operationally important challenge in
floating-point DSP is the presence of denormal numbers—
very small floating-point values that can cause severe CPU
slowdowns. This issue commonly appears in filters and
reverb tails and, if unaddressed, can compromise real-time
stability. Common mitigation techniques include adding a
very small, controlled noise floor to the signal or enabling
flush-to-zero (FTZ) and denormals-are-zero (DAZ) modes
on platforms and processors that support these features.

Finally, intelligent use of precomputation and lookup
tables (LUTS) is among the most effective techniques for
reducing real-time computational load. Expensive functions

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

such as sine/cosine for LFOs, envelope curves, and constant
filter coefficients should be precomputed and stored in tables
rather than repeatedly evaluated within the Audio Thread.
By removing repetitive high-cost operations from the real-
time path, this approach improves throughput, enhances
temporal stability, and supports overall DSP engine quality.

Low-Level Computational Optimization

Low-level computational optimization is a critical layer
in real-time audio engine design that directly affects
performance, energy usage, and temporal stability,
particularly on mobile hardware. One of the most effective
tools at this level is exploiting SIMD capabilities—
especially NEON on ARM architectures and Android
devices. SIMD enables parallel execution of repeated,
independent operations such as signal mixing, gain
application, short FIR filtering, and other vector
computations across multiple audio samples simultaneously.

The greatest benefit is achieved in tight loops that process
contiguous arrays of PCM samples, where parallelism can
significantly reduce CPU cycles and increase execution-time
predictability. However, effective SIMD usage requires
careful data layout and appropriate memory alignment to
avoid unintended overhead.

In addition to floating-point computation, selective use of
fixed-point arithmetic in specific components can be an
effective strategy for reducing CPU load, especially on
lower-end devices or in effects with constrained dynamic
range and simpler computational patterns. Although fixed-
point can offer speed and energy advantages compared with
float, it introduces nontrivial trade-offs: algorithm design,
scaling, and calibration become more complex, and the risks
of reduced numerical precision and clipping increase.
Therefore, fixed-point should be used selectively and only
after a careful analysis of hardware constraints and quality
requirements.

At the level of data architecture and control flow,
reducing branching and cache misses plays a decisive role in
real-time performance. Excessive conditional branching can
degrade branch prediction and introduce variability in
callback execution time; thus, branchless designs or minimal
conditional logic—particularly in the real-time path—are
recommended.

Memory layout is equally important. Storing voice data
and mixing parameters in cache-friendly structures can
increase cache hit rates. In this context, adopting a structure-
of-arrays (SoA) pattern rather than an array-of-structures
(A0S) is often more efficient for mixing loops because it

https://journals.kmanpub.com/index.php/jppr/index

Habibi et al.
MAN

PUBLISHING INSTITUTE

facilitates sequential access to homogeneous arrays and
reduces unnecessary data loads.

Finally, heavy polymorphism, virtual functions, and
dynamic dispatch should be avoided in the real-time path
because they increase branching and reduce execution-time
predictability, which is inconsistent with the strict
constraints of real-time audio processing.

Optimization of Audio Resource Management

Managing concurrent voices and computational resources
in real-time audio engines becomes determinative when the
number of audio events exceeds hardware capacity. Voice
control strategies can therefore distinguish between stable
output and a user experience dominated by underruns and
quality degradation.

As a foundational policy, voice capping limits the
maximum number of simultaneous voices based on device
capability (e.g., 16, 24, or 32) to prevent saturation.
However, because real-world demand may exceed this cap,
the system must apply intelligent eviction strategies.

Priority- and perceptually informed voice stealing is
crucial in this context. Lower-priority sounds are sacrificed
before critical Ul or high-salience effects (e.g., Ul > SFX >
ambience). Current signal amplitude is also a practical
criterion: quieter voices are removed first to minimize
perceptual disruption. Distance from the listener is another
scene-based perceptual metric; more distant sources are
typically removed at lower perceptual cost. Many systems
additionally consider “time remaining to completion,” as
retaining a nearly finished sound can prevent abrupt and
artificial cutoffs.

