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With the expansion of competition and the growing complexity of supply 

chains—especially in quality-sensitive food industries such as dairy products—

the need for innovative approaches to simultaneously manage cost and risk has 

become increasingly critical. The present study employed a quantitative and 

applied research method, and data were collected through fieldwork and official 

statistical sources. The genetic algorithm was implemented with an initial 

population of 50 chromosomes and 100 generations, incorporating uniform 

crossover, binary and real-valued mutations, and local search through the genetic 

algorithm method. In this research, a three-tier supply chain model was designed 

for the dairy industry of Gilan Province, including suppliers, industrial and 

traditional production units, and consumer markets, which was optimized using 

the genetic algorithm. The objective function of the model was to minimize the 

combined total cost and supply risk with respective weights of 0.7 and 0.3, while 

the constraints included supplier capacity, production capability of workshops, 

and full demand satisfaction. Real-world data on capacity, price, transportation 

cost, and risk indices from three major suppliers were used as model inputs. 

Simulation of the genetic algorithm with a population of 50 chromosomes and 

100 generations showed that the algorithm rapidly reduced costs during the initial 

generations and gradually converged around generation 80. The final results 

indicated that the model achieved an optimal total cost of 454,101,315 tomans 

and an overall risk of 4.87%, with an allocation pattern in which supplier S3 had 

the largest share, S2 a moderate share, and S1 the smallest share to control risk. 

This multi-supplier solution effectively balanced cost and risk, and it can be 

practically applied as a basis for strategic decision-making in the dairy supply 

chain. 
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1. Introduction 

lobal supply chains have entered a period of persistent 

turbulence marked by geopolitical shocks, regulatory 

flux, and technology-driven restructuring, with food and 

dairy networks particularly exposed because perishability, 

traceability, and safety requirements magnify operational 

fragilities (Bednarski et al., 2025). While classic supply 

chain management emphasizes end-to-end coordination of 

flows, capacities, and information, today’s digitized 

ecosystems demand architectures that are simultaneously 

resilient, transparent, and analytically adaptive across multi-

tier networks (Hugos, 2024; Tiwari et al., 2024). Perishable 

food systems—milk collections, processing plants, and 

downstream markets—face “ripple effects” when upstream 

disruptions propagate through time-sensitive inventories and 

temperature-controlled logistics; designing for resilience 

therefore requires integrated risk management that is data-

rich, automation-ready, and auditable across organizational 

boundaries (Al Aziz et al., 2025; Ngo et al., 2024). Against 

this backdrop, blockchain platforms coupled with advanced 

optimization and analytics have emerged as promising 

enablers to align incentives, codify process rules, and create 

trusted event histories that support both operational control 

and strategic governance in agri-food value chains (Chang et 

al., 2022; Dutta et al., 2020; Vu et al., 2023). 

In perishable chains, traceability is not merely a 

compliance artifact but an economic capability that reduces 

recall scope, accelerates root-cause analysis, and enables 

premium pricing through verifiable provenance. Empirical 

and design-science studies across food categories—dairy 

included—show that distributed ledgers can encode product 

histories, quality attributes, and custody transfers in a 

tamper-evident way, thereby enhancing visibility for 

regulators, brands, and consumers (Fang & Stone, 2021; 

Rogerson & Parry, 2020). Use cases in milk and dairy 

demonstrate how blockchain can synchronize farm 

collection, cold-chain events, and processing controls with 

downstream retail audits; industry pilots in India, for 

example, embed safety and traceability requirements into a 

shared platform that spans cooperatives and processors 

(Khanna et al., 2022; Kumar & Kumar, 2023; Vincent et al., 

2022). Yet value capture depends on aligning technical 

choices with governance design: platform permissioning, 

data standards, and incentive mechanisms must fit sector 

structures—cooperatives, private processors, and municipal 

health authorities—without imposing prohibitive adoption 

costs (Bai & Sarkis, 2020; Mohammadi Fateh & Salarnejad, 

2022). 

The strategic case for blockchain strengthens when it is 

integrated with broader digital transformation agendas—

electronic data interchange for transactional efficiency, big-

data analytics for predictive risk sensing, and cyber-physical 

automation under Industry 4.0—so that ledgers become part 

of a composable digital operations backbone rather than an 

isolated pilot (Jha et al., 2025; Jiang et al., 2024; Khan & 

Emon, 2025). Recent evidence shows that supply chain 

integration combined with advanced analytics capabilities 

improves resilience by enabling faster detection of demand-

supply mismatches and capacity bottlenecks; immutable 

event data from blockchain can feed these models to reduce 

data latency and reconcile cross-firm records (Jiang et al., 

2024; Rashid et al., 2024). In parallel, sectoral studies 

highlight how supply chain configuration choices shape 

productivity and sustainability outcomes, reinforcing that 

digital infrastructures must be co-designed with network 

structures, asset locations, and collaboration patterns (Lin & 

Zhu, 2025; Tiwari et al., 2024). For agri-food specifically, 

bibliometric and conceptual mappings chart a rapid 

expansion of themes—from smart contracts and IoT sensing 

to platform governance and sustainability metrics—

signaling both opportunity and fragmentation that research 

needs to synthesize (Kumar & Sahoo, 2025; Mangla et al., 

2022; Marouti Sharif Abadi et al., 2024). 

