

Article history:
Received 03 September 2025
Revised 03 December 2025
Accepted 06 January 2025
Published online 01 September 2026

Journal of Resource Management and
Decision Engineering

Volume 5, Issue 3, pp 1-13

Design and Optimization of a Real-Time Audio Simulation Engine on

Mobile Devices

Mahdi. Habibi1* , Amirhossein. Mirahmadi2 , Mohammad Mahdi. Jalili3

1 B.A., Department of Management, Karaj Sugar Production Company University of Applied Science and Technology, Karaj, Iran

2 M.A., Department of Computer Engineering, Shahid Bahonar University, Kerman, Iran

3 B.A., Department of Computer Engineering, Faculty of Computer Engineering, Hamadan University of Technology, Hamadan, Iran

* Corresponding author email address: themahdihabibi@gmail.com

A r t i c l e I n f o A B S T R A C T

Article type:

Original Research

How to cite this article:

Habibi, M., Mirahmadi, A. & Jalili, M. M.

(2026). Design and Optimization of a Real-

Time Audio Simulation Engine on Mobile

Devices. Journal of Resource Management

and Decision Engineering, 5(3), 1-13.

https://doi.org/10.61838/kman.jrmde.5.3.237

© 2026 the authors. Published by KMAN

Publication Inc. (KMANPUB). This is an

open access article under the terms of the

Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-

NC 4.0) License.

With the rapid expansion of interactive and multimedia applications on smartphones,

real-time audio simulation has become one of the core components in user experience

design. However, the inherent limitations of mobile platforms in terms of

computational capacity, energy consumption, and strict real-time constraints have

turned the design of stable and low-latency audio engines into a major technical

challenge. The objective of the present study is to design and optimize an efficient

architecture for a real-time audio simulation engine on mobile devices that can

establish an appropriate balance between audio quality, real-time responsiveness, and

resource consumption. This study was conducted using a design-oriented and

experimental approach. First, a system-centered architecture based on the separation

of real-time and non-real-time domains was developed. Subsequently, a set of

optimization algorithms and techniques—including adaptive buffer management,

voice capping and voice stealing policies, quality scaling, and conditional

processing—were implemented. The proposed engine was developed on the Android

platform using low-level audio APIs and evaluated through an interactive case study.

The system’s performance was compared with that of a baseline implementation. The

experimental results demonstrated that the proposed architecture significantly

reduced latency and jitter while maintaining the real-time stability of the engine under

high-load conditions. In addition, CPU usage and energy consumption were reduced

in a controlled manner, and the degradation of audio quality was applied gradually

and in a manner perceptually acceptable to users. Perceptual findings further

indicated that users perceived controlled quality degradation as considerably more

tolerable than audio instability or dropouts. The findings suggest that the design of

real-time audio simulation engines on mobile platforms should be grounded in an

architectural and adaptive approach. Emphasizing real-time pipeline management

and intelligent control policies plays a more decisive role in achieving stable and

efficient performance than increasing the complexity of digital signal processing

(DSP) algorithms.

https://doi.org/10.61838/kman.jrmde.5.3.237
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0000-0003-4672-0516
https://orcid.org/0009-0003-4908-9958
https://orcid.org/0009-0002-6819-8618
https://crossmark.crossref.org/dialog/?doi=10.61838/kman.jrmde.4.2.5
http://creativecommons.org/licenses/by-nc/4.0

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 2

Keywords: Real-Time Audio Processing; Mobile Audio Engine; Latency and

Jitter; Adaptive Optimization; Interactive Multimedia Systems

1. Introduction

he contemporary digital ecosystem is increasingly

shaped by immersive, interactive, and multimedia-rich

applications, in which audio has emerged as a decisive factor

in shaping user experience, engagement, and perceived

realism. From mobile gaming and augmented reality (AR) to

social media, virtual collaboration platforms, and the

emerging audio metaverse, sound is no longer a secondary

enhancement but a core functional component of system

design (Collins, 2008; Jot et al., 2021; Sweet, 2014; Yang et

al., 2022). Recent developments in human–computer

interaction emphasize that users’ perception of system

responsiveness, spatial presence, emotional engagement,

and overall satisfaction are strongly mediated by the quality,

stability, and real-time behavior of audio rendering pipelines

(Fırat et al., 2022; Xue & Zheng, 2025; Yang et al., 2022).

Consequently, the engineering of real-time audio systems

has become a strategic concern for designers of mobile and

interactive platforms.

Mobile computing now dominates global digital

interaction, yet mobile platforms impose severe constraints

on computational resources, energy consumption, memory

capacity, and timing determinism. These constraints directly

challenge the feasibility of high-quality real-time audio

simulation. The coexistence of heterogeneous hardware

architectures, dynamic operating system scheduling,

aggressive power management policies, and competing

application workloads introduces nontrivial sources of

latency, jitter, and instability in audio pipelines

(Jahangashteh et al., 2022; Ota et al., 2017; Zhao et al.,

2022). While desktop-class systems can often tolerate

inefficient designs through brute-force computing power,

mobile systems demand carefully engineered architectures

that explicitly balance performance, resource efficiency, and

real-time reliability.

At the same time, the functional role of audio has

expanded dramatically. Modern applications increasingly

rely on complex audio behaviors such as spatial sound

rendering, adaptive soundscapes, interactive music systems,

and procedural audio synthesis. These behaviors require

continuous parameter modulation, low-latency response to

user input, and seamless integration of multiple concurrent

sound sources (Farnell, 2010; Lazzarini et al., 2016; Pulkki

& Karjalainen, 2015). The growth of audio augmented

reality and spatial audio for immersive environments further

intensifies the computational burden placed on mobile audio

engines (Fırat et al., 2022; Jot et al., 2021; Yang et al., 2022).

These trends have elevated the design of real-time audio

engines from a purely technical problem to a strategic design

challenge that directly affects product success and user

adoption.

Concurrently, advances in machine learning and large-

scale audio modeling have begun to influence audio

processing pipelines. Deep learning has enabled powerful

new capabilities such as content-aware sound synthesis,

intelligent noise suppression, adaptive sound classification,

and perceptual optimization (Deng, 2019; Latif et al., 2023;

Zhao et al., 2022). However, deploying such techniques on

mobile devices introduces new constraints, as the

computational and energy costs of deep neural models must

be carefully managed in real time (Ota et al., 2017; Zhao et

al., 2022). The integration of intelligent audio processing

therefore magnifies the importance of architectural

efficiency, adaptive resource management, and stable real-

time execution.