Beyond removal, virtualization is a more nuanced
strategy for distant or low-importance sources. Instead of
executing the full DSP chain, the engine updates only the
logical state while keeping the actual output at or near zero.
This preserves scene coherence (e.g., enabling natural re-
entry when the listener approaches) while minimizing
processing cost.

In parallel, memory optimization and eliminating
allocations in the real-time path are essential. Using memory
pools or object pools for entities such as voices, events, and
buffers removes dynamic allocation from the Audio Thread
and improves temporal predictability.

Zero-copy buffering is also valuable: by reducing multi-
stage copying, it lowers CPU overhead and memory
bandwidth pressure. The ideal data path is that decoded
audio is written directly into a ring buffer and then
transferred to the output buffer during render/mix without
additional intermediate copies.

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

From an energy perspective, energy-aware audio design
enables the engine to scale quality dynamically based on
processor load and battery conditions. Defining
Low/Medium/High modes and using triggers such as CPU
load, underrun rate, device temperature, and battery state
supports dynamic decision-making. Practically, the engine
can disable reverb, reduce oversampling, simplify
spatialization, or even lower the voice cap to prevent thermal
throttling and rapid battery drain.

Conditional processing is also highly effective. If the
output is silent or near-silent, parts of the DSP chain can be
bypassed; if no voices are active, the engine can enter a sleep
state to avoid wasting compute cycles and energy.

To ensure these decisions are genuinely “intelligent,” a
lightweight feedback loop should run in the non-real-time
domain to monitor indicators such as callback time (mean
and 95th percentile), underrun count, CPU usage, latency
estimates, and active voice count. Based on these signals, the
system can adaptively apply actions such as changing the
quality mode, bounded buffer-size adjustment, decreasing or
increasing the voice cap, and enabling or disabling effects.

3. Findings and Results

Study Model Design

To empirically assess the proposed architecture, a case
study with characteristics closely aligned with real-world
applications was designed to systematically evaluate the
behavior of the real-time audio simulation engine under
dynamic and high-load conditions. The selected scenario is
an interactive audio scene similar to a game or augmented
reality (AR) environment, in which the user generates
frequent audio events by tapping the screen or through
collisions among virtual objects. Each event triggers a short
sound effect (SFX) with variable parameters, such that
loudness is a function of collision speed or impact intensity,
pitch depends on distance or object type, and panning
depends on the horizontal position of the audio source.
Concurrently, a background ambience layer and a
lightweight looped music track are played to approximate a
realistic application workload. The number of events is
increased in a controlled manner to evaluate the engine
across multiple load levels. Accordingly, three test profiles
were defined: in the low-load condition, with 4-8
simultaneous voices and minimal DSP, the engine is
expected to operate with negligible latency and temporal
variability; in the medium-load condition, with 16-24
simultaneous voices and active filtering and panning,

https://journals.kmanpub.com/index.php/jppr/index

Habibi et al.
MAN

PUBLISHING INSTITUTE

stability and resource consumption are examined more
rigorously; and in the high-load condition, with more than
32 simultaneous wvoices and lightweight reverb and
simplified spatialization enabled, adaptive mechanisms such
as voice stealing and quality scaling are expected to engage.
For precise evaluation, a set of real-time metrics—including
callback execution time (mean and 95th percentile),
underrun count, and jitter—were recorded as primary
indicators of real-time success or failure. In parallel,
resource metrics such as average and peak CPU utilization,
memory footprint attributable to pools and buffers, and—
where feasible—energy indicators or battery discharge rate
were monitored. The perceptual quality dimension was also
considered through listening checks to identify clicks,
dropouts, or distortion, and to evaluate whether quality
reductions during scaling occurred gradually. Finally, to
ensure the case study was not merely demonstrative, a
pressure-response control policy was defined. As callback
time approached a risk threshold or an underrun occurred,
the system first reduced effect quality or disabled reverb,
then lowered the voice cap, activated priority- and
amplitude-based voice stealing, and—if pressure
persisted—applied a bounded increase to framesPerBuffer
within allowable limits. This policy illustrates how the
engine establishes a deliberate and managed trade-off
between latency and stability.