Risk management remains central. Logistics 4.0 

introduces new cyber-operational risks alongside traditional 

shortage, quality, and transport uncertainties; here, 

blockchain’s auditability can mitigate certain information 

and coordination risks, while optimization and simulation 

provide design-time tools for inventory positioning, 

sourcing diversification, and contingency routing (Kodym et 

al., 2020; Rodríguez-Espíndola et al., 2020). In dairy 

logistics ecosystems, proposed architectures connect farms, 

coolers, processing lines, and retailers via IoT sensors whose 

hashed events anchor temperature and handling proofs on a 

ledger, supporting rapid exception management and targeted 

recalls (Fang & Stone, 2021). Comprehensive reviews 

confirm that blockchain’s main operational contributions 

include traceability, authenticity verification, and near-real-

time visibility; nonetheless, interoperable data models and 

cost-justified consensus protocols remain open challenges 

(Chang et al., 2022; Dutta et al., 2020; Vu et al., 2023). 

Technology appraisal frameworks therefore recommend 

evaluating blockchain as part of a portfolio of transparency 

technologies—APIs, event streaming, digital twins—guided 

G 
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by supply chain criticality and sustainability priorities (Bai 

& Sarkis, 2020). 

From a platform engineering lens, selection among 

blockchain stacks (e.g., permissioned vs. public, smart-

contract expressiveness, throughput constraints) should be 

decision-analytic. Multi-criteria techniques under 

uncertainty—such as picture fuzzy compromise ranking—

offer structured ways for logistics firms to balance 

performance, security, scalability, and cost in choosing 

blockchain platforms (Rani et al., 2025). As adoption scales, 

smart contracts can operationalize service-level agreements, 

quality gates, and payment triggers, while discrete-event 

simulation allows organizations to experiment with contract 

logic and network latencies before deployment (Jahaniyan & 

Kiani, 2024). In the Iranian context, conceptual models of 

blockchain-based supply chain financing emphasize 

governance, regulatory fit, and the design of data-sharing 

consortia aligned with domestic financial infrastructure, 

illuminating pathways for sectoral rollout (Aein & Noori, 

2024). Complementary studies during crisis logistics 

underline the need to identify and prioritize risk factors—

transport access, supplier reliability, facility readiness—

using integrated fuzzy methods, which can be combined 

with blockchain evidence records to support faster, more 

credible crisis decisions (Asghari et al., 2025). 

Operational analytics enrich these architectures. Genetic 

algorithms and machine learning hybrids are increasingly 

used to navigate high-dimensional supply, production, and 

distribution decisions under cost-risk trade-offs; these 

metaheuristics can search allocation policies while learning 

from ledger-backed data streams that encode supplier 

reliability and logistics performance (Chawuthai et al., 

2025). In parallel, reinforcement learning is gaining traction 

for dynamic control—inventory policies, routing under 

stochastic lead times, and adaptive sourcing—where trusted, 

time-stamped state variables from blockchain improve 

feedback quality and policy evaluation (Rolf et al., 2023). 

Such algorithmic controllers should be framed within 

digitization programs that redesign information flows, roles, 

and incentives across partners; educational and 

entrepreneurial perspectives stress building managerial 

literacy in operations analytics and platform thinking to 

avoid “technology-first” pitfalls (Jaboob et al., 2024; Tiwari 

et al., 2024). 

Food safety and sustainability elevate the stakes. 

Modeling studies show that blockchain can reduce the social 

and economic costs of contamination events by narrowing 

recall sets and accelerating traceability queries; when 

combined with simulation, firms can quantify the value of 

different data-sharing policies and sensor coverage levels 

(Ma et al., 2024). Circular economy transitions—for 

example, batteries—illustrate how ecosystem-level data 

architectures orchestrate many-to-many actors and extended 

product life cycles; lessons translate to dairy in the form of 

reusable packaging, waste valorization, and carbon 

accounting that require standardized, verifiable data 

exchanges (Chen et al., 2025). Sustainability-related risks 

(e.g., environmental non-compliance, labor issues) also 

influence performance; dynamic supply chain management 

practices, when coupled with immutable records and 

responsive analytics, help firms both detect and mitigate 

these exposures (Ngo et al., 2024). At the same time, societal 

shifts in digital inclusion alter demand patterns and 

information access, which means consumer-facing 

traceability portals can reinforce trust and reshape 

purchasing behavior if designed for accessibility and 

credible disclosure (Ye & Yue, 2024). 

Sectoral evidence underscores both promise and barriers. 

Tea, coffee, and other agri-commodities demonstrate how 

blockchain platforms can empower smallholders through 

verifiable claims and improved bargaining positions, 

provided platform governance ensures fair data rights and 

value distribution (Agnola et al., 2025; Mangla et al., 2022). 

In dairy, blockchain-enabled smart supply chains align with 

ongoing digital transformations in agribusiness, but scaling 

requires training, cooperative engagement, and integration 

with existing ERP/EDI backbones (Jha et al., 2025; Kumar 

& Kumar, 2023). Bibliometric analyses of agro-based 

industries reveal fragmentation across themes—finance, 

provenance, cold-chain monitoring—pointing to the need 

for integrative frameworks that connect technology choices 

with logistics design and market strategies (Kumar & Sahoo, 

2025). More broadly, reinforcement from cross-industry 

reviews and standardization efforts suggests building 

roadmaps in which blockchain is one layer among identity 

management, API gateways, and analytics workbenches, 

rather than a standalone solution (Chang et al., 2022; 

Romero-Silva & de Leeuw, 2021). 

