MAN

PUBLISHING INSTITUTE

Article history:

Received 26 June 2025

Revised 10 October 2025

Accepted 16 October 2025
Published online 01 January 2026

Journal of Resource Management and

Y

. . L] .
Decision Engineering ‘
Journal of
Resource Management and
Decision Engineering

Volume 5, Issve 1, pp 1-15

Investigating Communication and Security Challenges in Power
Microgrids and Designing a Secure Communication Network Using
Appropriate Protocols and Encryption Techniques of Artificial

Intelligence Technology

Abolfazl. Taleghani'@®, Sepehr. Soltani”

! Department of Electrical Engineering , Sab.c.,Islamic Azad university, Sabzevar,lran

* Corresponding author email address: sep_soltani@iau.ac.ir

Article Info

ABSTRACT

Article type:
Original Research

How to cite this article:

Taleghani , A. & Soltani , S. (2026).
Investigating Communication and Security
Challenges in Power Microgrids and
Designing a Secure Communication Network
Using Appropriate Protocols and Encryption
Techniques of Artificial Intelligence
Technology. Journal of Resource
Management and Decision Engineering,
5(1), 1-15.
https://doi.org/10.61838/kman.jrmde.5.1.183

© 2026 the authors. Published by KMAN
Publication Inc. (KMANPUB). This is an
open access article under the terms of the
Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-
NC 4.0) License.

CrossMark

With the expansion of the use of renewable energy sources and the need for smart
energy distribution systems, microgrids have become one of the vital
components of power systems. Considering the increasing importance of power
microgrids in modern energy systems and their key role in increasing efficiency
and reducing dependence on large power grids, designing a reliable
communication network for the utilization of these microgrids is crucial. In this
research, a comprehensive framework for simulating, designing, and evaluating
the communication network of power microgrids is presented. First, power
microgrids were simulated using the Python programming language to enable
analysis of the behavior and performance of these systems under different
conditions. Then, a communication network based on artificial intelligence
algorithms was designed and developed, which ensures the ability to coordinate
and manage microgrids optimally. Next, in order to investigate the stability and
security of the designed communication network, various types of cyber attacks
were simulated. These attacks included data intrusion, disruption of
communications, and various cyber-destruction scenarios. Also, smart defense
strategies were developed to counter these attacks and their effectiveness in
maintaining the performance of the communication network and preventing
negative impacts on microgrids and the main power grid during outage
conditions was evaluated. The results show that the designed communication
network is not only efficient in managing and utilizing microgrids, but also has
the ability to resist cyber attacks and maintain system stability. This research can
be used as a basis for developing smart and secure systems in energy
management and power microgrids and provide an effective solution to address
security and stability challenges in power systems.

Keywords: Communication network, microgrids, in power grid, artificial
intelligence

https://doi.org/10.61838/kman.jrmde.5.1.183
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0009-0002-2863-1317
https://orcid.org/0000-0001-6778-4581
https://crossmark.crossref.org/dialog/?doi=10.61838/kman.jrmde.4.2.5
http://creativecommons.org/licenses/by-nc/4.0

PURLISHING INSTITUTE

1. Introduction

icrogrids are small, autonomous networks of

distributed energy resources (DERs) that can
operate independently or be connected to the national grid.
These networks can be used to supply electricity to small
areas of buildings or specific communities. One of the main
challenges in microgrids is designing a secure and reliable
communication network for optimal resource management
and maintaining system security (Huang et al., 2024).
However, due to the direct connection of these systems to
the public electricity grid and the Internet, they are exposed
to security threats. Cyberattacks on microgrids can lead to
widespread disruptions in energy supply, damage to
equipment, and even safety risks for users (Serban et al.,
2020). Also, the reliability of the communication network in
microgrids is very important. Any disruption or delay in
sending and receiving information between microgrid
components can cause system inefficiency and even
blackouts. Hence, a secure and reliable communication
system that can transmit data in real time and is protected
against security threats is essential (Reddy, Kumar, &
Chakravarthi, 2022). Microgrids require a reliable
communication network to exchange information between
different components such as inverters, batteries, solar
panels, and energy storage units (Hu & Ma, 2023). Also,
given the high importance of microgrids in energy supply, it
is crucial to protect these networks against cyber attacks and
prevent information leakage (Liu et al., 2024). The main
issue of this paper is the design and implementation of a
secure and reliable communication network for power
microgrids. This network should be such that it is protected
in terms of security and at the same time can transfer data in
real time and with high accuracy between different
components of the microgrid. Since cyber attacks and
network disturbances can affect the performance of the
entire microgrid (Vaishnav et al., 2023), the aim of this
research is to find solutions to improve the security and
efficiency of these communications. In this paper, in
addition to focusing on the importance of communication
networks in microgrids, various methods and techniques for
designing secure and resilient networks will be examined.
Communication networks in microgrids are considered as
one of the most key components for the optimal management
of distributed energy. Given the essential role of these
networks in the exchange of data between different
components of microgrids, including energy producers (such
as renewable energy sources), storage units, and energy