Applied Scenario

In this scenario, the user generates multiple audio events
via screen taps or collisions among virtual objects. Each
event triggers a short sound effect (SFX) with dynamic
parameters, such that loudness depends on collision speed,
pitch depends on distance or object type, and panning
depends on the horizontal position of the audio source.
Simultaneously, a background ambience layer and a
lightweight looped music track are played to establish a
stable workload consistent with realistic conditions. Event
frequency is controllable to examine engine behavior under
different levels of pressure. Three load profiles were
defined: in the low-load condition, with 4-8 simultaneous
voices and minimal DSP, the engine is expected to exhibit
minimal latency and temporal variability; in the medium-
load condition, with 16-24 simultaneous voices and filtering
and panning enabled, stability and resource usage are
evaluated more stringently; and in the high-load condition,
with more than 32 simultaneous voices and lightweight
reverb and simplified spatialization enabled, adaptive
mechanisms such as voice stealing and quality scaling are
expected to activate. The evaluation is based on three classes

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

of metrics: real-time metrics (callback execution time—
mean and 95th percentile—underrun count, and jitter),
resource metrics (CPU consumption, memory footprint, and
energy indicators), and perceptual metrics assessing
listening quality, the presence of clicks or dropouts, and the
manner in which quality degrades during scaling. To prevent
abrupt real-time failure, a pressure-response policy is
triggered when callback time approaches a risk threshold or
when an underrun occurs. This policy sequentially includes
reducing or bypassing reverb, lowering the voice cap,
activating voice stealing based on priority and signal
amplitude, and—if pressure persists—applying a bounded
increase in buffer size. This control logic demonstrates that
the engine manages the latency—stability trade-off
deliberately rather than incidentally.

Implementation

Android was selected as the primary implementation
platform because its hardware diversity and well-known
latency and jitter challenges make it an appropriate
environment for evaluating real-time architectures. The
engine’s audio output was implemented using AAudio, with
a compatibility path to OpenSL ES enabled on devices
where AAudio is unavailable. A target sampling rate of 48
kHz was adopted, with planned compatibility for 44.1 kHz.
The real-time core and DSP components were developed in
C/C++ to ensure strict control over execution time and
memory behavior, while the application layer was
implemented in Kotlin/Java, using a build system based on
CMake and the Android NDK.

The real-time core operates within a callback loop that
performs only time-sensitive operations. At the start of each
callback, control messages are consumed in batches from a
real-time-safe queue. Next, each voice state—including
activation status, envelope, and spatial parameters—is
updated; samples are generated or read; multi-source mixing
is performed; and a minimal DSP chain is applied. Finally,
the output data are written into the output buffer and
delivered to the backend. No dynamic memory allocation,
I/O operations, or heavy locks are used in this section to
preserve execution-time predictability.

The Control layer executes on a non-real-time thread and
is responsible for receiving application events, translating
them into audio commands (e.g., Play/Stop), and applying
adaptive policies such as quality scaling and voice capping.
Audio file loading, decoding, and streaming are handled in
the Resource/Streaming layer, and their outputs are placed
as ready-to-consume PCM chunks in a ring buffer, ensuring
that the Audio Thread functions purely as a data consumer.

https://journals.kmanpub.com/index.php/jppr/index

Habibi et al.
MAN

PUBLISHING INSTITUTE

To ensure stability, a lightweight monitoring loop in the
non-real-time domain tracks indicators such as callback
time, underrun count, and CPU consumption, and applies
decisions such as reducing effect quality, adjusting the voice
cap, or making bounded buffer-size changes. This
implemented approach indicates that the proposed
architecture can maintain a managed balance among latency,
stability, and resource consumption in real executions.