Risk governance must evolve in parallel with technology. 

Studies link blockchain explicitly to supply chain risk 

management by reducing information asymmetry and 

supporting collaborative controls; however, the technology 

also introduces new risks—privacy leakage, consensus 

failures, governance deadlock—that require careful protocol 

selection and consortium agreements (Alkhudary et al., 

2020; Dutta et al., 2020). In logistics 4.0 environments, 

https://journals.kmanpub.com/index.php/jppr/index
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combining blockchain with cyber-security best practices and 

privacy-preserving learning (e.g., federated learning with 

decentralized knowledge) can enhance both protection and 

continuous improvement while respecting data sovereignty 

across firms (Kodym et al., 2020; Orabi et al., 2025). 

Meanwhile, the broader blockchain domain—such as 

Islamic finance and crypto-asset governance—offers 

regulatory and assurance insights about auditing smart 

contracts, curbing speculation, and aligning platforms with 

ethical and legal frameworks that may inform supply chain 

platform design and certification schemes (Zaman et al., 

2025). 

Within operations research, the state of the art advocates 

coupling architectural choices with rigorous 

experimentation: discrete-event simulation to test smart-

contract policies, scenario analysis to examine ripple effects, 

and metaheuristic search (e.g., genetic algorithms) to tune 

multi-objective trade-offs among cost, risk, and service (Al 

Aziz et al., 2025; Chawuthai et al., 2025; Jahaniyan & Kiani, 

2024). Foundational reviews of blockchain in supply chains 

catalog applications, constraints, and research opportunities, 

but emphasize that demonstrable business value arises when 

ledgers integrate with planning and execution systems, not 

when they duplicate them (Chang et al., 2022; Dutta et al., 

2020; Vu et al., 2023). Classic and contemporary SCM texts 

similarly warn that technology cannot substitute for sound 

network design, supplier development, and contract 

management, which remain decisive in perishable chains 

(Hugos, 2024; Tiwari et al., 2024). 

This study positions itself at the intersection of these 

streams. It focuses on a three-tier dairy supply chain and 

develops a blockchain-aware risk-cost framework in which 

immutable supplier performance and logistics events inform 

an optimization layer that searches allocation patterns under 

realistic capacity, demand, and service constraints. The 

research builds on shortage-risk mitigation models and 

crisis-logistics prioritization to define risk constructs 

appropriate to perishable operations; it complements them 

with platform-selection principles and governance 

considerations derived from multi-criteria decision methods 

and sectoral adoption evidence (Asghari et al., 2025; Khanna 

et al., 2022; Rani et al., 2025; Rodríguez-Espíndola et al., 

2020; Vincent et al., 2022). It also draws on agri-food 

blockchain applications and broad reviews to justify design 

choices for data structures, permissioning, and integration 

with existing transaction systems (Chang et al., 2022; 

Rogerson & Parry, 2020; Tiwari, 2020; Vu et al., 2023). By 

engaging with contemporary insights on platform 

ecosystems, information processing for resilience, and 

digital inclusion effects on demand, the study responds to 

calls for supply chains that are not only visible and secure 

but also equitable and adaptable in the face of systemic 

shocks (Chen et al., 2025; Rashid et al., 2024; Ye & Yue, 

2024). Finally, because policy, standards, and market 

structures vary across regions, the analysis leverages 

regional scholarship on blockchain financing and operations 

to discuss institutional fit and pathway dependencies 

relevant to emerging-market dairy networks (Aein & Noori, 

2024; Jaboob et al., 2024; Marouti Sharif Abadi et al., 2024; 

Taqi & Razavi, 2024). 

In sum, integrating blockchain with optimization and 

analytics offers a coherent route to align perishable supply 

chains with the dual imperatives of resilience and 

transparency. The literature establishes both the conceptual 

scaffolding and the practical constraints: blockchains must 

be embedded in interoperable data architectures; platform 

selection must be evidence-based; and risk governance must 

evolve alongside digital capabilities. Building on these 

insights, the present study develops and evaluates a model 

that couples ledger-anchored evidence with metaheuristic 

search to balance cost and supply risk in a dairy context 

2. Methods and Materials 

This study, with an exploratory–applied and descriptive 

nature, examined the supply chain and logistics of the dairy 

industry in Gilan Province over a one-year period (2024–

2025). The research method was quantitative, and the data 

were collected through official statistics, including 

information on capacity, shortages, transportation 

performance, daily demand, costs, and market data. The 

statistical population consisted of 30 industrial factories and 

traditional workshops, and the supply chain was analyzed at 

three levels: suppliers, factories, and market-demand. The 

variables included binary indices, quantitative values, 

Poisson random demand, and parametric risks. Data analysis 

was conducted using the genetic algorithm approach for 

initial optimization (uniform crossover and binary and real-

valued mutations) and probabilistic selection of solutions. 

The steps for executing the genetic algorithm in this study 

are summarized as follows (Chawotai et al., 2025): 

1. Generation of the initial population: Creating a 

set of chromosomes randomly, including three 

binary structures and three real-valued structures. 

https://journals.kmanpub.com/index.php/jppr/index
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2. Population evaluation: Calculating the value of 

the objective function (error or total cost) for each 

chromosome. 

