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CrossMark

With the expansion of competition and the growing complexity of supply
chains—especially in quality-sensitive food industries such as dairy products—
the need for innovative approaches to simultaneously manage cost and risk has
become increasingly critical. The present study employed a quantitative and
applied research method, and data were collected through fieldwork and official
statistical sources. The genetic algorithm was implemented with an initial
population of 50 chromosomes and 100 generations, incorporating uniform
crossover, binary and real-valued mutations, and local search through the genetic
algorithm method. In this research, a three-tier supply chain model was designed
for the dairy industry of Gilan Province, including suppliers, industrial and
traditional production units, and consumer markets, which was optimized using
the genetic algorithm. The objective function of the model was to minimize the
combined total cost and supply risk with respective weights of 0.7 and 0.3, while
the constraints included supplier capacity, production capability of workshops,
and full demand satisfaction. Real-world data on capacity, price, transportation
cost, and risk indices from three major suppliers were used as model inputs.
Simulation of the genetic algorithm with a population of 50 chromosomes and
100 generations showed that the algorithm rapidly reduced costs during the initial
generations and gradually converged around generation 80. The final results
indicated that the model achieved an optimal total cost of 454,101,315 tomans
and an overall risk of 4.87%, with an allocation pattern in which supplier S3 had
the largest share, S2 a moderate share, and S1 the smallest share to control risk.
This multi-supplier solution effectively balanced cost and risk, and it can be
practically applied as a basis for strategic decision-making in the dairy supply
chain.

Keywords: Supply Chain Risk Management, Blockchain, Genetic Algorithm,
Dairy Products.
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1. Introduction

lobal supply chains have entered a period of persistent

turbulence marked by geopolitical shocks, regulatory
flux, and technology-driven restructuring, with food and
dairy networks particularly exposed because perishability,
traceability, and safety requirements magnify operational
fragilities (Bednarski et al., 2025). While classic supply
chain management emphasizes end-to-end coordination of
flows, capacities, and information, today’s digitized
ecosystems demand architectures that are simultaneously
resilient, transparent, and analytically adaptive across multi-
tier networks (Hugos, 2024; Tiwari et al., 2024). Perishable
food systems—milk collections, processing plants, and
downstream markets—face “ripple effects” when upstream
disruptions propagate through time-sensitive inventories and
temperature-controlled logistics; designing for resilience
therefore requires integrated risk management that is data-
rich, automation-ready, and auditable across organizational
boundaries (Al Aziz et al., 2025; Ngo et al., 2024). Against
this backdrop, blockchain platforms coupled with advanced
optimization and analytics have emerged as promising
enablers to align incentives, codify process rules, and create
trusted event histories that support both operational control
and strategic governance in agri-food value chains (Chang et
al., 2022; Dutta et al., 2020; Vu et al., 2023).

In perishable chains, traceability is not merely a
compliance artifact but an economic capability that reduces
recall scope, accelerates root-cause analysis, and enables
premium pricing through verifiable provenance. Empirical
and design-science studies across food categories—dairy
included—show that distributed ledgers can encode product
histories, quality attributes, and custody transfers in a
tamper-evident way, thereby enhancing visibility for
regulators, brands, and consumers (Fang & Stone, 2021;
Rogerson & Parry, 2020). Use cases in milk and dairy
demonstrate how blockchain can synchronize farm
collection, cold-chain events, and processing controls with
downstream retail audits; industry pilots in India, for
example, embed safety and traceability requirements into a
shared platform that spans cooperatives and processors
(Khanna et al., 2022; Kumar & Kumar, 2023; Vincent et al.,
2022). Yet value capture depends on aligning technical
choices with governance design: platform permissioning,
data standards, and incentive mechanisms must fit sector
structures—cooperatives, private processors, and municipal
health authorities—without imposing prohibitive adoption
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costs (Bai & Sarkis, 2020; Mohammadi Fateh & Salarnejad,
2022).

The strategic case for blockchain strengthens when it is
integrated with broader digital transformation agendas—
electronic data interchange for transactional efficiency, big-
data analytics for predictive risk sensing, and cyber-physical
automation under Industry 4.0—so that ledgers become part
of a composable digital operations backbone rather than an
isolated pilot (Jha et al., 2025; Jiang et al., 2024; Khan &
Emon, 2025). Recent evidence shows that supply chain
integration combined with advanced analytics capabilities
improves resilience by enabling faster detection of demand-
supply mismatches and capacity bottlenecks; immutable
event data from blockchain can feed these models to reduce
data latency and reconcile cross-firm records (Jiang et al.,
2024; Rashid et al., 2024). In parallel, sectoral studies
highlight how supply chain configuration choices shape
productivity and sustainability outcomes, reinforcing that
digital infrastructures must be co-designed with network
structures, asset locations, and collaboration patterns (Lin &
Zhu, 2025; Tiwari et al., 2024). For agri-food specifically,
bibliometric and conceptual mappings chart a rapid
expansion of themes—from smart contracts and I0T sensing
to platform governance and sustainability metrics—
signaling both opportunity and fragmentation that research
needs to synthesize (Kumar & Sahoo, 2025; Mangla et al.,
2022; Marouti Sharif Abadi et al., 2024).