Despite the central importance of audio, many mobile

applications still rely on simplistic audio frameworks that

were not designed for heavy interactive workloads.

Traditional mobile audio APIs provide basic playback and

mixing services but often lack advanced scheduling control,

fine-grained resource management, and robust mechanisms

for ensuring deterministic timing under load (Jahangashteh

et al., 2022; Schobel et al., 2016). As application complexity

grows, these limitations become increasingly visible to users

through audible artifacts such as dropouts, clicks,

inconsistent spatialization, delayed feedback, and unstable

audio scenes. Empirical studies in interactive media

demonstrate that such artifacts significantly degrade

perceived quality and user engagement, even when visual

performance remains high (Collins, 2008; Fırat et al., 2022;

Sweet, 2014).

The management implications of these technical

challenges are substantial. For firms operating in

competitive digital markets, the quality and reliability of

interactive audio systems directly influence customer

retention, brand perception, and market differentiation.

Audio failures in games, AR applications, or collaborative

platforms can erode trust and reduce user adoption, while

stable and immersive sound design can enhance perceived

innovation and product value (Khan, 2024; Xue & Zheng,

2025). Consequently, the design of real-time audio engines

T

https://journals.kmanpub.com/index.php/jppr/index

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 3

is no longer confined to engineering departments but has

become a strategic asset that shapes product competitiveness

and organizational performance.

From a system design perspective, the core difficulty lies

in maintaining strict real-time constraints while

simultaneously executing complex audio processing,

resource management, and application logic on limited

mobile hardware. Real-time audio threads must complete

their computations within hard deadlines imposed by buffer

scheduling; failure to do so results in underruns and audible

dropouts. Meanwhile, non-real-time application

components—such as user interfaces, networking, file I/O,

and analytics—compete for the same underlying resources,

creating unpredictable execution patterns (Jahangashteh et

al., 2022; Schobel et al., 2016). The absence of robust

architectural separation between these domains remains a

fundamental weakness of many existing systems.

Prior research in audio engineering, computer music, and

multimedia systems has established numerous foundational

principles for real-time sound synthesis, signal processing,

and spatial audio rendering (Farnell, 2010; Lazzarini et al.,

2016; Pulkki & Karjalainen, 2015). However, much of this

literature was developed in contexts where computational

resources were relatively abundant or where systems

operated under controlled laboratory conditions. The

translation of these principles into mobile environments—

characterized by energy constraints, heterogeneous

hardware, and unpredictable operating system behavior—

requires significant architectural adaptation (Ota et al., 2017;

Zhao et al., 2022).

Recent surveys of mobile multimedia and deep learning

on mobile devices highlight that efficient system-level

optimization, rather than raw algorithmic sophistication,

often determines practical success (Deng, 2019; Ota et al.,

2017; Zhao et al., 2022). This observation aligns with

emerging work on lightweight mobile process engines and

adaptive system architectures, which emphasizes the

importance of minimizing critical execution paths, isolating

time-sensitive workloads, and applying dynamic quality

control to preserve responsiveness under fluctuating

resource conditions (Schobel et al., 2016; Xue & Zheng,

2025). In the audio domain, this suggests that architectural

design and resource governance may play a more decisive

role in achieving stable performance than incremental

improvements in signal processing algorithms alone.

Moreover, the evolution of immersive media

ecosystems—particularly AR, VR, and the audio

metaverse—has introduced new requirements for

interoperability, spatial coherence, and perceptual

consistency across devices and platforms (Fırat et al., 2022;

Jot et al., 2021; Yang et al., 2022). These requirements

further complicate mobile audio engine design by

demanding scalability, adaptability, and cross-platform

compatibility, all within the strict confines of mobile

hardware constraints.

Despite these developments, the literature reveals a

notable gap: while substantial research addresses individual

components of audio processing, spatialization, or mobile

optimization, comparatively little work has proposed

integrated architectural frameworks that holistically address

latency, jitter, resource efficiency, and perceptual quality in

real-time mobile audio engines. Existing studies often focus

either on high-level interaction design (Collins, 2008; Sweet,

2014), low-level signal processing (Farnell, 2010; Pulkki &

Karjalainen, 2015), or mobile system optimization (Ota et

al., 2017; Zhao et al., 2022), without unifying these

perspectives into a coherent real-time engine architecture.

In addition, as audio content becomes increasingly

procedural, adaptive, and data-driven, the complexity of

real-time control systems grows accordingly. Advanced

audio behaviors now depend on dynamic parameter

scheduling, real-time event handling, and continuous

environmental feedback, all of which impose new

constraints on engine stability and performance (Jot et al.,

2021; Latif et al., 2023; Yang et al., 2022). Without

systematic architectural support, these features risk

overwhelming mobile platforms and undermining user

experience.

From a managerial viewpoint, the lack of robust

architectural solutions introduces operational risks.

Development teams may resort to ad hoc optimizations that

yield short-term improvements but lack scalability and

maintainability. Such approaches increase technical debt,

prolong development cycles, and complicate future product

evolution. In contrast, well-designed audio engine

architectures can serve as reusable organizational assets,

reducing development cost, accelerating innovation, and

supporting long-term product strategies (Khan, 2024; Xue &

Zheng, 2025).

Taken together, these considerations underscore the

urgent need for systematic, architecture-driven approaches

to the design of real-time audio simulation engines for

mobile platforms. Such approaches must explicitly address

latency and jitter control, adaptive resource management,

scalability under dynamic workloads, and preservation of

perceptual quality, while remaining compatible with the

https://journals.kmanpub.com/index.php/jppr/index

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 4

practical constraints of mobile hardware and operating

systems (Ota et al., 2017; Schobel et al., 2016; Xue & Zheng,

2025; Zhao et al., 2022).

Accordingly, this study is situated at the intersection of

interactive media engineering, mobile computing, and

management-oriented system design. By integrating insights

from audio engineering, multimedia systems, and mobile

optimization research, it seeks to contribute both technically

and strategically to the development of more reliable and

efficient mobile audio infrastructures (Farnell, 2010; Khan,

2024; Lazzarini et al., 2016; Pulkki & Karjalainen, 2015;

Zhao et al., 2022).

The aim of this study is to design and empirically evaluate

an adaptive, architecture-driven real-time audio simulation

engine for mobile platforms that minimizes latency and jitter

while optimizing resource consumption and preserving

perceptual audio quality under dynamic workload

conditions.