Evaluation and Experimental Results

Experiments were conducted on multiple Android
devices with different hardware tiers, including mid-range
and high-end devices, to assess engine behavior across
heterogeneous conditions. The system sampling rate was set
to 48 kHz, and the initial buffer size was configured at 256
frames. Each experiment ran for at least 120 seconds to
enable evaluation of temporal stability over extended
intervals. For a fair comparison, two reference
configurations were defined: (1) a baseline implementation
consisting of a simple audio engine with no adaptive
policies, fixed DSP, and no voice stealing mechanisms; and
(2) the proposed implementation incorporating all
architectural components described above, including
adaptive buffering, voice capping and stealing,
virtualization, and quality scaling.

The evaluation used four classes of metrics. Timing
metrics included end-to-end latency, audio callback
execution time (mean and 95th percentile), and jitter as the
measure of temporal variability. Stability metrics included
underrun counts and perceptually detectable dropout events.
Resource metrics included average and peak CPU usage,
memory footprint, and energy indicators or battery discharge
rate (where supported by the operating system). Finally,
perceptual metrics were assessed via listening evaluations to
detect clicks, noise, rhythmic instability, and quality
degradation under load.

The timing results indicated that, in the proposed
implementation, effective system latency decreased
substantially. Under low-load scenarios, latency remained
within a range that was effectively imperceptible to users,
whereas the baseline implementation exhibited a gradual and
noticeable latency increase as the number of simultaneous
voices grew. Callback execution-time analysis further
showed that the optimized configuration not only reduced
mean callback time but also reduced temporal dispersion. In
particular, the 95th percentile of callback time remained at a
safer margin from the buffer deadline, indicating higher
predictability and a lower risk of real-time failure.

10

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

In the assessment of real-time stability and load
management, the difference between the two approaches
became explicit. Under high-load conditions—more than 32
simultaneous voices with effects enabled—the baseline
implementation experienced multiple underruns, manifested
as perceptible audio dropouts. In contrast, the proposed
architecture prevented sustained underruns by activating
voice stealing in a timely manner and gradually reducing
effect quality. These results indicate that the adaptive
approach can manage the trade-off between audio quality
and real-time stability in a controlled and predictable
manner, rather than allowing abrupt system failure.

4, Discussion and Conclusion

The present study examined the effectiveness of an
adaptive, architecture-driven real-time audio simulation
engine on mobile platforms with respect to latency, jitter,
system stability, resource consumption, and perceptual
audio quality. The empirical findings demonstrate that the
proposed architecture substantially improves real-time
performance compared with a baseline mobile audio engine
lacking adaptive mechanisms. Specifically, the optimized
engine achieved significantly lower end-to-end latency,
reduced temporal variability in callback execution, near-
elimination of sustained underruns under high load, and a
controlled, perceptually acceptable degradation of audio
quality when system pressure increased. These outcomes
validate the central premise of this research: that
architectural design and adaptive control strategies are
decisive factors in achieving reliable and efficient real-time
audio processing on constrained mobile hardware.

One of the most prominent findings was the marked
reduction in effective latency and jitter in the optimized
implementation. The lower mean callback execution time
and the narrower dispersion of callback timing—particularly
the improved 95th percentile margin relative to buffer
deadlines—indicate a substantial increase in execution-time
predictability. This aligns with prior research emphasizing
that minimizing the critical execution path and isolating
time-sensitive workloads are essential for stable mobile
multimedia performance (Schobel et al., 2016; Xue &
Zheng, 2025). The present results extend this principle
specifically to interactive audio systems, demonstrating that
architectural separation between real-time and non-real-time
domains materially improves timing determinism in
practice. These findings are also consistent with broader
mobile optimization studies that identify system-level

https://journals.kmanpub.com/index.php/jppr/index

Habibi et al.
MAN

PUBLISHING INSTITUTE

design as a stronger determinant of real-time behavior than
isolated algorithmic improvements (Ota et al., 2017; Zhao et
al., 2022).