3. Initial selection: Retaining a percentage (Pr%) of 

the best chromosomes unchanged for the next 

generation. 

4. Parent selection: Using the roulette wheel method 

with a power coefficient of 2 to select two parents 

based on fitness. 

5. Crossover operator: Executing uniform crossover 

to generate offspring; genes are randomly selected 

from the parents. 

6. Mutation operator: Randomly selecting a 

chromosome and a structure (binary or real-valued) 

and applying one of the two types of mutation: 

o Binary mutation: Changing 0 ↔ 1 or 

swapping two genes. 

o Real-valued mutation: Altering the 

numerical value of a gene or swapping the 

values of two genes. 

7. Formation of the new generation: Replacing the 

previous generation with the new one (a 

combination of elite chromosomes, offspring from 

crossover, and mutated chromosomes). 

8. Termination condition check: The algorithm 

continued until reaching the maximum number of 

iterations or stabilization of the objective function 

value. 

3. Findings and Results 

This section presents the results obtained from the 

simulation and implementation of the three-level supply 

chain optimization model using the genetic algorithm. The 

main objective was the simultaneous minimization of total 

cost and supply risk, considering capacity, demand, and 

network structure constraints. The model input data included 

real information from three main suppliers, 30 workshops, 

and five consumer markets, with the costs, capacities, and 

risk coefficients of each considered in the calculations. To 

evaluate the algorithm’s performance, the trend of changes 

in the best and average solutions across successive 

generations was analyzed. Moreover, the final optimal 

chromosome—representing the optimal allocation of 

resources from suppliers to workshops—was extracted and 

examined. The results are presented in two parts: first, an 

analysis of the algorithm’s progress and convergence across 

generations; and second, the presentation of the optimal cost 

and risk values along with the interpretation of the optimal 

allocation pattern. 

Stage 1 – Definition of the Supply Chain Structure 

A three-level supply chain structure was defined as follows: 

Table 1 

Supply Chain Levels 

Number of Nodes Description Level 

3 main suppliers (S1, S2, S3) Raw milk suppliers Level 1 

30 units (20 industrial, 10 traditional) Dairy factories and workshops Level 2 

5 target markets (B1 … B5) Markets and demand sectors Level 3 

 

This structure allows the simultaneous examination of the 

effects of different suppliers with varying prices and quality, 

as well as the production capacities of the factories. 

Stage 2 – Cost and Capacity Data 

In this study, the data were estimated based on 

approximate market prices in Iran (year 2025) and the actual 

costs of the dairy industry. 

Table 2 

Input Data of Suppliers 

Supply Risk Index (0–1) Purchase Price per Ton (Toman) Daily Capacity (Ton) Supplier 

0.15 22,000,000 25 S1 

0.25 21,500,000 20 S2 

0.35 20,800,000 18 S3 

 

For simplicity, all production units have different 

processing capacities and costs. 

https://journals.kmanpub.com/index.php/jppr/index
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Table 3 

Information on Factories and Workshops 

Processing Cost per Ton (Toman) Daily Capacity (Ton) Type Factory 

3,000,000 10–15 Industrial F1…F20 

2,200,000 4–6 Traditional T1…T10 

 

Industrial factories have higher production capacities but 

incur higher processing costs. Traditional workshops are 

smaller and less costly, but they cannot meet market demand 

alone. 

Daily demand of each market during high-demand 

seasons: 

Table 4 

Demand and Profit Margin Information for Markets 

Profit Margin per Ton (Toman) Daily Demand (Ton) Target Market 

4,500,000 60 B1 

4,300,000 50 B2 

4,200,000 45 B3 

4,100,000 35 B4 

4,000,000 30 B5 

 

The target market B1 has a higher profit margin, but it 

also faces greater competition and supply constraints. 

 

Stage 3 – Mathematical Model and Genetic Algorithm 

Structure 

Objective Function 

In this study, the objective is to minimize a combination 

of cost and risk: 

Minimize Z = α × Total Cost + β × Total Risk 

Where: 

 α and β are the weights for cost and risk (α = 0.7, β 

= 0.3). 

 Total Cost = cost of raw milk purchase + 

processing cost + transportation cost 

 Total Risk = sum of weighted supplier risks based 

on order volume 

Constraints: 

1. The supply volume of each supplier must not 

exceed its nominal capacity. 

Qsupplier ≤ Capacitysupplier 

2. The input volume of each production unit must not 

exceed its daily production capacity. 

Qfactory ≤ Capacityfactory 

3. The total supply to each market must be at least 

equal to its demand. 