2. Methods and Materials

Design of the Audio Simulation Engine Architecture

The proposed architecture for a real-time audio

simulation engine on mobile devices is presented; an

architecture whose objective is to reduce latency and jitter,

ensure output stability, and optimize CPU, memory, and

energy consumption under real-world operating conditions.

The central design concept is the construction of a short,

predictable, and low-overhead processing path that is

decoupled from application logic and executed within an

independent audio loop. The primary objectives include real-

time responsiveness, temporal stability, lightweight

operation, and controlled scalability.

Mobile Platform Constraints

Mobile platforms impose strict constraints, including

limited CPU and GPU resources, operating system energy

management policies, thread scheduling restrictions, and

substantial heterogeneity in hardware and audio APIs. The

architecture is therefore designed as a layered pipeline

comprising two distinct execution domains:

Audio Thread

A real-time loop responsible exclusively for time-critical

operations:

Mixing → DSP → Output Buffer

Control Thread

Handles resource loading, audio scene management,

analytics, input/output operations, networking, and user

interface processing. This separation ensures that

application-level interruptions and heavy workloads exert

minimal influence on audio output stability.

Core System Modules

Audio I/O Backend

Interface with the operating system’s audio output.

Android: AAudio (preferred) or OpenSL ES

iOS: Core Audio / Audio Units

Its function is to respond to output buffer fill requests and

provide PCM frames.

Audio Graph / Routing

The engine is conceptually modeled as an audio graph:

Nodes: Source, Mixer, Effect, Spatializer, Output

Edges: Signal paths

This model enables structured composition of sources and

effects without introducing complexity into the real-time

loop.

Audio Resource Management

Management of concurrent channels and implementation

of voice stealing policies. Prioritization is enforced (e.g.,

UI/interaction sounds supersede ambience), low-importance

sources are attenuated or terminated under CPU pressure,

and computational overload in dense scenes is prevented.

Event and Parameter System

Application events are transformed into audio commands

(Play/Stop, parameter changes). Commands are transmitted

to the Audio Thread using lock-free or minimally locked

structures to minimize blocking latency.

DSP Engine

Signal processing chain:

Resampling

Filtering / Equalization

Dynamics / Compression

Lightweight or convolution-based reverb

Spatialization (Stereo Panning / HRTF)

The DSP design is block-oriented and dynamically

enabled or disabled in response to system load.

Buffer Manager

Manages input/output buffers and prevents underruns:

Double/Triple buffering

Ring buffers for inter-thread data exchange

This module is essential for latency control while

preserving system stability.

Resource and Streaming Manager (Non-Real-Time)

Handles file loading, decoding (AAC/Opus/MP3),

caching, and streaming. The output is delivered as

preprocessed buffers to the Audio Thread.

Data and Control Flow

https://journals.kmanpub.com/index.php/jppr/index

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 5

Control flow: The application generates an event (e.g.,

“collision sound”) → the event is placed in the Event Queue

→ the Audio Thread retrieves the queue at the start of each

callback and updates state without heavy processing.

Data flow: Voices generate or read samples → signals are

summed in the Mixer → DSP is applied → the output buffer

is filled and delivered to the Backend.

Concurrency and Threading Design

Minimum recommended configuration: one real-time

thread, one control thread, and one optional auxiliary thread.

Core Principles

No memory allocation within callbacks, no file/network

I/O, no heavy locks or long mutex operations, and strictly

predictable execution time. Ring buffers are employed for

continuous data streams, and lock-free or ultra-lightweight

queues are used for control messages.

Key Design Decisions for Latency and Jitter

Reduction

Critical path minimization: All non-essential operations

are removed from the Audio Thread.

Adaptive buffer sizing: Under CPU pressure, the buffer is

moderately increased to avoid underruns; under stable

conditions, it is reduced to minimize latency.

Adaptive quality control: Computationally intensive

effects are disabled or degraded when system load rises.

Precomputation and caching: Wavetables, filter

coefficients, routing paths, and lookup tables are prepared in

advance.

Voice capping and stealing: Upper bounds are imposed

on concurrent voices, with intelligent removal policies.

To ensure implementability and testability, the engine’s

internal API is recommended to expose the following

interfaces:

Engine.init

Engine.submitEvent

Engine.setParam

Engine.render

Engine.setQualityMode

Architectural Validity Criteria

The architecture is considered successful if callbacks

consistently complete before their deadlines, jitter remains

low and stable, performance degradation is gradual and

controlled as voice count increases, and perceptual audio

quality in real-world scenarios is preserved or degrades in a

“justifiable and manageable” manner. The proposed

architecture is founded on a single critical principle: strict

separation of the real-time domain from the control and non-

real-time domain. Any operation that is potentially time-

consuming, unpredictable, or I/O-dependent is excluded

from the audio execution path to minimize latency and jitter

and guarantee system stability.

Primary Execution Domains

A) Audio Thread

This thread is invoked by the operating system (via

callback or pull model) to fill the output buffer and executes

only time-critical tasks: ingestion of lightweight control

messages, generation or reading of active voice samples,

multichannel mixing, lightweight and configurable DSP

(EQ, filtering, spatialization, reverb), output buffer

population, and delivery to the Audio Backend.

Strict Constraints: no memory allocation, no I/O, no

heavy locking, no unpredictable operations.

B) Control / Application Thread (Non-Real-Time)

All operations that may induce blocking or timing

variability are handled here: application and game logic, user

interface processing, file loading, effect and parameter

preparation, high-level decision making, logging, and

system monitoring.

Core System Blocks

Operating system audio API bridge (AAudio/OpenSL ES

on Android, Core Audio on iOS) responsible for buffer

exchange and preservation of sample rate and format

integrity.

The real-time core consists of:

Real-Time Engine Core

Event / Command Ingest

Voice Manager

Mixer

DSP Chain

Buffer Manager

Command Queue

A lightweight, preferably lock-free, command

transmission path is established from the Control Thread to

the Audio Thread for:

Play/Stop

SetParameter (gain, pitch, position, filter)

ChangeScene / Route

Resource and Streaming Subsystem (Non-Real-Time)

Handles loading, decoding, caching, and streaming of

audio assets; outputs “consumption-ready buffers” for

Voices.

Profiler and Monitor (Non-Real-Time)

Collects metrics including CPU load, underrun count,

callback execution time, jitter, estimated latency, and

adaptive quality decisions.