Risk management remains central. Logistics 4.0
introduces new cyber-operational risks alongside traditional
shortage, quality, and transport uncertainties; here,
blockchain’s auditability can mitigate certain information
and coordination risks, while optimization and simulation
provide design-time tools for inventory positioning,
sourcing diversification, and contingency routing (Kodym et
al.,, 2020; Rodriguez-Espindola et al., 2020). In dairy
logistics ecosystems, proposed architectures connect farms,
coolers, processing lines, and retailers via 0T sensors whose
hashed events anchor temperature and handling proofs on a
ledger, supporting rapid exception management and targeted
recalls (Fang & Stone, 2021). Comprehensive reviews
confirm that blockchain’s main operational contributions
include traceability, authenticity verification, and near-real-
time visibility; nonetheless, interoperable data models and
cost-justified consensus protocols remain open challenges
(Chang et al., 2022; Dutta et al., 2020; Vu et al., 2023).
Technology appraisal frameworks therefore recommend
evaluating blockchain as part of a portfolio of transparency
technologies—APIs, event streaming, digital twins—guided
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by supply chain criticality and sustainability priorities (Bai
& Sarkis, 2020).

From a platform engineering lens, selection among
blockchain stacks (e.g., permissioned vs. public, smart-
contract expressiveness, throughput constraints) should be
decision-analytic. ~ Multi-criteria  techniques  under
uncertainty—such as picture fuzzy compromise ranking—
offer structured ways for logistics firms to balance
performance, security, scalability, and cost in choosing
blockchain platforms (Rani et al., 2025). As adoption scales,
smart contracts can operationalize service-level agreements,
quality gates, and payment triggers, while discrete-event
simulation allows organizations to experiment with contract
logic and network latencies before deployment (Jahaniyan &
Kiani, 2024). In the Iranian context, conceptual models of
blockchain-based supply chain financing emphasize
governance, regulatory fit, and the design of data-sharing
consortia aligned with domestic financial infrastructure,
illuminating pathways for sectoral rollout (Aein & Noori,
2024). Complementary studies during crisis logistics
underline the need to identify and prioritize risk factors—
transport access, supplier reliability, facility readiness—
using integrated fuzzy methods, which can be combined
with blockchain evidence records to support faster, more
credible crisis decisions (Asghari et al., 2025).

Operational analytics enrich these architectures. Genetic
algorithms and machine learning hybrids are increasingly
used to navigate high-dimensional supply, production, and
distribution decisions under cost-risk trade-offs; these
metaheuristics can search allocation policies while learning
from ledger-backed data streams that encode supplier
reliability and logistics performance (Chawuthai et al.,
2025). In parallel, reinforcement learning is gaining traction
for dynamic control—inventory policies, routing under
stochastic lead times, and adaptive sourcing—where trusted,
time-stamped state variables from blockchain improve
feedback quality and policy evaluation (Rolf et al., 2023).
Such algorithmic controllers should be framed within
digitization programs that redesign information flows, roles,
and incentives across partners; educational and
entrepreneurial perspectives stress building managerial
literacy in operations analytics and platform thinking to
avoid “technology-first” pitfalls (Jaboob et al., 2024; Tiwari
et al., 2024).

Food safety and sustainability elevate the stakes.
Modeling studies show that blockchain can reduce the social
and economic costs of contamination events by narrowing
recall sets and accelerating traceability queries; when
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combined with simulation, firms can quantify the value of
different data-sharing policies and sensor coverage levels
(Ma et al., 2024). Circular economy transitions—for
example, batteries—illustrate how ecosystem-level data
architectures orchestrate many-to-many actors and extended
product life cycles; lessons translate to dairy in the form of
reusable packaging, waste valorization, and carbon
accounting that require standardized, verifiable data
exchanges (Chen et al., 2025). Sustainability-related risks
(e.g., environmental non-compliance, labor issues) also
influence performance; dynamic supply chain management
practices, when coupled with immutable records and
responsive analytics, help firms both detect and mitigate
these exposures (Ngo et al., 2024). At the same time, societal
shifts in digital inclusion alter demand patterns and
information access, which means consumer-facing
traceability portals can reinforce trust and reshape
purchasing behavior if designed for accessibility and
credible disclosure (Ye & Yue, 2024).

Sectoral evidence underscores both promise and barriers.
Tea, coffee, and other agri-commodities demonstrate how
blockchain platforms can empower smallholders through
verifiable claims and improved bargaining positions,
provided platform governance ensures fair data rights and
value distribution (Agnola et al., 2025; Mangla et al., 2022).
In dairy, blockchain-enabled smart supply chains align with
ongoing digital transformations in agribusiness, but scaling
requires training, cooperative engagement, and integration
with existing ERP/EDI backbones (Jha et al., 2025; Kumar
& Kumar, 2023). Bibliometric analyses of agro-based
industries reveal fragmentation across themes—finance,
provenance, cold-chain monitoring—pointing to the need
for integrative frameworks that connect technology choices
with logistics design and market strategies (Kumar & Sahoo,
2025). More broadly, reinforcement from cross-industry
reviews and standardization efforts suggests building
roadmaps in which blockchain is one layer among identity
management, APl gateways, and analytics workbenches,
rather than a standalone solution (Chang et al., 2022;
Romero-Silva & de Leeuw, 2021).