The observed improvements in real-time stability,
particularly under high-load conditions, further reinforce the
value of adaptive resource management. Whereas the
baseline engine experienced repeated underruns and audible
dropouts when the number of concurrent voices exceeded
32, the proposed engine maintained stable output through
timely activation of voice stealing, gradual effect quality
reduction, and bounded buffer-size adjustments. This
behavior reflects the adaptive control philosophy advocated
in recent mobile systems research, which stresses dynamic
workload management and graceful degradation as
necessary responses to resource variability (Deng, 2019;
Zhao et al., 2022). In the audio domain, the present findings
confirm that such adaptive strategies not only preserve
system stability but also prevent abrupt perceptual failures
that are highly detrimental to user experience (Collins, 2008;
Sweet, 2014).

Importantly, the perceptual evaluation component
revealed that users consistently preferred controlled quality
reduction over audible instability or dropouts. This result
corroborates long-standing observations in game audio and
interactive media that continuity and responsiveness
dominate user satisfaction more strongly than absolute
fidelity (Collins, 2008; Sweet, 2014). It also aligns with
contemporary work in spatial and immersive audio, which
emphasizes perceptual coherence and temporal consistency
as key determinants of presence and engagement (Firat et al.,
2022; Jot et al., 2021; Yang et al., 2022). The present study
thus provides empirical support for prioritizing perceptual
stability over raw processing complexity in mobile audio
engine design.

From a technical perspective, the success of the proposed
engine can be attributed largely to its architecture-driven
design. The strict isolation of the Audio Thread from non-
deterministic operations—such as 1/O, dynamic memory
allocation, and heavy synchronization—proved instrumental
in maintaining predictable execution. This result is
consistent with the design principles articulated in real-time
audio engineering and computer music literature, which
emphasize constant-time operations, minimal branching,
and deterministic scheduling as prerequisites for reliable
real-time sound processing (Farnell, 2010; Lazzarini et al.,
2016; Pulkki & Karjalainen, 2015). However, the present
study advances this literature by demonstrating how these

11

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

principles can be operationalized within the constraints of
mobile operating systems and heterogeneous hardware.

The integration of adaptive quality scaling further
contributed to system robustness. By selectively degrading
computationally intensive effects such as reverb and
spatialization under load, the engine preserved timing
guarantees without fully sacrificing auditory coherence. This
strategy resonates with findings from immersive audio
research, which highlight that simplified spatial models and
lightweight reverberation often provide sufficient perceptual
realism in mobile and AR contexts (Firat et al., 2022; Yang
et al., 2022). It also aligns with emerging trends in mobile
deep learning and multimedia optimization, where dynamic
model scaling and conditional execution are increasingly
employed to balance performance and resource constraints
(Latif et al., 2023; Zhao et al., 2022).

Resource consumption metrics further validate the
effectiveness of the proposed approach. The controlled
reduction in CPU utilization and memory footprint under
high-load conditions confirms that adaptive voice
management, virtualization, and zero-copy buffering
significantly enhance computational efficiency. These
results mirror conclusions from mobile multimedia research,
which identifies memory bandwidth and CPU cycles as
critical bottlenecks on handheld devices (Deng, 2019; Ota et
al.,, 2017). The present findings demonstrate that careful
architectural choices at the audio engine level can
meaningfully — mitigate these constraints without
compromising interactive responsiveness.