Overall Data and Control Flow

https://journals.kmanpub.com/index.php/jppr/index

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 6

Control flow: Application generates an event → event is

converted into an audio command → command enters the

Command Queue → Audio Thread retrieves the command

at callback start and updates state.

Data flow: Voices generate or read samples → Mixer

combines output → DSP applies processing → Buffer

Manager manages the buffer → Audio Backend transmits

the buffer to hardware.

Conceptual Architecture Representation

Non-Real-Time Domain

App/UI/Game Logic

Resource Loader / Decoder / Streamer

Profiler and Quality Controller

↓ (Commands / Parameters)

Command Queue (RT-Safe)

↓

Real-Time Domain

Event Ingest

Voice Manager

Mixer

DSP Chain

Buffer Manager

↓

Audio Backend (AAudio / Core Audio)

↓

Speaker / Headphones

Stability and Optimization Logic in the Overall

Architecture

Real-time loop remains short and predictable: only

essential processing occurs within callbacks.

Quality scaling: if CPU load increases, heavy effects are

degraded or disabled to prevent underruns.

Voice capping and stealing: concurrent voices are capped

and low-priority sources are removed.

Adaptive buffering: buffer size is adjusted within

permissible limits to balance latency and stability.

Resource pre-decoding and preparation outside the real-

time domain to prevent jitter.

Optimization Algorithms and Methods

This section presents a set of implementable methods for

optimizing the audio engine that directly affect latency,

jitter, output stability, and CPU/memory/energy

consumption. The overarching approach is to tightly control

the “critical path” (Audio Thread) and migrate any non-

deterministic or heavy operations to the non-real-time

domain.

Latency Reduction at the Architectural and Buffer

Levels

Real-time performance optimization in audio processing

engines requires coordinated decisions at the architecture,

scheduling, and resource-management levels, with a core

emphasis on reducing delay and controlling temporal

variability. One of the most fundamental elements in this

pathway is buffer-size optimization because buffer latency

is directly proportional to buffer size. Specifically, if the

sampling rate is 𝑓𝑠and the buffer size is 𝑁, the buffer-induced

delay is approximately Latency
𝑏𝑢𝑓𝑓𝑒𝑟

≈ 𝑁/𝑓𝑠. Accordingly,

the optimal strategy is to select the smallest stable buffer size

and then, through continuous monitoring of underrun events,

dynamically apply a bounded increase in buffer size under

computational pressure—an approach commonly referred to

as adaptive buffering.

Alongside buffer management, shortening the audio

output path is of particular importance. In practice,

unnecessary format conversions—such as repeated float-to-

int and int-to-float casts—should be avoided within the

Audio Thread. Likewise, resampling should be eliminated

from the real-time path; if resampling is unavoidable, only

lightweight, low-cost, preconfigured resamplers should be

used to prevent unpredictable computational load.

From the perspective of perceived audio quality, smooth

parameter scheduling is critical. Changes to gain, pitch, or

filter parameters should not be applied abruptly; instead,

linear or exponential ramps should be applied over multiple

consecutive frames to prevent clicks and artifacts.

Jitter control and real-time stability also require RT-safe

design, meaning that no non-deterministic operations occur

within the Audio Thread. Concretely, the use of malloc/new,

file or network I/O, heavy logging, complex string

operations (e.g., regex processing or string formatting), and

long-held mutex locks should be strictly prohibited. In

contrast, only constant-time computations, direct array

accesses, and lock-free queue structures should be permitted.

Consistent with this design logic, using a lock-free or

minimally locked message queue for communication

between the Control Thread and the Audio Thread is

recommended. Commands such as Play, Stop, and SetParam

should be generated on the Control Thread, while the Audio

Thread should consume them in batches at the beginning of

each callback.

In addition, file decoding and network streaming should

be delegated to separate threads, and decoded output should

be prepared as PCM chunks in a ring buffer, such that the

Audio Thread is responsible solely for reading ready-to-

consume data.

https://journals.kmanpub.com/index.php/jppr/index

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 7

Finally, configuring the scheduling policy and priority of

the audio thread—within the constraints imposed by the

operating system—is highly consequential. A reasonable

elevation of Audio Thread priority can reduce preemption

and callback execution variability, thereby materially

improving real-time stability and perceived audio quality.

Algorithm-Level DSP Optimization

Algorithm-level optimization of digital signal processing

(DSP) is among the most effective strategies for achieving

stable, low-latency performance in audio engines,

particularly on mobile platforms where compute and energy

constraints make algorithm design a critical challenge. In

this context, block-based processing (as opposed to sample-

by-sample processing) plays a central role in reducing

computational overhead. Applying effects to blocks of audio

frames improves memory locality and significantly reduces

the overhead of repeated function calls.

Consistent with this approach, designing simple loops,

using small and inline functions, and avoiding complex

conditional and heavily branched execution paths can make

execution time more predictable and reduce jitter on the

Audio Thread.

Effect selection should also be guided by a mobile-first,

lightweight mindset. For example, while full convolution

reverb with long impulse responses can be perceptually

superior, it is computationally expensive and typically

unsuitable for most mobile use cases. Instead, lightweight

structures such as Schroeder reverberators or feedback delay

networks (FDNs) with a limited number of taps can offer a

practical balance between quality and efficiency.

Similarly, in spatialization, many mobile scenarios are

adequately served by simple stereo panning combined with

distance attenuation. Full head-related transfer function

(HRTF) processing should be restricted to high-quality

modes or specific conditions to avoid unnecessary

computational cost.

A subtle but operationally important challenge in

floating-point DSP is the presence of denormal numbers—

very small floating-point values that can cause severe CPU

slowdowns. This issue commonly appears in filters and

reverb tails and, if unaddressed, can compromise real-time

stability. Common mitigation techniques include adding a

very small, controlled noise floor to the signal or enabling

flush-to-zero (FTZ) and denormals-are-zero (DAZ) modes

on platforms and processors that support these features.

Finally, intelligent use of precomputation and lookup

tables (LUTs) is among the most effective techniques for

reducing real-time computational load. Expensive functions

such as sine/cosine for LFOs, envelope curves, and constant

filter coefficients should be precomputed and stored in tables

rather than repeatedly evaluated within the Audio Thread.

By removing repetitive high-cost operations from the real-

time path, this approach improves throughput, enhances

temporal stability, and supports overall DSP engine quality.