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

consumers, efficient and stable communications between
these components are of great importance. However, due to
the distributed nature and continuous expansion of
microgrids, challenges such as scalability, management
complexity, and increased likelihood of cyber attacks arise
(Reddy, Kumar, Chakravarthi, et al., 2022).

The broader topics discussed in this paper include the
following:

In this research, we will analyze various cyber threats that
can attack microgrid communication networks. These
threats include intrusion attacks, unauthorized access
attacks, and denial of service (DoS) attacks (Niknejad et al.,
2021; Vaishnav et al., 2023). Also, existing solutions to
counter these threats will be reviewed, and advanced
cybersecurity methods such as encryption, intrusion
detection, and authentication systems will be used to
improve network security (Cai et al., 2023).

Another important topic to be discussed in this paper is
the reliability and stability of communication networks.
Microgrid communication networks of power systems must
be resilient to various failures and disturbances due to their
interaction with distributed energy resources. In this regard,
automatic recovery technigques and network redundancy are
investigated so that in the event of a fault, the system
operation continues without interruption (Reddy, Kumar,
Chakravarthi, et al., 2022). The reliability of communication
networks refers to the extent to which a network is able to
provide stable, uninterrupted services with minimal errors.
This concept is one of the key aspects of Quality of Service
(QoS) and is of particular importance in sensitive
communications, such as emergency or financial
communications (Hao et al., 2021).

The use of intelligent systems to predict possible failures
in communication networks and take preventive measures is
another part of this research. Machine learning algorithms
and data analytics can play an important role in early
detection of problems and prevention of potential crises
(Utkarsh et al., 2019).

Intelligent management and failure prediction is a new
approach in the field of industrial maintenance and repair,
which is implemented by utilizing new technologies such as
artificial intelligence (Al), machine learning (ML), and the
Internet of Things (10T) with the aim of increasing efficiency
and reducing sudden equipment failures (Mannini et al.,
2022).

This article will provide a comprehensive review of the
principles, techniques, and applications of this approach.
With the rapid growth of technology and the increasing

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

importance of productivity, many industries are seeking to
optimize their maintenance and repair processes. Failures in
industrial equipment and machinery can lead to production
downtime, increased costs, and reduced productivity. One of
the key solutions to address this challenge is Smart
Maintenance Management, which uses predictive failure
analysis to reduce maintenance-related costs and minimize
equipment downtime (Reddy, Kumar, & Chakravarthi,
2022). Smart maintenance is a comprehensive system that,
based on data collected from industrial equipment and
machinery, uses advanced algorithms and data mining
techniques to predict failures and make practical
recommendations for optimizing maintenance and repair.
These systems typically use advanced sensors, historical
equipment performance data, and machine learning
algorithms to analyze the data (Cai et al., 2023).

To examine how to optimize the performance of
microgrids through the use of intelligent communication
protocols and Internet of Things (IoT)-based networks that
can exchange critical information in real time between
different microgrid components. This section will examine
different communication protocols and their role in
improving energy efficiency and reducing costs (Ahmed et
al., 2024; Hao et al., 2021).

2. Network System Design

This research uses modeling and simulation to investigate
and analyze the performance of the communication network
in microgrids. For this purpose, a multi-stage approach is
used, including the stages of design, implementation,
simulation, and evaluation (Gaurav & Kumar, 2022).

2.1. Design

In designing a communication network, we must first
define and identify high-level requirements and strategies. In
this stage, we have actually made the necessary preparations.

2.2. Preparation stage

In this stage, we have considered power microgrids and
examined the requirements and strategies that they should
have. In this regard, we have studied the optimal operation
of multiple microgrids under network reliability based on
algorithms. Multiple microgrids can be connected to the
main grid as well as interconnected, so creating appropriate
operating conditions while maintaining their independence
is considered. The goal in optimization is in terms of

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

network reliability (Mannini et al., 2022). In this case, the
switches between microgrids are one of the items that are
considered to meet the conditions for optimizing microgrids.
In the presence of renewable energy sources and the impact
of reliability caused by these sources, simulation has been
performed by creating scenarios and applying them to the
optimization program. The optimization objective function
is performed by an evolutionary algorithm. Considering all
the characteristics of power microgrids and the extent of
communication between them, the definable communication
network must consider the above issues without disruption
during design (Liu et al., 2024).