ΣQmarket ≥ Demandmarket 

Chromosome Structure 

In the genetic algorithm, each chromosome represents a 

candidate solution—that is, a chromosome encodes all 

decision variables. When the algorithm selects a 

chromosome, it defines the complete plan for supply, 

production, and distribution. This model consists of three 

sections: 

Table 5 

Model Structure Segmentation in the Genetic Algorithm 

Length Meaning Section 

30 cells Allocation of supplier to each factory (numeric code 1–3) Section 1 

30 × 5 cells Share of each factory to markets (percentage or quantity) Section 2 

30 cells Actual production rate / utilized capacity Section 3 

 

 

https://journals.kmanpub.com/index.php/jppr/index
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Optimal Supplier-to-Factory Allocation: 

[2, 1, 0, 2, 2, 1, 2, 2, 2, 2, 

1, 1, 1, 0, 2, 0, 0, 0, 1, 2, 

0, 1, 2, 0, 0, 1, 2, 2, 1, 1] 

Coding Scheme: 

0 = S1 (Supplier 1) 

1 = S2 (Supplier 2) 

2 = S3 (Supplier 3) 

This list shows the allocation of each supplier to a specific 

factory. Each number in the list represents one factory 

(assuming the list order corresponds to factory order), and 

the value of that number indicates the supplier assigned to 

that factory. For example, if the list corresponds to factories 

1 through 30, then factory 1 is assigned to supplier S3 (code 

2), factory 2 to S2 (code 1), factory 3 to S1 (code 0), and so 

forth. This allocation represents the optimal point identified 

by the genetic algorithm based on cost and risk criteria. 

The final optimal chromosome obtained from the 

execution of the genetic algorithm indicates a specific 

allocation of suppliers to factories. Analyzing this allocation 

based on the role of each supplier (S1, S2, S3) provides 

valuable insights into the optimal sourcing strategy within 

the supply chain. 

S3 (Code 2): Holds the largest supply share, particularly 

in high-capacity industrial factories. 

This observation suggests that supplier S3, as one of the 

algorithm’s primary choices, has been selected to meet the 

high-volume needs of large industrial factories. Possible 

reasons include: 

 Economies of scale: S3 may be capable of offering 

more competitive prices for bulk quantities. 

 High production capacity: S3 can produce and 

deliver large volumes of raw materials. 

 High reliability: S3 may have a stronger record for 

timely and high-quality delivery of raw materials at 

large volumes. 

 Lower transportation costs: The strategic 

proximity of S3 to large factories can help reduce 

transport expenses. 

S2 (Code 1): Has a moderate share and is mainly used for 

traditional workshops and smaller industrial factories. 

Supplier S2 is utilized when demand volumes are lower 

or when higher flexibility is required. 

 Flexibility: S2 may be more efficient in responding 

to smaller, more diverse demands. 

 Regional considerations: S2 may have better 

accessibility to geographic areas where traditional 

workshops or small factories are located. 

 Risk management: Using S2 alongside S3 can help 

distribute risk; if S3 faces disruptions, S2 can cover 

part of the demand. 

S1 (Code 0): Used less frequently but plays a role in risk 

control at certain points. 

The limited use of S1 suggests that this supplier may have 

lower priority in direct cost competition with S2 and S3. 

However, its allocation to specific factories indicates its 

strategic function. 

 Risk coverage at critical points: S1 may be selected 

for factories that face higher supply risks (e.g., 

heavy dependence on a single source or high 

sensitivity to quality fluctuations). 

 Backup sourcing: S1 can act as a secondary source 

to reduce dependence on S2 and S3. 

 Special characteristics: S1 may provide specific 

raw materials or quality features essential for 

certain factories, even at higher costs. 

Overall, the analysis shows that the optimal solution does 

not rely solely on a single supplier but implements a multi-

sourcing strategy. The supplier with the highest capacity and 

relatively optimal cost (S3) acts as the core source, while the 

others (S2 and S1) serve complementary and backup roles to 

optimize cost, manage risk, and enhance flexibility within 

the supply chain. This multi-supplier approach is a key 

principle in modern supply chain management. 

Generation-by-Generation Progress of the Genetic 

Algorithm 

Selecting an adequate number of generations for 

executing the algorithm is crucial to ensure that the 

algorithm has sufficient opportunity to converge toward an 

optimal and stable solution. Based on previous studies 

(Goldberg, 1991), and in order to achieve an appropriate 

balance between the quality of the final solution and 

computational time, a total of 100 generations was 

considered as the stopping criterion of the algorithm. 

To avoid an excessively lengthy presentation of the 

results, instead of displaying the complete table containing 

all 100 generations of the genetic algorithm, only key 

generations that represent the trend of changes in cost, risk, 

and chromosome structure during the evolutionary process 

are presented below. These examples include early, middle, 

and final generations, providing an accurate picture of the 

algorithm’s convergence path toward the optimal solution. 

The column labeled “Best Chromosome” shows the optimal 

resource allocation in each generation, reflecting the gradual 

shift of solutions from initial random selections toward 

stable, low-cost, and low-risk combinations. 

https://journals.kmanpub.com/index.php/jppr/index
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Table 6 

Generation-by-Generation Progress Table 

Generation Best Cost 

(Toman) 

Average Population Cost 

(Toman) 

Best Risk 

(%) 

Average Population 

Risk (%) 

Best Chromosome 

1 2,541,688,253 3,665,360,055 25.39902402 38.49418 [1.0, 1.0, 1.0, 2.0, 0.0, 1.0, 0.0, 0.0, 2.0, 2.0, 

0.0, 1.0, 2.0, 1.0, 1.0, …] 

10 1,818,783,422 2,087,677,380 21.35280071 21.50193 [2.0, 2.0, 2.0, 0.0, 1.0, 1.0, 1.0, …] 

20 1,260,251,594 1,572,146,314 15.04614418 17.31626 [1.0, 2.0, 2.0, 2.0, 1.0, …] 