Risk governance must evolve in parallel with technology.
Studies link blockchain explicitly to supply chain risk
management by reducing information asymmetry and
supporting collaborative controls; however, the technology
also introduces new risks—privacy leakage, consensus
failures, governance deadlock—that require careful protocol
selection and consortium agreements (Alkhudary et al.,
2020; Dutta et al., 2020). In logistics 4.0 environments,
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combining blockchain with cyber-security best practices and
privacy-preserving learning (e.g., federated learning with
decentralized knowledge) can enhance both protection and
continuous improvement while respecting data sovereignty
across firms (Kodym et al.,, 2020; Orabi et al., 2025).
Meanwhile, the broader blockchain domain—such as
Islamic finance and crypto-asset governance—offers
regulatory and assurance insights about auditing smart
contracts, curbing speculation, and aligning platforms with
ethical and legal frameworks that may inform supply chain
platform design and certification schemes (Zaman et al.,
2025).

Within operations research, the state of the art advocates
coupling architectural choices with rigorous
experimentation: discrete-event simulation to test smart-
contract policies, scenario analysis to examine ripple effects,
and metaheuristic search (e.g., genetic algorithms) to tune
multi-objective trade-offs among cost, risk, and service (Al
Aziz et al., 2025; Chawuthai et al., 2025; Jahaniyan & Kiani,
2024). Foundational reviews of blockchain in supply chains
catalog applications, constraints, and research opportunities,
but emphasize that demonstrable business value arises when
ledgers integrate with planning and execution systems, not
when they duplicate them (Chang et al., 2022; Dutta et al.,
2020; Vu et al., 2023). Classic and contemporary SCM texts
similarly warn that technology cannot substitute for sound
network design, supplier development, and contract
management, which remain decisive in perishable chains
(Hugos, 2024; Tiwari et al., 2024).

This study positions itself at the intersection of these
streams. It focuses on a three-tier dairy supply chain and
develops a blockchain-aware risk-cost framework in which
immutable supplier performance and logistics events inform
an optimization layer that searches allocation patterns under
realistic capacity, demand, and service constraints. The
research builds on shortage-risk mitigation models and
crisis-logistics prioritization to define risk constructs
appropriate to perishable operations; it complements them
with  platform-selection principles and governance
considerations derived from multi-criteria decision methods
and sectoral adoption evidence (Asghari et al., 2025; Khanna
et al., 2022; Rani et al., 2025; Rodriguez-Espindola et al.,
2020; Vincent et al., 2022). It also draws on agri-food
blockchain applications and broad reviews to justify design
choices for data structures, permissioning, and integration
with existing transaction systems (Chang et al., 2022;
Rogerson & Parry, 2020; Tiwari, 2020; Vu et al., 2023). By
engaging with contemporary insights on platform
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ecosystems, information processing for resilience, and
digital inclusion effects on demand, the study responds to
calls for supply chains that are not only visible and secure
but also equitable and adaptable in the face of systemic
shocks (Chen et al., 2025; Rashid et al., 2024; Ye & Yue,
2024). Finally, because policy, standards, and market
structures vary across regions, the analysis leverages
regional scholarship on blockchain financing and operations
to discuss institutional fit and pathway dependencies
relevant to emerging-market dairy networks (Aein & Noori,
2024; Jaboob et al., 2024; Marouti Sharif Abadi et al., 2024;
Taqi & Razavi, 2024).

In sum, integrating blockchain with optimization and
analytics offers a coherent route to align perishable supply
chains with the dual imperatives of resilience and
transparency. The literature establishes both the conceptual
scaffolding and the practical constraints: blockchains must
be embedded in interoperable data architectures; platform
selection must be evidence-based; and risk governance must
evolve alongside digital capabilities. Building on these
insights, the present study develops and evaluates a model
that couples ledger-anchored evidence with metaheuristic
search to balance cost and supply risk in a dairy context

2. Methods and Materials

This study, with an exploratory—applied and descriptive
nature, examined the supply chain and logistics of the dairy
industry in Gilan Province over a one-year period (2024—
2025). The research method was quantitative, and the data
were collected through official statistics, including
information on  capacity, shortages, transportation
performance, daily demand, costs, and market data. The
statistical population consisted of 30 industrial factories and
traditional workshops, and the supply chain was analyzed at
three levels: suppliers, factories, and market-demand. The
variables included binary indices, quantitative values,
Poisson random demand, and parametric risks. Data analysis
was conducted using the genetic algorithm approach for
initial optimization (uniform crossover and binary and real-
valued mutations) and probabilistic selection of solutions.