2.3. Programming Steps

To design a communication network for power
microgrids, we have done programming in Python. In this
step, we first wrote the required codes and analyzed and
reviewed them. The codes include the following.

To simulate and model a simple communication network
for power microgrids, we use Python libraries such as
NetworkX to model and analyze the network topology and
Simpy to simulate the timing behavior.

Here, we used NetworkX to model and display the
network topology, and Simpy is used to simulate message
transmission with communication delays between nodes so
that the graph drawn shows the connection of the
components and specifies the delay on the links. Regarding
the message transfer simulation, messages transmitted
between nodes are shown with real-time timing. In fact, the
above simulation is a simple model and can be extended for
more complex models such as adding data traffic,
communication protocols or security issues (Leung et al.,
2023).

- In the code rewrite, we considered a more realistic
scenario for a power microgrid, which includes the
following network components:

The generator, battery, loads, and central controller will
be. Message transmission includes sending load
information, battery status, and generation to the central
controller.

The communication network is a graph network
consisting of the generator, battery, loads, and central
controller. The links have random delays that simulate real-
world communications. In sending messages, the generator
sends the status of electricity generation to the controller,
and the battery reports its charge level. The loads send their
energy consumption status, which results in a simulation of

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

the messages sent and received in real time with a certain
delay, which can add more states such as warnings or control
commands (Gaurav & Kumar, 2022).

Regarding the code expansion, adding control algorithms
for microgrid management is also implemented using a
Queue, and we will also include the simulation of MQTT or
Modbus communication protocols in the code expansion
(Leung et al., 2023).

The modeling of the communication network of power
microgrids can include the simulation of network topology,
communications between units, and system behavior. This
model can simulate two modes: connected to the power
distribution network and isolated from the grid.

Nodes represent generation units (such as generators),
loads, a central controller, and the distribution network. The
operating modes are in two modes: connected to the grid,
where the microgrid is connected to the power distribution
network, and islanded, where the microgrid is disconnected
from the power distribution network. The NetworkX library
is used for network structure and analysis. The
implementation is in the Python environment, and the output

Table 1

Energy-aware adaptive routing algorithm steps:

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

will include network information and changes in different
modes.

2.4. Routing and optimization algorithms

2.4.1. Routing algorithms for data transmission such as
Dijkstra and A*

To design a routing algorithm for data transmission in a
communication network for a power microgrid, the
algorithm must consider certain characteristics such as delay
minimization, energy consumption optimization, reliability,
and outage handling. A simple algorithm is given for this
purpose (Reddy, Kumar, & Chakravarthi, 2022).

Adaptive routing algorithm with energy awareness:

Inputs:

Network graph: (V, E) = G, where V is the set of nodes
and E is the set of links.

Origin and destination: S and D

Initial energy values of nodes: v*E for each E D[v)*

Link weights: Based on criteria such as delay, bandwidth
and energy consumption

Output: Optimal path P from Sto D

Stage Description

1 Calculating link weight

d(u,v) :link delay between u and v

For each linkE 3 (u,v) We calculate link weight as a combination of the following criteria:

1
m.ﬁ+d(u,v).a =w(u,v)

B(u, v) :Link bandwidth between u and v

uf :Residual energy of node u

y, B, @ :Weighting coefficients to control the importance of each criterion.

2 Finding the initial path a routing algorithm such as Dijkstra or *A Search to find the shortest path based on the weights calculated in
step 1.

3 Updating weights After the path is selected, the energy of the nodes used in the path decreases.
We again update the link weights according to the remaining energy of the nodes.

4 Network dynamics control If the network changes (such as adding a new node or link) or the node runs out of energy, the algorithm must
recalculate the path.
We use a distributed routing protocol to ensure updates are made in real time.

5 Sending data We send the data via the selected route.

We monitor the quality of data transmission (such as packet loss rate.(

-Load and energy management and control

Demand Response Algorithm

This algorithm can be used as a basic framework for
demand management in power microgrids.