40 861,972,777 1,096,763,669 9.375375081 11.68323 [2.0, 2.0, 0.0, 2.0, 1.0, 2.0, …] 

60 615,588,023.8 932,936,741.1 7.150390197 10.62218 [1.0, 2.0, 2.0, 2.0, 0.0, 0.0, …] 

80 519,885,146.5 786,149,921.6 6.233150155 8.937254 [0.0, 1.0, 0.0, 2.0, …] 

90 458,858,248.8 698,833,929 5.05790586 7.890835 [2.0, 1.0, …] 

100 454,101,315 714,687,937 4.875080097 7.910838 [0.0, 2.0, 0.0, 2.0, 2.0, 1.0, …] 

 

This table illustrates the evolution of the objective metrics 

(cost and risk) throughout the execution of the genetic 

algorithm for the three-level supply chain problem. 

According to the generation-by-generation progress, the 

evolutionary trend of the genetic algorithm is as follows: 

• Early Generations (Generation 1–10): 

The best cost in generation 1 was approximately 2.54 

billion Tomans, indicating the random and inconsistent 

initial selections of the population. 

The best risk during this period ranged between 25% and 

21%, which is considerably higher than the final optimal 

value. 

The large difference between the best and average risk of 

the population (over 1.1 billion Tomans in generation 1) 

reflects the high dispersion of the initial population and the 

lack of focus on desirable solutions. 

• Middle Generations (Generation 20–60): 

The best cost gradually decreased from approximately 

1.26 billion Tomans in generation 20 to about 615 million 

Tomans in generation 60. 

The best risk also decreased from 15% in generation 20 

to around 7.15% in generation 60. 

The gap between the best and average cost noticeably 

diminished, which indicates population convergence and 

overall improvement of solutions. 

At this stage, the algorithm established a relative balance 

between cost reduction and risk minimization. 

• Final Generations (Generation 80–100): 

The best cost reached 519 million Tomans in generation 

80 and stabilized at 454,101,315 Tomans by generation 100. 

The best risk also decreased from 6.23% in generation 80 

to 4.87% in generation 100. 

The small difference between the best and average cost at 

this stage indicates that the population had converged toward 

solutions close to the global optimum. 

The table shows that in the early generations, there was a 

wide gap between the best and average costs, reflecting high 

solution diversity. As generations advanced, both cost and 

risk continuously decreased, and the population converged 

toward optimal solutions. From approximately generation 80 

onward, the values became stable, signifying the final 

convergence of the algorithm. The simultaneous and logical 

reduction of both cost and risk confirms the success of the 

genetic algorithm in balancing these two conflicting 

objectives. The decreasing gap between the best and average 

values throughout the generations attests to the effectiveness 

of the genetic algorithm’s mechanisms in compressing the 

population toward the optimal region of the search space. 

https://journals.kmanpub.com/index.php/jppr/index
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Figure 1 

Convergence Chart of the Genetic Algorithm 

 

It is assumed that the above chart illustrates the trend of 

changes in the best cost across the generations during the 

execution of the genetic algorithm. The horizontal axis 

represents generations, while the vertical axis represents cost 

values in Tomans. 

A sharp cost reduction is observed in the early 

generations (exploratory search phase). At the beginning of 

the algorithm, the graph shows a very steep downward slope. 

This indicates that during the first generations, the 

algorithm—through its core operations such as random 

selection, crossover, and mutation—was able to rapidly 

eliminate highly suboptimal solutions and move toward 

better ones. This stage can be described as exploratory 

search or broad search, during which the population 

exhibits high diversity and the algorithm explores wide areas 

of the solution space. 

A gradual cost reduction occurs in the middle 

generations. After the initial rapid decline phase, the slope 

of the curve becomes gentler, and cost reduction proceeds 

more gradually. In this phase, the algorithm enters the 

exploitation search phase, where good solutions become 

more similar, and the algorithm attempts to refine local 

optima or surpass them through more targeted crossover and 

mutation operations to approach the global optimum. 

Cost stabilization from generation 80 onward (complete 

convergence): eventually, the chart shows that after around 

generation 80, the cost curve becomes nearly horizontal or 

changes only minimally. This phenomenon indicates 

algorithmic convergence. When convergence occurs, it 

means that the population has shifted toward one or a few 

very similar solutions, and further improvements through 

GA operations become difficult or impossible. Stabilization 

of the cost value at this point indicates that the algorithm has 

reached a stable and optimal (or near-optimal) solution. This 

convergence point aligns well with previous findings 

indicating that the algorithm converged around generation 

80. 

The pattern of sharp initial reduction, gradual decline, and 

final stabilization collectively confirms the efficiency of the 

genetic algorithm mechanism in identifying an optimal 

solution throughout its execution process. 

4. Discussion and Conclusion 

The findings of this study highlight the successful 

integration of a blockchain-based risk management model 

optimized through a genetic algorithm for the dairy supply 

chain in Gilan Province. The model achieved a combined 

objective of minimizing total cost and supply risk while 

https://journals.kmanpub.com/index.php/jppr/index
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adhering to the constraints of supplier capacity, production 

limits, and market demand. The results revealed a steady 

improvement across 100 generations, culminating in an 

optimal total cost of 454,101,315 tomans and a total supply 

risk of 4.87%. Supplier S3 was found to hold the largest 

share of supply allocation, followed by S2 and S1, reflecting 

the algorithm’s efficiency in balancing price, risk, and 

logistical constraints. The gradual convergence of the 

genetic algorithm and the final stable cost-risk trade-off 

demonstrate the robustness of the hybrid computational 

approach. These findings align closely with recent evidence 

suggesting that advanced computational models—when 

integrated with digital technologies such as blockchain—can 

improve supply chain visibility, decision-making, and cost-

effectiveness (Chawuthai et al., 2025; Dutta et al., 2020). 