Low-Level Computational Optimization

Low-level computational optimization is a critical layer

in real-time audio engine design that directly affects

performance, energy usage, and temporal stability,

particularly on mobile hardware. One of the most effective

tools at this level is exploiting SIMD capabilities—

especially NEON on ARM architectures and Android

devices. SIMD enables parallel execution of repeated,

independent operations such as signal mixing, gain

application, short FIR filtering, and other vector

computations across multiple audio samples simultaneously.

The greatest benefit is achieved in tight loops that process

contiguous arrays of PCM samples, where parallelism can

significantly reduce CPU cycles and increase execution-time

predictability. However, effective SIMD usage requires

careful data layout and appropriate memory alignment to

avoid unintended overhead.

In addition to floating-point computation, selective use of

fixed-point arithmetic in specific components can be an

effective strategy for reducing CPU load, especially on

lower-end devices or in effects with constrained dynamic

range and simpler computational patterns. Although fixed-

point can offer speed and energy advantages compared with

float, it introduces nontrivial trade-offs: algorithm design,

scaling, and calibration become more complex, and the risks

of reduced numerical precision and clipping increase.

Therefore, fixed-point should be used selectively and only

after a careful analysis of hardware constraints and quality

requirements.

At the level of data architecture and control flow,

reducing branching and cache misses plays a decisive role in

real-time performance. Excessive conditional branching can

degrade branch prediction and introduce variability in

callback execution time; thus, branchless designs or minimal

conditional logic—particularly in the real-time path—are

recommended.

Memory layout is equally important. Storing voice data

and mixing parameters in cache-friendly structures can

increase cache hit rates. In this context, adopting a structure-

of-arrays (SoA) pattern rather than an array-of-structures

(AoS) is often more efficient for mixing loops because it

https://journals.kmanpub.com/index.php/jppr/index

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 8

facilitates sequential access to homogeneous arrays and

reduces unnecessary data loads.

Finally, heavy polymorphism, virtual functions, and

dynamic dispatch should be avoided in the real-time path

because they increase branching and reduce execution-time

predictability, which is inconsistent with the strict

constraints of real-time audio processing.

Optimization of Audio Resource Management

Managing concurrent voices and computational resources

in real-time audio engines becomes determinative when the

number of audio events exceeds hardware capacity. Voice

control strategies can therefore distinguish between stable

output and a user experience dominated by underruns and

quality degradation.

As a foundational policy, voice capping limits the

maximum number of simultaneous voices based on device

capability (e.g., 16, 24, or 32) to prevent saturation.

However, because real-world demand may exceed this cap,

the system must apply intelligent eviction strategies.

Priority- and perceptually informed voice stealing is

crucial in this context. Lower-priority sounds are sacrificed

before critical UI or high-salience effects (e.g., UI > SFX >

ambience). Current signal amplitude is also a practical

criterion: quieter voices are removed first to minimize

perceptual disruption. Distance from the listener is another

scene-based perceptual metric; more distant sources are

typically removed at lower perceptual cost. Many systems

additionally consider “time remaining to completion,” as

retaining a nearly finished sound can prevent abrupt and

artificial cutoffs.

Beyond removal, virtualization is a more nuanced

strategy for distant or low-importance sources. Instead of

executing the full DSP chain, the engine updates only the

logical state while keeping the actual output at or near zero.

This preserves scene coherence (e.g., enabling natural re-

entry when the listener approaches) while minimizing

processing cost.

In parallel, memory optimization and eliminating

allocations in the real-time path are essential. Using memory

pools or object pools for entities such as voices, events, and

buffers removes dynamic allocation from the Audio Thread

and improves temporal predictability.

Zero-copy buffering is also valuable: by reducing multi-

stage copying, it lowers CPU overhead and memory

bandwidth pressure. The ideal data path is that decoded

audio is written directly into a ring buffer and then

transferred to the output buffer during render/mix without

additional intermediate copies.

From an energy perspective, energy-aware audio design

enables the engine to scale quality dynamically based on

processor load and battery conditions. Defining

Low/Medium/High modes and using triggers such as CPU

load, underrun rate, device temperature, and battery state

supports dynamic decision-making. Practically, the engine

can disable reverb, reduce oversampling, simplify

spatialization, or even lower the voice cap to prevent thermal

throttling and rapid battery drain.

Conditional processing is also highly effective. If the

output is silent or near-silent, parts of the DSP chain can be

bypassed; if no voices are active, the engine can enter a sleep

state to avoid wasting compute cycles and energy.

To ensure these decisions are genuinely “intelligent,” a

lightweight feedback loop should run in the non-real-time

domain to monitor indicators such as callback time (mean

and 95th percentile), underrun count, CPU usage, latency

estimates, and active voice count. Based on these signals, the

system can adaptively apply actions such as changing the

quality mode, bounded buffer-size adjustment, decreasing or

increasing the voice cap, and enabling or disabling effects.

3. Findings and Results

Study Model Design

To empirically assess the proposed architecture, a case

study with characteristics closely aligned with real-world

applications was designed to systematically evaluate the

behavior of the real-time audio simulation engine under

dynamic and high-load conditions. The selected scenario is

an interactive audio scene similar to a game or augmented

reality (AR) environment, in which the user generates

frequent audio events by tapping the screen or through

collisions among virtual objects. Each event triggers a short

sound effect (SFX) with variable parameters, such that

loudness is a function of collision speed or impact intensity,

pitch depends on distance or object type, and panning

depends on the horizontal position of the audio source.

Concurrently, a background ambience layer and a

lightweight looped music track are played to approximate a

realistic application workload. The number of events is

increased in a controlled manner to evaluate the engine

across multiple load levels. Accordingly, three test profiles

were defined: in the low-load condition, with 4–8

simultaneous voices and minimal DSP, the engine is

expected to operate with negligible latency and temporal

variability; in the medium-load condition, with 16–24

simultaneous voices and active filtering and panning,

https://journals.kmanpub.com/index.php/jppr/index

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 9

stability and resource consumption are examined more

rigorously; and in the high-load condition, with more than

32 simultaneous voices and lightweight reverb and

simplified spatialization enabled, adaptive mechanisms such

as voice stealing and quality scaling are expected to engage.