From a broader system design and management
perspective, the implications of these findings are
substantial. As interactive audio becomes a central feature of
mobile applications—ranging from entertainment and social
platforms to AR, training, and collaborative systems—the
reliability of real-time audio infrastructure directly
influences product success and organizational
competitiveness (Khan, 2024; Xue & Zheng, 2025). The
demonstrated gains in stability, efficiency, and perceptual
quality suggest that investment in robust audio engine
architecture yields tangible value at both the technical and
strategic levels. This reinforces recent management-oriented
perspectives that treat system architecture not merely as an
engineering artifact but as a strategic organizational resource
(Khan, 2024; Xue & Zheng, 2025).

Furthermore, the study’s results complement emerging
research on the future of audio ecosystems, including the
audio metaverse and interoperable immersive environments.
These domains demand scalable, adaptive, and cross-

https://journals.kmanpub.com/index.php/jppr/index

Habibi et al.
MAN

PUBLISHING INSTITUTE

platform audio infrastructures capable of delivering
consistent real-time experiences across diverse devices (Jot
et al., 2021; Yang et al., 2022). The proposed architecture,
with its emphasis on modular design, adaptive control, and
platform-aware optimization, provides a practical
foundation for meeting these emerging requirements.

In summary, the empirical evidence supports the
conclusion that architecture-driven, adaptive real-time audio
engine design significantly enhances performance, stability,
and user experience on mobile platforms. The convergence
of reduced latency, minimized jitter, improved resource
efficiency, and perceptually acceptable quality degradation
demonstrates that robust system design can overcome many
of the inherent limitations of mobile hardware. These
findings contribute to both the technical literature on real-
time audio processing and the managerial discourse on
system design as a strategic capability.

This study is subject to several limitations. First, although
multiple Android devices were tested, the hardware sample
cannot fully represent the vast diversity of mobile devices
and operating system configurations currently in use.
Second, the perceptual evaluation relied on controlled
listening assessments rather than large-scale user studies,
which may limit the generalizability of the subjective
findings. Third, the experiments focused primarily on
interactive audio workloads similar to games and AR
scenarios; results may differ for other application domains
such as teleconferencing or large-scale collaborative
systems. Finally, long-term energy consumption effects
under prolonged real-world usage were not comprehensively
assessed.

Future research should extend this work by conducting
large-scale user studies to quantify perceptual outcomes
across diverse demographic groups and usage contexts.
Comparative evaluations on additional mobile platforms and
operating systems would strengthen external validity.
Further investigation into the integration of machine
learning—based audio processing within adaptive real-time
architectures could vyield valuable insights, particularly
regarding dynamic quality control and predictive resource
management. Longitudinal studies examining battery health,
thermal behavior, and user retention over extended
deployment periods are also recommended.

Practitioners should prioritize architectural separation
between real-time and non-real-time domains when
designing mobile audio systems. Adaptive control
mechanisms should be treated as first-class components
rather than optional optimizations. Development teams are

12

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

encouraged to invest in profiling, monitoring, and automated
quality-scaling pipelines early in the product lifecycle.
Finally, management should recognize audio infrastructure
as a strategic asset that directly influences product quality,
user satisfaction, and competitive advantage.

Authors’ Contributions

Authors contributed equally to this article.

Declaration

In order to correct and improve the academic writing of
our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable
request to the corresponding author.

Acknowledgments

We would like to express our gratitude to all individuals
helped us to do the project.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial
support.

Ethics Considerations

In this research, ethical standards including obtaining
informed consent, ensuring privacy and confidentiality were
considered.

References

Collins, K. (2008). Game sound: An introduction to the history,
theory, and practice of video game music and sound design.
MIT Press. https://doi.org/10.7551/mitpress/7909.001.0001

Deng, Y. (2019). Deep learning on mobile devices: a review.
Mobile Multimedia/Image Processing, Security, and
Applications 2019,

Farnell, A. (2010). Designing sound. MIT Press.
https://books.google.com/books?id=eMPxXCwWAAQBAJ&sou
rce=gbs_navlinks_s