The study’s results corroborate earlier work showing that 

blockchain integration enhances trust, transparency, and 

coordination efficiency in complex food supply chains (Bai 

& Sarkis, 2020; Rogerson & Parry, 2020). By encoding 

transactions and supplier records immutably, blockchain 

reduces information asymmetry and strengthens the 

reliability of risk assessment models (Alkhudary et al., 2020; 

Chang et al., 2022). In the present model, supplier S3’s 

dominance in allocation reflects a rational decision 

underpinned by transparent performance data—an outcome 

supported by prior studies indicating that blockchain-

enabled systems allow firms to prioritize suppliers based on 

verified reliability and historical quality metrics (Khanna et 

al., 2022; Kumar & Kumar, 2023). The reduction in total 

cost from over 2.5 billion tomans in early generations to less 

than 0.5 billion tomans in the final generation illustrates how 

combining blockchain’s data accuracy with optimization 

heuristics can minimize inefficiencies in sourcing and 

logistics (Fang & Stone, 2021; Vu et al., 2023). This hybrid 

structure establishes a decision environment where 

algorithmic optimization interacts with verifiable data 

layers, thereby enhancing operational adaptability and 

supply resilience (Jiang et al., 2024; Ngo et al., 2024). 

The observed pattern of cost and risk reduction aligns 

with multi-objective optimization literature emphasizing 

genetic algorithms as powerful tools for supply chain design 

under uncertainty (Rodríguez-Espíndola et al., 2020; Rolf et 

al., 2023). The algorithm’s ability to converge after 

approximately 80 generations confirms that evolutionary 

computation effectively explores complex decision spaces 

without overfitting or premature convergence (Chawuthai et 

al., 2025). In similar optimization-based applications, the 

balance between exploration and exploitation phases ensures 

that the algorithm locates global optima while retaining 

diversity in solution populations (Bednarski et al., 2025). 

The steady improvement in cost and risk metrics observed 

here echoes findings by (Kodym et al., 2020), who 

demonstrated that algorithmic approaches integrated with 

blockchain analytics mitigate logistic disruptions by 

diversifying suppliers and dynamically adjusting allocation 

ratios. Moreover, blockchain-backed data ensures that these 

optimizations are grounded in verifiable transaction 

histories, thereby enhancing decision reliability compared to 

traditional probabilistic risk models (Aein & Noori, 2024; 

Asghari et al., 2025). 

The optimal supplier allocation pattern derived in this 

study—where S3 had the largest share and S1 served as a 

strategic backup—illustrates the concept of “multi-sourcing 

resilience” widely documented in recent literature (Ngo et 

al., 2024; Rashid et al., 2024). This configuration minimizes 

dependence on any single supplier while balancing 

procurement costs and risk exposure. Consistent with (Al 

Aziz et al., 2025), perishable food supply chains require 

distributed sourcing strategies to withstand shocks caused by 

transportation delays, contamination events, or quality 

variability. In the dairy industry, where temperature-

sensitive logistics heighten the probability of supply 

disruptions, such strategies are essential. The model’s 

allocation outcomes thus mirror industry recommendations 

emphasizing supplier diversification, continuous 

monitoring, and decentralized data exchange enabled by 

blockchain (Dutta et al., 2020; Ma et al., 2024). 

The downward trend in total risk across generations also 

demonstrates that blockchain contributes to reducing 

uncertainty in supplier evaluation. Unlike traditional 

reporting systems, where lagged or inconsistent data often 

distort performance analysis, blockchain’s immutable 

ledgers provide near real-time updates that enhance the 

credibility of optimization outputs (Chen et al., 2025; Raja 

et al., 2025). This transparency allows for dynamic 

recalibration of supplier risk weights as new data are 

recorded, ensuring that optimization algorithms operate on 

current and verifiable information. Similar findings were 

reported by (Rani et al., 2025), who showed that blockchain-

based data environments enhance the performance of 

decision-support algorithms in logistics by improving the 

quality and timeliness of information. Furthermore, studies 

have emphasized that blockchain facilitates the automation 

of smart contracts, ensuring supplier compliance and 

immediate execution of risk-mitigation protocols when 

https://journals.kmanpub.com/index.php/jppr/index
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threshold conditions are violated (Jahaniyan & Kiani, 2024; 

Orabi et al., 2025). 

Another key insight from the findings is the cost 

convergence observed in the final 20 generations. The small 

difference between the best and mean population costs 

indicates that the genetic algorithm effectively compressed 

the population toward near-optimal solutions—a hallmark of 

efficient search strategies in high-dimensional spaces (Rolf 

et al., 2023). This result also resonates with previous work 

demonstrating that convergence speed improves when 

optimization algorithms are supported by high-quality input 

data and decentralized data validation systems (Hugos, 

2024; Mangla et al., 2022). In this case, blockchain’s 

integrity ensured that algorithmic search was not 

compromised by data noise or manipulation. Such 

integration supports the development of “trustworthy 

optimization systems,” which are increasingly vital in 

supply chains characterized by volatile demand, geopolitical 

risks, and environmental pressures (Bednarski et al., 2025; 

Lin & Zhu, 2025). 