For precise evaluation, a set of real-time metrics—including

callback execution time (mean and 95th percentile),

underrun count, and jitter—were recorded as primary

indicators of real-time success or failure. In parallel,

resource metrics such as average and peak CPU utilization,

memory footprint attributable to pools and buffers, and—

where feasible—energy indicators or battery discharge rate

were monitored. The perceptual quality dimension was also

considered through listening checks to identify clicks,

dropouts, or distortion, and to evaluate whether quality

reductions during scaling occurred gradually. Finally, to

ensure the case study was not merely demonstrative, a

pressure-response control policy was defined. As callback

time approached a risk threshold or an underrun occurred,

the system first reduced effect quality or disabled reverb,

then lowered the voice cap, activated priority- and

amplitude-based voice stealing, and—if pressure

persisted—applied a bounded increase to framesPerBuffer

within allowable limits. This policy illustrates how the

engine establishes a deliberate and managed trade-off

between latency and stability.

Applied Scenario

In this scenario, the user generates multiple audio events

via screen taps or collisions among virtual objects. Each

event triggers a short sound effect (SFX) with dynamic

parameters, such that loudness depends on collision speed,

pitch depends on distance or object type, and panning

depends on the horizontal position of the audio source.

Simultaneously, a background ambience layer and a

lightweight looped music track are played to establish a

stable workload consistent with realistic conditions. Event

frequency is controllable to examine engine behavior under

different levels of pressure. Three load profiles were

defined: in the low-load condition, with 4–8 simultaneous

voices and minimal DSP, the engine is expected to exhibit

minimal latency and temporal variability; in the medium-

load condition, with 16–24 simultaneous voices and filtering

and panning enabled, stability and resource usage are

evaluated more stringently; and in the high-load condition,

with more than 32 simultaneous voices and lightweight

reverb and simplified spatialization enabled, adaptive

mechanisms such as voice stealing and quality scaling are

expected to activate. The evaluation is based on three classes

of metrics: real-time metrics (callback execution time—

mean and 95th percentile—underrun count, and jitter),

resource metrics (CPU consumption, memory footprint, and

energy indicators), and perceptual metrics assessing

listening quality, the presence of clicks or dropouts, and the

manner in which quality degrades during scaling. To prevent

abrupt real-time failure, a pressure-response policy is

triggered when callback time approaches a risk threshold or

when an underrun occurs. This policy sequentially includes

reducing or bypassing reverb, lowering the voice cap,

activating voice stealing based on priority and signal

amplitude, and—if pressure persists—applying a bounded

increase in buffer size. This control logic demonstrates that

the engine manages the latency–stability trade-off

deliberately rather than incidentally.

Implementation

Android was selected as the primary implementation

platform because its hardware diversity and well-known

latency and jitter challenges make it an appropriate

environment for evaluating real-time architectures. The

engine’s audio output was implemented using AAudio, with

a compatibility path to OpenSL ES enabled on devices

where AAudio is unavailable. A target sampling rate of 48

kHz was adopted, with planned compatibility for 44.1 kHz.

The real-time core and DSP components were developed in

C/C++ to ensure strict control over execution time and

memory behavior, while the application layer was

implemented in Kotlin/Java, using a build system based on

CMake and the Android NDK.

The real-time core operates within a callback loop that

performs only time-sensitive operations. At the start of each

callback, control messages are consumed in batches from a

real-time-safe queue. Next, each voice state—including

activation status, envelope, and spatial parameters—is

updated; samples are generated or read; multi-source mixing

is performed; and a minimal DSP chain is applied. Finally,

the output data are written into the output buffer and

delivered to the backend. No dynamic memory allocation,

I/O operations, or heavy locks are used in this section to

preserve execution-time predictability.

The Control layer executes on a non-real-time thread and

is responsible for receiving application events, translating

them into audio commands (e.g., Play/Stop), and applying

adaptive policies such as quality scaling and voice capping.

Audio file loading, decoding, and streaming are handled in

the Resource/Streaming layer, and their outputs are placed

as ready-to-consume PCM chunks in a ring buffer, ensuring

that the Audio Thread functions purely as a data consumer.

https://journals.kmanpub.com/index.php/jppr/index

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 10

To ensure stability, a lightweight monitoring loop in the

non-real-time domain tracks indicators such as callback

time, underrun count, and CPU consumption, and applies

decisions such as reducing effect quality, adjusting the voice

cap, or making bounded buffer-size changes. This

implemented approach indicates that the proposed

architecture can maintain a managed balance among latency,

stability, and resource consumption in real executions.

Evaluation and Experimental Results

Experiments were conducted on multiple Android

devices with different hardware tiers, including mid-range

and high-end devices, to assess engine behavior across

heterogeneous conditions. The system sampling rate was set

to 48 kHz, and the initial buffer size was configured at 256

frames. Each experiment ran for at least 120 seconds to

enable evaluation of temporal stability over extended

intervals. For a fair comparison, two reference

configurations were defined: (1) a baseline implementation

consisting of a simple audio engine with no adaptive

policies, fixed DSP, and no voice stealing mechanisms; and

(2) the proposed implementation incorporating all

architectural components described above, including

adaptive buffering, voice capping and stealing,

virtualization, and quality scaling.

The evaluation used four classes of metrics. Timing

metrics included end-to-end latency, audio callback

execution time (mean and 95th percentile), and jitter as the

measure of temporal variability. Stability metrics included

underrun counts and perceptually detectable dropout events.

Resource metrics included average and peak CPU usage,

memory footprint, and energy indicators or battery discharge

rate (where supported by the operating system). Finally,

perceptual metrics were assessed via listening evaluations to

detect clicks, noise, rhythmic instability, and quality

degradation under load.

The timing results indicated that, in the proposed

implementation, effective system latency decreased

substantially. Under low-load scenarios, latency remained

within a range that was effectively imperceptible to users,

whereas the baseline implementation exhibited a gradual and

noticeable latency increase as the number of simultaneous

voices grew. Callback execution-time analysis further

showed that the optimized configuration not only reduced

mean callback time but also reduced temporal dispersion. In

particular, the 95th percentile of callback time remained at a

safer margin from the buffer deadline, indicating higher

predictability and a lower risk of real-time failure.

In the assessment of real-time stability and load

management, the difference between the two approaches

became explicit. Under high-load conditions—more than 32

simultaneous voices with effects enabled—the baseline

implementation experienced multiple underruns, manifested

as perceptible audio dropouts. In contrast, the proposed

architecture prevented sustained underruns by activating

voice stealing in a timely manner and gradually reducing

effect quality. These results indicate that the adaptive

approach can manage the trade-off between audio quality

and real-time stability in a controlled and predictable

manner, rather than allowing abrupt system failure.