General steps of the algorithm:

Collecting initial data:

Demand analysis and consumption forecasting:
Prioritizing loads:

Adjusting energy production and storage:
Intelligent control system:

Communication and data management:

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

Alarm signals and reporting:

2.5. Implementing communication protocols:

Simulating protocols such as MQTT, Modbus or
IEC61850

To implement the load management algorithm and
control the charging and discharging of batteries in electric
power microgrids using the MQTT (Message Queuing
Telemetry Transport) protocol, the goal is to design a
communication system for data transfer between different
components of the microgrid. The MQTT protocol is a
lightweight communication protocol that is very suitable for
data transfer in IOT networks and distributed systems.[85]

Data transfer between different components of the
microgrid, including energy producers, consumers and
batteries

Load management and control of battery charging and
discharging through messages and commands sent between
nodes.

Implementation of the MQTT protocol for
communication between components to send information
about the status of energy consumption, production and
battery level

General structure:

Publisher: Energy sources such as solar panels, wind
turbines and batteries act as data publishers.

Subscriber: Control systems and consumers act as
subscribers to information about consumption, production
and battery status.

Broker: MQTT server that receives messages from
publishers and sends them to subscribers.

Scenario:

Energy generation from production sources such as solar
panels sends messages indicating the amount of energy
produced.

Batteries send their status through messages.

The controller monitors the status of the network and
automatically sends commands to charge and discharge the
batteries.

Energy consumers send their consumption information so
that the demand on the network can be accurately managed.

Steps:

1-Setting up an MQTT Broker:

The first step in implementing the system is to install and
configure an MQTT Broker. One of the most popular
brokers is Mosquitto, which we can run on a local or cloud
server.

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

On Linux operating systems, we can use the following
command to install Mosquitto.

1. sudo apt-get update
2. sudo apt-get install mosquitto mosquitto-clients

2- Message structure:
Messages must have a specific structure to send data

about different states and information. For example, for
batteries, different Topics can be used:

A =< energy —generation— < Node_id Energy

generation by a source.

B =< battery —status— < Node_id Battery status
(charge / discharge level)

C =< demand — < Node_id Energy consumption in a
specific area or consumer

D = controller —command Control commands for

batteries or energy sources

3-Implementing the algorithm using MQTT in
Python:

Connecting to the MQTT server: Here we are using a
local server (localhost). We can change the MQTT server
address to any address we use.

Callback function on_connect: This function is executed
after a successful connection to the MQTT server and shares
the topics that need to be subscribed (such as energy
production and demand).

Callback function on_message: This function is executed
when receiving any message from different topics. These
messages contain energy production and energy demand
data.

Battery charge and discharge control: Based on the
energy production and demand data, the algorithm decides
whether the batteries should be charged or discharged.

Data dissemination: Data including energy generation,
energy demand, and battery status are regularly disseminated
to the MQTT server.

Using MQTT, we have developed a scalable and
lightweight communication system for the management and
control of electric power microgrids. This algorithm allows
for real-time control and monitoring of energy consumption,
energy generation, and battery status.

2.6. Artificial Intelligence and Machine Learning for
Network Management

Load and Energy Generation Forecasting Using Machine
Learning Algorithms (such as Scikit-learn or Tensorflow)
Model Number One:

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

import numpy as np

2. import pandas as pd

3. from sklearn . import preprocessing StandardScaler
4. from sklearn . svm import SVR

5. from sklearn . metrics import mean_squared_error
import paho . mqtt . client as mqtt

First step : Data collection and preprocessing
9. def data_preprocessing (data):

10. scaler = StandardScaler ()

11. scaled_data = scaler . fit_transform (data)
12. return scaled_data

14. # Second step : Design and train the SVM model for load prediction
15. def train_svm_model (X_train, y_train):

16. model = SVR (kernel = 'rhf")

17. model . fit (X_train, y_train)

18. return model

20. # Step Three : Load Forecasting
21. def predict_load (model , X_test):
22. return model . predict (X_test)

24. # Step Four : Managing Communications Between Measuring Stations and the
Control Center

25. def on_message (client , userdata , message):

26. print (f"Message received: {message.payload}")

27. # Message analysis and making predictions

29. def start_mgqtt_client ():

30. client = mqtt.Client ()

31. client. on_message = on_message

32. client. connect ("mqtt_broker_url", 1883, 60)
33. client . subscribe ("microgrid/load_data" , qos = 1)
34. client.loop_forever ()

36. # Step 5 : Update the model based on new data

37. def update_model (model , new_data , new_labels):
38. model . fit (new_data , new_labels)

39. return model

40.
41. # Algorithm execution
42. if name =="__main__

43. # Input data

44. data = pd . read_csv ("microgrid_data.csv")
45. X = data . drop (columns =["load"])