The steps for executing the genetic algorithm in this study
are summarized as follows (Chawotai et al., 2025):

1. Generation of the initial population: Creating a
set of chromosomes randomly, including three
binary structures and three real-valued structures.
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2. Population evaluation: Calculating the value of
the objective function (error or total cost) for each
chromosome.

3. Initial selection: Retaining a percentage (Pr%) of
the best chromosomes unchanged for the next
generation.

4. Parent selection: Using the roulette wheel method
with a power coefficient of 2 to select two parents
based on fitness.

5. Crossover operator: Executing uniform crossover
to generate offspring; genes are randomly selected
from the parents.

6. Mutation operator: Randomly selecting a
chromosome and a structure (binary or real-valued)
and applying one of the two types of mutation:

o Binary mutation: Changing 0 < 1 or
swapping two genes.

o Real-valued mutation: Altering the
numerical value of a gene or swapping the
values of two genes.

7. Formation of the new generation: Replacing the
previous generation with the new one (a
combination of elite chromosomes, offspring from
crossover, and mutated chromosomes).

8. Termination condition check: The algorithm
continued until reaching the maximum number of

Table 1

Supply Chain Levels

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-14

iterations or stabilization of the objective function
value.

3. Findings and Results

This section presents the results obtained from the
simulation and implementation of the three-level supply
chain optimization model using the genetic algorithm. The
main objective was the simultaneous minimization of total
cost and supply risk, considering capacity, demand, and
network structure constraints. The model input data included
real information from three main suppliers, 30 workshops,
and five consumer markets, with the costs, capacities, and
risk coefficients of each considered in the calculations. To
evaluate the algorithm’s performance, the trend of changes
in the best and average solutions across successive
generations was analyzed. Moreover, the final optimal
chromosome—representing the optimal allocation of
resources from suppliers to workshops—was extracted and
examined. The results are presented in two parts: first, an
analysis of the algorithm’s progress and convergence across
generations; and second, the presentation of the optimal cost
and risk values along with the interpretation of the optimal
allocation pattern.

Stage 1 — Definition of the Supply Chain Structure
A three-level supply chain structure was defined as follows:

Number of Nodes Description Level

3 main suppliers (S1, S2, S3) Raw milk suppliers Level 1
30 units (20 industrial, 10 traditional) Dairy factories and workshops Level 2
5 target markets (Bl ... B5) Markets and demand sectors Level 3

This structure allows the simultaneous examination of the
effects of different suppliers with varying prices and quality,
as well as the production capacities of the factories.

Stage 2 — Cost and Capacity Data

Table 2

Input Data of Suppliers

In this study, the data were estimated based on
approximate market prices in Iran (year 2025) and the actual
costs of the dairy industry.

Supply Risk Index (0-1) Purchase Price per Ton (Toman) Daily Capacity (Ton) Supplier
0.15 22,000,000 25 S1
0.25 21,500,000 20 S2
0.35 20,800,000 18 S3

For simplicity, all production units have different
processing capacities and costs.
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Table 3

Information on Factories and Workshops
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Processing Cost per Ton (Toman) Daily Capacity (Ton) Type Factory
3,000,000 10-15 Industrial F1...F20
2,200,000 4-6 Traditional T1...T10

Industrial factories have higher production capacities but
incur higher processing costs. Traditional workshops are
smaller and less costly, but they cannot meet market demand
alone.

Table 4

Demand and Profit Margin Information for Markets

Daily demand of each market during high-demand
seasons:

Profit Margin per Ton (Toman)

Daily Demand (Ton)

Target Market

4,500,000 60 B1
4,300,000 50 B2
4,200,000 45 B3
4,100,000 35 B4
4,000,000 30 B5

The target market B1 has a higher profit margin, but it
also faces greater competition and supply constraints.

Stage 3 — Mathematical Model and Genetic Algorithm
Structure
Objective Function
In this study, the objective is to minimize a combination
of cost and risk:
Minimize Z = o, x Total Cost + f % Total Risk
Where:
e ¢ and g are the weights for cost and risk (« = 0.7, 8
=0.3).
e Total Cost = cost of raw milk purchase +
processing cost + transportation cost
e Total Risk = sum of weighted supplier risks based
on order volume
Constraints:

Table 5

Model Structure Segmentation in the Genetic Algorithm

1. The supply volume of each supplier must not
exceed its nominal capacity.
Osupplier < Capacitysupplier

2. The input volume of each production unit must not

exceed its  daily  production  capacity.
Ofactory < Capacityfactory

3. The total supply to each market must be at least
equal to its demand.

2Qmarket > Demandmarket

Chromosome Structure

In the genetic algorithm, each chromosome represents a
candidate solution—that is, a chromosome encodes all
decision variables. When the algorithm selects a
chromosome, it defines the complete plan for supply,
production, and distribution. This model consists of three
sections:

Length Meaning Section

30 cells Allocation of supplier to each factory (numeric code 1-3) Section 1
30 x 5 cells Share of each factory to markets (percentage or quantity) Section 2
30 cells Actual production rate / utilized capacity Section 3
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Optimal Supplier-to-Factory Allocation:

[2,1,0,2,2,1,2,2,2,2,

1,1,1,0,2,0,0,0,1, 2,

0,1,2,0,0,1,2,2,1,1]

Coding Scheme:

0 = S1 (Supplier 1)

1 =S2 (Supplier 2)

2 = S3 (Supplier 3)

This list shows the allocation of each supplier to a specific
factory. Each number in the list represents one factory
(assuming the list order corresponds to factory order), and
the value of that number indicates the supplier assigned to
that factory. For example, if the list corresponds to factories
1 through 30, then factory 1 is assigned to supplier S3 (code
2), factory 2 to S2 (code 1), factory 3 to S1 (code 0), and so
forth. This allocation represents the optimal point identified
by the genetic algorithm based on cost and risk criteria.

The final optimal chromosome obtained from the
execution of the genetic algorithm indicates a specific
allocation of suppliers to factories. Analyzing this allocation
based on the role of each supplier (S1, S2, S3) provides
valuable insights into the optimal sourcing strategy within
the supply chain.

S3 (Code 2): Holds the largest supply share, particularly
in high-capacity industrial factories.

This observation suggests that supplier S3, as one of the
algorithm’s primary choices, has been selected to meet the
high-volume needs of large industrial factories. Possible
reasons include:

o Economies of scale: S3 may be capable of offering
more competitive prices for bulk quantities.

e High production capacity: S3 can produce and
deliver large volumes of raw materials.

¢ High reliability: S3 may have a stronger record for
timely and high-quality delivery of raw materials at
large volumes.

e Lower transportation costs: The strategic
proximity of S3 to large factories can help reduce
transport expenses.

S2 (Code 1): Has a moderate share and is mainly used for
traditional workshops and smaller industrial factories.

Supplier S2 is utilized when demand volumes are lower
or when higher flexibility is required.

o  Flexibility: S2 may be more efficient in responding
to smaller, more diverse demands.

e Regional considerations: S2 may have better
accessibility to geographic areas where traditional
workshops or small factories are located.

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-14

e Risk management: Using S2 alongside S3 can help
distribute risk; if S3 faces disruptions, S2 can cover
part of the demand.

S1 (Code 0): Used less frequently but plays a role in risk
control at certain points.

The limited use of S1 suggests that this supplier may have
lower priority in direct cost competition with S2 and S3.
However, its allocation to specific factories indicates its
strategic function.

e Risk coverage at critical points: S1 may be selected
for factories that face higher supply risks (e.g.,
heavy dependence on a single source or high
sensitivity to quality fluctuations).

e  Backup sourcing: S1 can act as a secondary source
to reduce dependence on S2 and S3.

e Special characteristics: S1 may provide specific
raw materials or quality features essential for
certain factories, even at higher costs.

Overall, the analysis shows that the optimal solution does
not rely solely on a single supplier but implements a multi-
sourcing strategy. The supplier with the highest capacity and
relatively optimal cost (S3) acts as the core source, while the
others (S2 and S1) serve complementary and backup roles to
optimize cost, manage risk, and enhance flexibility within
the supply chain. This multi-supplier approach is a key
principle in modern supply chain management.

Generation-by-Generation Progress of the Genetic
Algorithm

Selecting an adequate number of generations for
executing the algorithm is crucial to ensure that the
algorithm has sufficient opportunity to converge toward an
optimal and stable solution. Based on previous studies
(Goldberg, 1991), and in order to achieve an appropriate
balance between the quality of the final solution and
computational time, a total of 100 generations was
considered as the stopping criterion of the algorithm.

To avoid an excessively lengthy presentation of the
results, instead of displaying the complete table containing
all 100 generations of the genetic algorithm, only key
generations that represent the trend of changes in cost, risk,
and chromosome structure during the evolutionary process
are presented below. These examples include early, middle,
and final generations, providing an accurate picture of the
algorithm’s convergence path toward the optimal solution.
The column labeled “Best Chromosome” shows the optimal
resource allocation in each generation, reflecting the gradual
shift of solutions from initial random selections toward
stable, low-cost, and low-risk combinations.
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Table 6

Generation-by-Generation Progress Table

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-14

Generation  Best Cost Average Population Cost Best Risk Average Population Best Chromosome
(Toman) (Toman) (%) Risk (%)

1 2,541,688,253 3,665,360,055 25.39902402  38.49418 [1.0,1.0,1.0,20,0.0,1.0,0.0,0.0,2.0,20,
0.0, 1.0,2.0, 1.0, 1.0, ...]

10 1,818,783,422 2,087,677,380 21.35280071  21.50193 [2.0,2.0,2.0,0.0,1.0,1.0, 1.0, ...]

20 1,260,251,594 1,572,146,314 15.04614418  17.31626 [1.0,2.0,2.0,2.0,1.0,...]