4. Discussion and Conclusion

The present study examined the effectiveness of an

adaptive, architecture-driven real-time audio simulation

engine on mobile platforms with respect to latency, jitter,

system stability, resource consumption, and perceptual

audio quality. The empirical findings demonstrate that the

proposed architecture substantially improves real-time

performance compared with a baseline mobile audio engine

lacking adaptive mechanisms. Specifically, the optimized

engine achieved significantly lower end-to-end latency,

reduced temporal variability in callback execution, near-

elimination of sustained underruns under high load, and a

controlled, perceptually acceptable degradation of audio

quality when system pressure increased. These outcomes

validate the central premise of this research: that

architectural design and adaptive control strategies are

decisive factors in achieving reliable and efficient real-time

audio processing on constrained mobile hardware.

One of the most prominent findings was the marked

reduction in effective latency and jitter in the optimized

implementation. The lower mean callback execution time

and the narrower dispersion of callback timing—particularly

the improved 95th percentile margin relative to buffer

deadlines—indicate a substantial increase in execution-time

predictability. This aligns with prior research emphasizing

that minimizing the critical execution path and isolating

time-sensitive workloads are essential for stable mobile

multimedia performance (Schobel et al., 2016; Xue &

Zheng, 2025). The present results extend this principle

specifically to interactive audio systems, demonstrating that

architectural separation between real-time and non-real-time

domains materially improves timing determinism in

practice. These findings are also consistent with broader

mobile optimization studies that identify system-level

https://journals.kmanpub.com/index.php/jppr/index

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 11

design as a stronger determinant of real-time behavior than

isolated algorithmic improvements (Ota et al., 2017; Zhao et

al., 2022).

The observed improvements in real-time stability,

particularly under high-load conditions, further reinforce the

value of adaptive resource management. Whereas the

baseline engine experienced repeated underruns and audible

dropouts when the number of concurrent voices exceeded

32, the proposed engine maintained stable output through

timely activation of voice stealing, gradual effect quality

reduction, and bounded buffer-size adjustments. This

behavior reflects the adaptive control philosophy advocated

in recent mobile systems research, which stresses dynamic

workload management and graceful degradation as

necessary responses to resource variability (Deng, 2019;

Zhao et al., 2022). In the audio domain, the present findings

confirm that such adaptive strategies not only preserve

system stability but also prevent abrupt perceptual failures

that are highly detrimental to user experience (Collins, 2008;

Sweet, 2014).

Importantly, the perceptual evaluation component

revealed that users consistently preferred controlled quality

reduction over audible instability or dropouts. This result

corroborates long-standing observations in game audio and

interactive media that continuity and responsiveness

dominate user satisfaction more strongly than absolute

fidelity (Collins, 2008; Sweet, 2014). It also aligns with

contemporary work in spatial and immersive audio, which

emphasizes perceptual coherence and temporal consistency

as key determinants of presence and engagement (Fırat et al.,

2022; Jot et al., 2021; Yang et al., 2022). The present study

thus provides empirical support for prioritizing perceptual

stability over raw processing complexity in mobile audio

engine design.

From a technical perspective, the success of the proposed

engine can be attributed largely to its architecture-driven

design. The strict isolation of the Audio Thread from non-

deterministic operations—such as I/O, dynamic memory

allocation, and heavy synchronization—proved instrumental

in maintaining predictable execution. This result is

consistent with the design principles articulated in real-time

audio engineering and computer music literature, which

emphasize constant-time operations, minimal branching,

and deterministic scheduling as prerequisites for reliable

real-time sound processing (Farnell, 2010; Lazzarini et al.,

2016; Pulkki & Karjalainen, 2015). However, the present

study advances this literature by demonstrating how these

principles can be operationalized within the constraints of

mobile operating systems and heterogeneous hardware.

The integration of adaptive quality scaling further

contributed to system robustness. By selectively degrading

computationally intensive effects such as reverb and

spatialization under load, the engine preserved timing

guarantees without fully sacrificing auditory coherence. This

strategy resonates with findings from immersive audio

research, which highlight that simplified spatial models and

lightweight reverberation often provide sufficient perceptual

realism in mobile and AR contexts (Fırat et al., 2022; Yang

et al., 2022). It also aligns with emerging trends in mobile

deep learning and multimedia optimization, where dynamic

model scaling and conditional execution are increasingly

employed to balance performance and resource constraints

(Latif et al., 2023; Zhao et al., 2022).

Resource consumption metrics further validate the

effectiveness of the proposed approach. The controlled

reduction in CPU utilization and memory footprint under

high-load conditions confirms that adaptive voice

management, virtualization, and zero-copy buffering

significantly enhance computational efficiency. These

results mirror conclusions from mobile multimedia research,

which identifies memory bandwidth and CPU cycles as

critical bottlenecks on handheld devices (Deng, 2019; Ota et

al., 2017). The present findings demonstrate that careful

architectural choices at the audio engine level can

meaningfully mitigate these constraints without

compromising interactive responsiveness.

From a broader system design and management

perspective, the implications of these findings are

substantial. As interactive audio becomes a central feature of

mobile applications—ranging from entertainment and social

platforms to AR, training, and collaborative systems—the

reliability of real-time audio infrastructure directly

influences product success and organizational

competitiveness (Khan, 2024; Xue & Zheng, 2025). The

demonstrated gains in stability, efficiency, and perceptual

quality suggest that investment in robust audio engine

architecture yields tangible value at both the technical and

strategic levels. This reinforces recent management-oriented

perspectives that treat system architecture not merely as an

engineering artifact but as a strategic organizational resource

(Khan, 2024; Xue & Zheng, 2025).

Furthermore, the study’s results complement emerging

research on the future of audio ecosystems, including the

audio metaverse and interoperable immersive environments.

These domains demand scalable, adaptive, and cross-

https://journals.kmanpub.com/index.php/jppr/index

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 12

platform audio infrastructures capable of delivering

consistent real-time experiences across diverse devices (Jot

et al., 2021; Yang et al., 2022). The proposed architecture,

with its emphasis on modular design, adaptive control, and

platform-aware optimization, provides a practical

foundation for meeting these emerging requirements.

In summary, the empirical evidence supports the

conclusion that architecture-driven, adaptive real-time audio

engine design significantly enhances performance, stability,

and user experience on mobile platforms. The convergence

of reduced latency, minimized jitter, improved resource

efficiency, and perceptually acceptable quality degradation

demonstrates that robust system design can overcome many

of the inherent limitations of mobile hardware. These

findings contribute to both the technical literature on real-

time audio processing and the managerial discourse on

system design as a strategic capability.