46.y = data ["load"]

48. # Data preprocessing
49. X_scaled = data_preprocessing (X)

51. # Dividing the data into training and testing sections

52. train_size = int (0.8 *len (X))

53. X_train, X_test = X_scaled [: train_size] , X_scaled [train_size :]
54. 'y train,y_test =y [: train_size], y [train_size :]

56. # Model training
57. model = train_svm_model (X_train, y_train)

59. # Load forecasting

60. y_pred = predict_load (model , X_test)

61. mse = mean_squared_error (y_test,y_pred)
62. print (f "Mean Squared Error: {mse}")

64. # Start MQTT communication to send data
65. start_mqtt_client ()

10. def preprocess_data (data);
11, scaler = MinMaxScaler (‘feature_range =(0, 1))

12. data_scaled = scaler . fit_transform (data)
13. return data_scaled , scaler

15. # Step 2: Create temporal data to train theLSTM model
16. def create_dataset (data , time_step = 1):
17.X,y=10.10

18. foriinrange (len (data) - time_step - 1):

19. X. append (data [i:(i+time_step), 0])

20. y . append (data [i+ time_step,01])

21. returnnp.array (X), np.array (y)

23.# Step 3: Create and train theLSTM model

24. def build_Istm_model (time_step):

25. model = Sequential ()

26. model . add (LSTM (units = 50 , return_sequences = True , input_shape =(
time_step, 1)))

27. model . add (LSTM (units = 50 , return_sequences = False))

28. model . add (Dense (‘units = 1))

29. model . compile (optimizer = 'adam’, loss = 'mean_squared_error")

30. return model

32. # Step Four: Model Training and Evaluation

33. def train_and_evaluate_Istm (data , time_step = 60):

34. # Dividing data into training and testing sections

35. train_size = int (len (data) *0.8)

36. train_data, test_data = data [: train_size], data [train_size :]

38. # Create datasets
39. X_train, y_train = create_dataset (train_data , time_step)
40. X_test, y_test = create_dataset (test_data , time_step)

42. #reshape data for input toLSTM

43. X_train = X_train . reshape (X_train . shape [0], X_train . shape [1], 1)
44, X_test = X_test . reshape (X_test . shape [0], X_test.shape [1],1)

45,

46. # Model creation and training

47. model = build_Istm_model (time_step)

48. model . fit (X_train, y_train, epochs = 10 , batch_size = 32, verbose = 1)
49.

50. # Model prediction and evaluation

51. y_pred = model.predict (X_test)

52. mse = mean_squared_error (y_test,y_pred)

53. print (f'Mean Squared Error: {mse}")

55. return model

B: Reinforcement learning for optimizing resource
allocation
Code:

Model Number Two:

A: Complex Neural Network for Load and Energy
Generation Forecasting

Code:

52. import numpy as np

2. import pandas as pd

3. from sklearn . import preprocessing MinMaxScaler
4. import tensorflow as tf

5. from tensorflow . keras import models Sequential

6. from tensorflow . keras layers import LSTM , Dense
7. from sklearn . metrics import mean_squared_error
8
9

. # First step: Data preprocessing

1. import random
2. import numpy as np
3

4. class QLearningAgent :

5. definit (self, action_space , state_space , learning_rate = 0.1 , discount_factor =
0.99, epsilon=1.0):

6. self . action_space = action_space

7. self . state_space = state_space

8. self . learning_rate = learning_rate

9. self . discount_factor = discount_factor

10. self . epsilon = epsilon

11 self . g_table = np . zeros ((state_space , action_space))

13. def choose_action (self, state):

14. if random.uniform (0, 1) < self.epsilon :

15. return random . choice (range (self . action_space)) #Exploration
16. else :

17. return np . argmax (self . q_table [state]) #Exploitation

18.

19. def learn (self, state , action , reward , next_state):

20. best_next_action = np . argmax (self . g_table [next_state)

21. self.q_table [state, action] =self. q_table [state, action] + self . learning_rate
* (‘reward + self.discount_factor * self . g_table [next_state , best_next_action] - self
. q_table [state , action])

22.

23. def update_epsilon (self, decay_rate = 0.995):

24. self . epsilon = max (0.01, self . epsilon * decay_rate)

25.