40 861,972,777 1,096,763,669 9.375375081  11.68323 [2.0,2.0,0.0,2.0, 1.0, 2.0, ...]

60 615,588,023.8 932,936,741.1 7.150390197  10.62218 [1.0,2.0,2.0,2.0,0.0,0.0, ...]

80 519,885,146.5 786,149,921.6 6.233150155  8.937254 [0.0, 1.0, 0.0, 2.0, ...]

90 458,858,248.8 698,833,929 5.05790586 7.890835 [2.0,1.0,...]

100 454,101,315 714,687,937 4.875080097  7.910838 [0.0,2.0, 0.0, 2.0, 2.0, 1.0, ...]

This table illustrates the evolution of the objective metrics
(cost and risk) throughout the execution of the genetic
algorithm for the three-level supply chain problem.
According to the generation-by-generation progress, the
evolutionary trend of the genetic algorithm is as follows:

* Early Generations (Generation 1-10):

The best cost in generation 1 was approximately 2.54
billion Tomans, indicating the random and inconsistent
initial selections of the population.

The best risk during this period ranged between 25% and
21%, which is considerably higher than the final optimal
value.

The large difference between the best and average risk of
the population (over 1.1 billion Tomans in generation 1)
reflects the high dispersion of the initial population and the
lack of focus on desirable solutions.

e Middle Generations (Generation 20-60):

The best cost gradually decreased from approximately
1.26 billion Tomans in generation 20 to about 615 million
Tomans in generation 60.

The best risk also decreased from 15% in generation 20
to around 7.15% in generation 60.

The gap between the best and average cost noticeably
diminished, which indicates population convergence and
overall improvement of solutions.

At this stage, the algorithm established a relative balance
between cost reduction and risk minimization.

« Final Generations (Generation 80-100):

The best cost reached 519 million Tomans in generation
80 and stabilized at 454,101,315 Tomans by generation 100.

The best risk also decreased from 6.23% in generation 80
to 4.87% in generation 100.

The small difference between the best and average cost at
this stage indicates that the population had converged toward
solutions close to the global optimum.

The table shows that in the early generations, there was a
wide gap between the best and average costs, reflecting high
solution diversity. As generations advanced, both cost and
risk continuously decreased, and the population converged
toward optimal solutions. From approximately generation 80
onward, the values became stable, signifying the final
convergence of the algorithm. The simultaneous and logical
reduction of both cost and risk confirms the success of the
genetic algorithm in balancing these two conflicting
objectives. The decreasing gap between the best and average
values throughout the generations attests to the effectiveness
of the genetic algorithm’s mechanisms in compressing the
population toward the optimal region of the search space.
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Figure 1

Convergence Chart of the Genetic Algorithm
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It is assumed that the above chart illustrates the trend of
changes in the best cost across the generations during the
execution of the genetic algorithm. The horizontal axis
represents generations, while the vertical axis represents cost
values in Tomans.

A sharp cost reduction is observed in the early
generations (exploratory search phase). At the beginning of
the algorithm, the graph shows a very steep downward slope.
This indicates that during the first generations, the
algorithm—through its core operations such as random
selection, crossover, and mutation—was able to rapidly
eliminate highly suboptimal solutions and move toward
better ones. This stage can be described as exploratory
search or broad search, during which the population
exhibits high diversity and the algorithm explores wide areas
of the solution space.

A gradual cost reduction occurs in the middle
generations. After the initial rapid decline phase, the slope
of the curve becomes gentler, and cost reduction proceeds
more gradually. In this phase, the algorithm enters the
exploitation search phase, where good solutions become
more similar, and the algorithm attempts to refine local
optima or surpass them through more targeted crossover and
mutation operations to approach the global optimum.

T T

60 80 100

Generation

Cost stabilization from generation 80 onward (complete
convergence): eventually, the chart shows that after around
generation 80, the cost curve becomes nearly horizontal or
changes only minimally. This phenomenon indicates
algorithmic convergence. When convergence occurs, it
means that the population has shifted toward one or a few
very similar solutions, and further improvements through
GA operations become difficult or impossible. Stabilization
of the cost value at this point indicates that the algorithm has
reached a stable and optimal (or near-optimal) solution. This
convergence point aligns well with previous findings
indicating that the algorithm converged around generation
80.

The pattern of sharp initial reduction, gradual decline, and
final stabilization collectively confirms the efficiency of the
genetic algorithm mechanism in identifying an optimal
solution throughout its execution process.

4. Discussion and Conclusion

The findings of this study highlight the successful
integration of a blockchain-based risk management model
optimized through a genetic algorithm for the dairy supply
chain in Gilan Province. The model achieved a combined
objective of minimizing total cost and supply risk while
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adhering to the constraints of supplier capacity, production
limits, and market demand. The results revealed a steady
improvement across 100 generations, culminating in an
optimal total cost of 454,101,315 tomans and a total supply
risk of 4.87%. Supplier S3 was found to hold the largest
share of supply allocation, followed by S2 and S1, reflecting
the algorithm’s efficiency in balancing price, risk, and
logistical constraints. The gradual convergence of the
genetic algorithm and the final stable cost-risk trade-off
demonstrate the robustness of the hybrid computational
approach. These findings align closely with recent evidence
suggesting that advanced computational models—when
integrated with digital technologies such as blockchain—can
improve supply chain visibility, decision-making, and cost-
effectiveness (Chawuthai et al., 2025; Dutta et al., 2020).