Firat, H. B., Maffei, L., & Masullo, M. (2022). 3D sound
spatialization with game engines: the virtual acoustics
performance of a game engine and a middleware for
interactive audio design. Virtual Reality, 26(2), 539-558.
https://doi.org/10.1007/s10055-021-00589-0

https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.7551/mitpress/7909.001.0001
https://books.google.com/books?id=eMPxCwAAQBAJ&source=gbs_navlinks_s
https://books.google.com/books?id=eMPxCwAAQBAJ&source=gbs_navlinks_s
https://doi.org/10.1007/s10055-021-00589-0

Habibi et al.
MAN

PUBLISHING INSTITUTE

Jahangashteh, E., Ghadri, A., Davari, R., & Jalalvand, M. (2022).
A Study of Mobile Operating Systems. The 16th National
Conference on Computer Science, Engineering, and
Information Technology, Babol.

Jot, J. M., Audfray, R., Hertensteiner, M., & Schmidt, B. (2021).
Rendering spatial sound for interoperable experiences in the
audio metaverse. 2021 Immersive and 3D Audio: from
Architecture to Automotive (I3DA),

Khan, K. (2024). Advancements and Challenges in 360 Augmented
Reality Video Streaming: A Comprehensive Review.
International Journal of Computing, 13(1), 1-20.
https://doi.org/10.30534/ijccn/2024/011312024

Latif, S., Shoukat, M., Shamshad, F., Usama, M., Ren, Y.,
Cuayahuitl, H., Wang, W., Zhang, X., Togneri, R., Cambria,
E., & Schuller, B. W. (2023). Sparks of large audio models: A
survey and outlook. arXiv preprint.
https://arxiv.org/abs/2308.12792

Lazzarini, V., Timoney, J., & Keller, D. (2016). Computer music
instruments. Springer. https://doi.org/10.1007/978-3-319-
63504-0

Ota, K., Dao, M. S., Mezaris, V., & Natale, F. G. D. (2017). Deep
learning for mobile multimedia: A survey. ACM Transactions
on Multimedia Computing, Communications, and
Applications (TOMM), 13(3s), 1-22.
https://doi.org/10.1145/3092831

Pulkki, V., & Karjalainen, M. (2015). Communication acoustics.
Wiley. https://doi.org/10.1002/9781119825449

Schaobel, J., Pryss, R., Schickler, M., & Reichert, M. (2016). A
lightweight process engine for enabling advanced mobile
applications. OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems",

Sweet, M. (2014). Writing interactive music for video games.
Addison-Wesley.
https://books.google.com/books?id=CQqSBAAAQBAJ&sou
rce=gbs_navlinks_s

Xue, M., & Zheng, Y. (2025). Exploring Updating Functional and
Design Requirements of Audio Across Diverse Scenarios.
International Conference on Human-Computer Interaction,

Yang, J., Barde, A., & Billinghurst, M. (2022). Audio augmented
reality: A systematic review of technologies, applications, and
future research directions. Journal of the Audio Engineering
Society, 70(10), 788-8009.
https://doi.org/10.17743/jaes.2022.0048

Zhao, T., Xie, Y., Wang, Y., Cheng, J., Guo, X., Hu, B., & Chen,
Y. (2022). A survey of deep learning on mobile devices:
Applications, optimizations, challenges, and research
opportunities. Proceedings of the IEEE, 110(3), 334-354.
https://doi.org/10.1109/JPROC.2022.3153408

13

Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.30534/ijccn/2024/011312024
https://arxiv.org/abs/2308.12792
https://doi.org/10.1007/978-3-319-63504-0
https://doi.org/10.1007/978-3-319-63504-0
https://doi.org/10.1145/3092831
https://doi.org/10.1002/9781119825449
https://books.google.com/books?id=CQqSBAAAQBAJ&source=gbs_navlinks_s
https://books.google.com/books?id=CQqSBAAAQBAJ&source=gbs_navlinks_s
https://doi.org/10.17743/jaes.2022.0048
https://doi.org/10.1109/JPROC.2022.3153408