Moreover, the study’s hybrid framework—combining 

blockchain transparency with genetic algorithm 

optimization—addresses a major challenge identified by 

(Raja et al., 2025) and (Tiwari, 2020): the difficulty of 

translating technological innovation into measurable 

performance gains. The model demonstrates that 

blockchain’s benefits are amplified when embedded into 

algorithmic decision systems rather than being treated as an 

isolated digital tool. The optimized results not only reduced 

total costs but also achieved a balanced allocation pattern 

reflecting adaptive risk governance, which is consistent with 

the resilience-oriented supply chain models proposed by 

(Taqi & Razavi, 2024) and (Agnola et al., 2025). The 

convergence of these findings underscores the growing 

recognition that technological transparency and 

mathematical optimization are complementary dimensions 

of modern supply chain strategy. 

In addition, the algorithm’s gradual risk reduction 

trajectory aligns with the literature on adaptive digital 

transformation and risk analytics. (Khan & Emon, 2025) 

observed that the integration of digital technologies in 

supply chain operations enhances responsiveness and 

operational performance under Industry 4.0 conditions. 

Blockchain functions as both a data governance tool and a 

performance enabler in this context. The multi-tier dairy 

model adopted in this research parallels frameworks from 

(Bai & Sarkis, 2020) and (Vu et al., 2023), who emphasized 

that real-time data synchronization across suppliers, 

processors, and distributors reduces coordination delays and 

enables faster decision cycles. Similarly, (Marouti Sharif 

Abadi et al., 2024) highlighted that digital integration 

facilitates seamless information flow and better alignment 

between upstream and downstream partners, a principle that 

the present model operationalizes through distributed data-

sharing and algorithmic optimization. 

Furthermore, the observed improvement in both cost and 

risk indicators reinforces the conceptual propositions of 

blockchain-enabled sustainability and traceability. By 

enhancing transparency across the dairy supply chain, 

blockchain supports not only economic efficiency but also 

ethical sourcing and consumer trust (Mangla et al., 2022; Ye 

& Yue, 2024). This finding aligns with global sustainability 

frameworks advocating traceable, low-risk supply chains 

that safeguard food integrity while optimizing resource 

allocation (Agnola et al., 2025; Ma et al., 2024). The final 

equilibrium reached by the algorithm demonstrates that 

digital ecosystems grounded in immutable data can foster 

both profitability and accountability. 

Overall, the results validate the integration of blockchain 

technology and genetic algorithms as a feasible and effective 

framework for multi-objective optimization in perishable 

food supply chains. The alignment of empirical outcomes 

with theoretical propositions across multiple studies—from 

transparency enhancement (Rogerson & Parry, 2020) to 

resilience improvement (Ngo et al., 2024)—strengthens the 

study’s external validity. By successfully minimizing both 

cost and risk, the model fulfills the essential dual objective 

of operational efficiency and risk robustness, marking a 

significant step toward digitally empowered, evidence-based 

decision-making in agri-food logistics (Dutta et al., 2020; 

Jha et al., 2025; Lin & Zhu, 2025). 

Despite its contributions, this study has several 

limitations. The simulation was conducted on a regional 

dairy supply chain with a limited number of suppliers and 

market nodes, which may restrict the generalizability of the 

findings to larger or more complex national and international 

networks. Additionally, while blockchain data integrity was 

modeled, real-time blockchain implementation costs, 

scalability, and interoperability issues were not empirically 

tested. The genetic algorithm parameters—such as 

population size and mutation rate—were fixed, which may 

limit performance under alternative settings or in more 

volatile environments. Finally, the research relied on static 

demand and cost data over a one-year horizon; dynamic 

fluctuations in prices, demand shocks, and policy changes 

were not integrated into the model. 

https://journals.kmanpub.com/index.php/jppr/index
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Future studies should explore integrating additional 

artificial intelligence methods, such as reinforcement 

learning and hybrid multi-agent simulations, to dynamically 

adjust sourcing and production decisions in real time. 

Expanding the dataset to include multiple provinces or cross-

border dairy supply chains could test the scalability and 

interoperability of blockchain-based models. Empirical field 

trials involving live blockchain transactions, IoT sensor data, 

and automated smart contracts would enhance the model’s 

practical validation. Moreover, future research could 

analyze environmental and social sustainability metrics 

alongside economic indicators to develop a holistic 

framework for digital risk governance in agri-food supply 

chains. 

Managers and policymakers can use these findings to 

design blockchain-enabled decision systems that 

continuously optimize procurement and logistics operations 

under cost-risk trade-offs. Firms should prioritize multi-

supplier partnerships and adopt transparent data-sharing 

mechanisms to reduce dependency risks. Investment in 

algorithmic decision tools and blockchain integration can 

enhance responsiveness and build trust among suppliers and 

consumers. Policymakers can support such initiatives by 

establishing interoperability standards, incentivizing digital 

adoption, and aligning data governance frameworks to 

promote sustainable, resilient, and traceable food supply 

networks. 
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