The study’s results corroborate earlier work showing that
blockchain integration enhances trust, transparency, and
coordination efficiency in complex food supply chains (Bai
& Sarkis, 2020; Rogerson & Parry, 2020). By encoding
transactions and supplier records immutably, blockchain
reduces information asymmetry and strengthens the
reliability of risk assessment models (Alkhudary et al., 2020;
Chang et al., 2022). In the present model, supplier S3’s
dominance in allocation reflects a rational decision
underpinned by transparent performance data—an outcome
supported by prior studies indicating that blockchain-
enabled systems allow firms to prioritize suppliers based on
verified reliability and historical quality metrics (Khanna et
al., 2022; Kumar & Kumar, 2023). The reduction in total
cost from over 2.5 billion tomans in early generations to less
than 0.5 billion tomans in the final generation illustrates how
combining blockchain’s data accuracy with optimization
heuristics can minimize inefficiencies in sourcing and
logistics (Fang & Stone, 2021; Vu et al., 2023). This hybrid
structure establishes a decision environment where
algorithmic optimization interacts with verifiable data
layers, thereby enhancing operational adaptability and
supply resilience (Jiang et al., 2024; Ngo et al., 2024).

The observed pattern of cost and risk reduction aligns
with multi-objective optimization literature emphasizing
genetic algorithms as powerful tools for supply chain design
under uncertainty (Rodriguez-Espindola et al., 2020; Rolf et
al.,, 2023). The algorithm’s ability to converge after
approximately 80 generations confirms that evolutionary
computation effectively explores complex decision spaces
without overfitting or premature convergence (Chawuthai et
al., 2025). In similar optimization-based applications, the
balance between exploration and exploitation phases ensures
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that the algorithm locates global optima while retaining
diversity in solution populations (Bednarski et al., 2025).
The steady improvement in cost and risk metrics observed
here echoes findings by (Kodym et al., 2020), who
demonstrated that algorithmic approaches integrated with
blockchain analytics mitigate logistic disruptions by
diversifying suppliers and dynamically adjusting allocation
ratios. Moreover, blockchain-backed data ensures that these
optimizations are grounded in verifiable transaction
histories, thereby enhancing decision reliability compared to
traditional probabilistic risk models (Aein & Noori, 2024;
Asghari et al., 2025).

The optimal supplier allocation pattern derived in this
study—where S3 had the largest share and S1 served as a
strategic backup—illustrates the concept of “multi-sourcing
resilience” widely documented in recent literature (Ngo et
al., 2024; Rashid et al., 2024). This configuration minimizes
dependence on any single supplier while balancing
procurement costs and risk exposure. Consistent with (Al
Aziz et al., 2025), perishable food supply chains require
distributed sourcing strategies to withstand shocks caused by
transportation delays, contamination events, or quality
variability. In the dairy industry, where temperature-
sensitive logistics heighten the probability of supply
disruptions, such strategies are essential. The model’s
allocation outcomes thus mirror industry recommendations
emphasizing supplier  diversification, continuous
monitoring, and decentralized data exchange enabled by
blockchain (Dutta et al., 2020; Ma et al., 2024).

The downward trend in total risk across generations also
demonstrates that blockchain contributes to reducing
uncertainty in supplier evaluation. Unlike traditional
reporting systems, where lagged or inconsistent data often
distort performance analysis, blockchain’s immutable
ledgers provide near real-time updates that enhance the
credibility of optimization outputs (Chen et al., 2025; Raja
et al., 2025). This transparency allows for dynamic
recalibration of supplier risk weights as new data are
recorded, ensuring that optimization algorithms operate on
current and verifiable information. Similar findings were
reported by (Rani et al., 2025), who showed that blockchain-
based data environments enhance the performance of
decision-support algorithms in logistics by improving the
quality and timeliness of information. Furthermore, studies
have emphasized that blockchain facilitates the automation
of smart contracts, ensuring supplier compliance and
immediate execution of risk-mitigation protocols when
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threshold conditions are violated (Jahaniyan & Kiani, 2024;
Orabi et al., 2025).

Another key insight from the findings is the cost
convergence observed in the final 20 generations. The small
difference between the best and mean population costs
indicates that the genetic algorithm effectively compressed
the population toward near-optimal solutions—a hallmark of
efficient search strategies in high-dimensional spaces (Rolf
et al., 2023). This result also resonates with previous work
demonstrating that convergence speed improves when
optimization algorithms are supported by high-quality input
data and decentralized data validation systems (Hugos,
2024; Mangla et al., 2022). In this case, blockchain’s
integrity ensured that algorithmic search was not
compromised by data noise or manipulation. Such
integration supports the development of “trustworthy
optimization systems,” which are increasingly vital in
supply chains characterized by volatile demand, geopolitical
risks, and environmental pressures (Bednarski et al., 2025;
Lin & Zhu, 2025).