This study is subject to several limitations. First, although

multiple Android devices were tested, the hardware sample

cannot fully represent the vast diversity of mobile devices

and operating system configurations currently in use.

Second, the perceptual evaluation relied on controlled

listening assessments rather than large-scale user studies,

which may limit the generalizability of the subjective

findings. Third, the experiments focused primarily on

interactive audio workloads similar to games and AR

scenarios; results may differ for other application domains

such as teleconferencing or large-scale collaborative

systems. Finally, long-term energy consumption effects

under prolonged real-world usage were not comprehensively

assessed.

Future research should extend this work by conducting

large-scale user studies to quantify perceptual outcomes

across diverse demographic groups and usage contexts.

Comparative evaluations on additional mobile platforms and

operating systems would strengthen external validity.

Further investigation into the integration of machine

learning–based audio processing within adaptive real-time

architectures could yield valuable insights, particularly

regarding dynamic quality control and predictive resource

management. Longitudinal studies examining battery health,

thermal behavior, and user retention over extended

deployment periods are also recommended.

Practitioners should prioritize architectural separation

between real-time and non-real-time domains when

designing mobile audio systems. Adaptive control

mechanisms should be treated as first-class components

rather than optional optimizations. Development teams are

encouraged to invest in profiling, monitoring, and automated

quality-scaling pipelines early in the product lifecycle.

Finally, management should recognize audio infrastructure

as a strategic asset that directly influences product quality,

user satisfaction, and competitive advantage.

Authors’ Contributions

Authors contributed equally to this article.

Declaration

In order to correct and improve the academic writing of

our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable

request to the corresponding author.

Acknowledgments

We would like to express our gratitude to all individuals

helped us to do the project.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial

support.

Ethics Considerations

In this research, ethical standards including obtaining

informed consent, ensuring privacy and confidentiality were

considered.

References

Collins, K. (2008). Game sound: An introduction to the history,

theory, and practice of video game music and sound design.

MIT Press. https://doi.org/10.7551/mitpress/7909.001.0001

Deng, Y. (2019). Deep learning on mobile devices: a review.

Mobile Multimedia/Image Processing, Security, and

Applications 2019,

Farnell, A. (2010). Designing sound. MIT Press.

https://books.google.com/books?id=eMPxCwAAQBAJ&sou

rce=gbs_navlinks_s

Fırat, H. B., Maffei, L., & Masullo, M. (2022). 3D sound

spatialization with game engines: the virtual acoustics

performance of a game engine and a middleware for

interactive audio design. Virtual Reality, 26(2), 539-558.

https://doi.org/10.1007/s10055-021-00589-0

https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.7551/mitpress/7909.001.0001
https://books.google.com/books?id=eMPxCwAAQBAJ&source=gbs_navlinks_s
https://books.google.com/books?id=eMPxCwAAQBAJ&source=gbs_navlinks_s
https://doi.org/10.1007/s10055-021-00589-0

 Habibi et al. Journal of Resource Management and Decision Engineering 5:3 (2026) 1-13

 13

Jahangashteh, E., Ghadri, A., Davari, R., & Jalalvand, M. (2022).

A Study of Mobile Operating Systems. The 16th National

Conference on Computer Science, Engineering, and

Information Technology, Babol.

Jot, J. M., Audfray, R., Hertensteiner, M., & Schmidt, B. (2021).

Rendering spatial sound for interoperable experiences in the

audio metaverse. 2021 Immersive and 3D Audio: from

Architecture to Automotive (I3DA),

Khan, K. (2024). Advancements and Challenges in 360 Augmented

Reality Video Streaming: A Comprehensive Review.

International Journal of Computing, 13(1), 1-20.

https://doi.org/10.30534/ijccn/2024/011312024

Latif, S., Shoukat, M., Shamshad, F., Usama, M., Ren, Y.,

Cuayáhuitl, H., Wang, W., Zhang, X., Togneri, R., Cambria,

E., & Schuller, B. W. (2023). Sparks of large audio models: A

survey and outlook. arXiv preprint.

https://arxiv.org/abs/2308.12792

Lazzarini, V., Timoney, J., & Keller, D. (2016). Computer music

instruments. Springer. https://doi.org/10.1007/978-3-319-

63504-0

Ota, K., Dao, M. S., Mezaris, V., & Natale, F. G. D. (2017). Deep

learning for mobile multimedia: A survey. ACM Transactions

on Multimedia Computing, Communications, and

Applications (TOMM), 13(3s), 1-22.

https://doi.org/10.1145/3092831

Pulkki, V., & Karjalainen, M. (2015). Communication acoustics.

Wiley. https://doi.org/10.1002/9781119825449

Schobel, J., Pryss, R., Schickler, M., & Reichert, M. (2016). A

lightweight process engine for enabling advanced mobile

applications. OTM Confederated International Conferences"

On the Move to Meaningful Internet Systems",

Sweet, M. (2014). Writing interactive music for video games.

Addison-Wesley.

https://books.google.com/books?id=CQqSBAAAQBAJ&sou

rce=gbs_navlinks_s

Xue, M., & Zheng, Y. (2025). Exploring Updating Functional and

Design Requirements of Audio Across Diverse Scenarios.

International Conference on Human-Computer Interaction,

Yang, J., Barde, A., & Billinghurst, M. (2022). Audio augmented

reality: A systematic review of technologies, applications, and

future research directions. Journal of the Audio Engineering

Society, 70(10), 788-809.

https://doi.org/10.17743/jaes.2022.0048

Zhao, T., Xie, Y., Wang, Y., Cheng, J., Guo, X., Hu, B., & Chen,

Y. (2022). A survey of deep learning on mobile devices:

Applications, optimizations, challenges, and research

opportunities. Proceedings of the IEEE, 110(3), 334-354.

https://doi.org/10.1109/JPROC.2022.3153408

https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.30534/ijccn/2024/011312024
https://arxiv.org/abs/2308.12792
https://doi.org/10.1007/978-3-319-63504-0
https://doi.org/10.1007/978-3-319-63504-0
https://doi.org/10.1145/3092831
https://doi.org/10.1002/9781119825449
https://books.google.com/books?id=CQqSBAAAQBAJ&source=gbs_navlinks_s
https://books.google.com/books?id=CQqSBAAAQBAJ&source=gbs_navlinks_s
https://doi.org/10.17743/jaes.2022.0048
https://doi.org/10.1109/JPROC.2022.3153408