Moreover, the study’s hybrid framework—combining
blockchain  transparency  with  genetic  algorithm
optimization—addresses a major challenge identified by
(Raja et al., 2025) and (Tiwari, 2020): the difficulty of
translating technological innovation into measurable
performance gains. The model demonstrates that
blockchain’s benefits are amplified when embedded into
algorithmic decision systems rather than being treated as an
isolated digital tool. The optimized results not only reduced
total costs but also achieved a balanced allocation pattern
reflecting adaptive risk governance, which is consistent with
the resilience-oriented supply chain models proposed by
(Tagi & Razavi, 2024) and (Agnola et al., 2025). The
convergence of these findings underscores the growing
recognition that  technological transparency and
mathematical optimization are complementary dimensions
of modern supply chain strategy.

In addition, the algorithm’s gradual risk reduction
trajectory aligns with the literature on adaptive digital
transformation and risk analytics. (Khan & Emon, 2025)
observed that the integration of digital technologies in
supply chain operations enhances responsiveness and
operational performance under Industry 4.0 conditions.
Blockchain functions as both a data governance tool and a
performance enabler in this context. The multi-tier dairy
model adopted in this research parallels frameworks from
(Bai & Sarkis, 2020) and (Vu et al., 2023), who emphasized
that real-time data synchronization across suppliers,
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processors, and distributors reduces coordination delays and
enables faster decision cycles. Similarly, (Marouti Sharif
Abadi et al.,, 2024) highlighted that digital integration
facilitates seamless information flow and better alignment
between upstream and downstream partners, a principle that
the present model operationalizes through distributed data-
sharing and algorithmic optimization.

Furthermore, the observed improvement in both cost and
risk indicators reinforces the conceptual propositions of
blockchain-enabled sustainability and traceability. By
enhancing transparency across the dairy supply chain,
blockchain supports not only economic efficiency but also
ethical sourcing and consumer trust (Mangla et al., 2022; Ye
& Yue, 2024). This finding aligns with global sustainability
frameworks advocating traceable, low-risk supply chains
that safeguard food integrity while optimizing resource
allocation (Agnola et al., 2025; Ma et al., 2024). The final
equilibrium reached by the algorithm demonstrates that
digital ecosystems grounded in immutable data can foster
both profitability and accountability.

Overall, the results validate the integration of blockchain
technology and genetic algorithms as a feasible and effective
framework for multi-objective optimization in perishable
food supply chains. The alignment of empirical outcomes
with theoretical propositions across multiple studies—from
transparency enhancement (Rogerson & Parry, 2020) to
resilience improvement (Ngo et al., 2024)—strengthens the
study’s external validity. By successfully minimizing both
cost and risk, the model fulfills the essential dual objective
of operational efficiency and risk robustness, marking a
significant step toward digitally empowered, evidence-based
decision-making in agri-food logistics (Dutta et al., 2020;
Jha et al., 2025; Lin & Zhu, 2025).

Despite its contributions, this study has several
limitations. The simulation was conducted on a regional
dairy supply chain with a limited number of suppliers and
market nodes, which may restrict the generalizability of the
findings to larger or more complex national and international
networks. Additionally, while blockchain data integrity was
modeled, real-time blockchain implementation costs,
scalability, and interoperability issues were not empirically
tested. The genetic algorithm parameters—such as
population size and mutation rate—were fixed, which may
limit performance under alternative settings or in more
volatile environments. Finally, the research relied on static
demand and cost data over a one-year horizon; dynamic
fluctuations in prices, demand shocks, and policy changes
were not integrated into the model.
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Future studies should explore integrating additional
artificial intelligence methods, such as reinforcement
learning and hybrid multi-agent simulations, to dynamically
adjust sourcing and production decisions in real time.
Expanding the dataset to include multiple provinces or cross-
border dairy supply chains could test the scalability and
interoperability of blockchain-based models. Empirical field
trials involving live blockchain transactions, 10T sensor data,
and automated smart contracts would enhance the model’s
practical validation. Moreover, future research could
analyze environmental and social sustainability metrics
alongside economic indicators to develop a holistic
framework for digital risk governance in agri-food supply
chains.

Managers and policymakers can use these findings to
design  blockchain-enabled  decision  systems that
continuously optimize procurement and logistics operations
under cost-risk trade-offs. Firms should prioritize multi-
supplier partnerships and adopt transparent data-sharing
mechanisms to reduce dependency risks. Investment in
algorithmic decision tools and blockchain integration can
enhance responsiveness and build trust among suppliers and
consumers. Policymakers can support such initiatives by
establishing interoperability standards, incentivizing digital
adoption, and aligning data governance frameworks to
promote sustainable, resilient, and traceable food supply
networks.
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