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

26. # Network Interaction andOptimization

27. def run_glearning (agent , episodes = 1000):

28. for episode in range (episodes):

29. state = random . randint (0, agent . state_space - 1) # Hypothesis for starting
a random situation

30. total_reward = 0

31

32. for step in range (100): # Length of each episode

33. action = agent . choose_action (state)

34. reward , next_state = simulate_environment (state , action) # Environment
simulation function

35. agent . learn (state , action , reward , next_state)

36. state = next_state
37. total_reward += reward

38.

39. if state == terminal_state :
40. break

41.

42. agent . update_epsilon () # Reduce theepsilon value to avoid overexploration
43. print (f "Episode {episode+1}, Total Reward: {total_reward}")
44,

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

Code:

import paho.mqtt.client as mqtt

1.
2.
3. # Juadl Gl LsMQTT

4. def on_message(client, userdata, message):

5. print(f"Received message: {message.payload}")
6. # o (B3 5 bdae Sl)5Sk sl

7.

8. def start_mqtt_client():

client = mqtt.Client()

10. client.on_message = on_message

11. client.connect("maqtt_broker_url", 1883, 60)
12. client.subscribe("microgrid/data”, qos=1)
13. client.loop_start()

©

C: Transfer learning to improve learning speed
Code:

. from tensorflow . keras models import load_model

. # Load model from previous network
. def transfer_learning (base_model_path , new_model , train_data , train_labels):
. base_model = load_model (base_model_path)

Transferring weights from the base model to the new model
. new_model . set_weights (base_model . get_weights ())

©CoONOUTAWN R

10. # Train a new model with new data

11. new_model . fit (train_data , train_labels , epochs = 10 , batch_size = 32 , verbose
=1)

12. return new_model

13.

Communication Management with MQTT

MQTT is used to send and receive data for data transfer
and coordination between production resources, consumers,
and forecasting systems.

Table 2

2.7. Cybersecurity in Communication Networks

Implementing Data Encryption Methods for
Communication Security Using Libraries Such as
Cryptography.

To increase security in communication networks of
electric power microgrids, the use of data encryption
methods is a necessity. This helps to protect sensitive
information related to network status, energy generation and
consumption, and other vital data from unauthorized access,
modification, or attacks. Here, we will implement various
encryption methods for data security in the communication
network of electric power microgrids.

Different encryption methods for data security in the microgrid communication network

Type Description

1 Symmetric

This method uses a shared key for encryption and decryption. One of the most popular algorithms in this category isAES

encryption (Advanced Encryption Standard) .

2 Asymmetric This method uses a pair of public and private keys and uses algorithms such asRSA for asymmetric encryption.
encryption

3 Digital .Digital signatures are used to validate data and ensure the accuracy of information
signature

4 Hash Hash algorithms such asSHA-256 .are used to verify data integrity

Implementing AES encryption using pycryptodome

library:
Code
1. from Crypto . Cipher import AES
2. from Crypto . Util . Padding import pad , unpad
3. from Crypto.Random import get_random_bytes
4. import base64
5.
6. # Function for encryption
7. def encrypt_data (data , key):
8. cipher = AES . new (key, AES . MODE_CBC)
9. ct_bytes = cipher . encrypt (pad (data . encode (), AES . block_size))
10. iv = base64 . b64encode (cipher . iv). decode ('utf-8")

12. returniv, ¢

13.

14. # Function for decoding

15. def decrypt_data (iv, ct, key):

16. iv = base64 . b64decode (iv)

17. ct = base64 . b64decode (ct)

18. cipher = AES . new (key, AES . MODE_CBC, iv)
19. decrypted_data = unpad (cipher . decrypt (ct), AES . block_size). decode ('utf-
8')

20. return decrypted_data

21.

22. # Encryption key

23. key = get_random_bytes (16) # 128 bit key-

24,

25. # Datawe want to encrypt

11. ct= base64tA b64encode (ct_bytes). decode ('utf-8")

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

26. data = "This is a confidential message."

28. # Data encryption
29.iv, ct = encrypt_data (data , key)
30. print (f "Encrypted data (IV + Ciphertext): {iv} + {ct}")

32. # Data Decryption
33. decrypted_data = decrypt_data (iv, ct, key)
34. print (f "Decrypted data: {decrypted_data}")

36. On foot Construction CryptographyRSA with Use From Librarypycryptodome :
37. Code:

38. from Crypto.PublicKey import RSA

39. from Crypto . Cipher import PKCS1_OAEP

40. import base64

42. # Generating public and private keys

43. def generate_rsa_keys ():

44. key = RSA . generate (2048)

45. private_key = key.export_key ()

46. public_key = key . publickey (). export_key ()
47. return private_key , public_key

49. # Public key encryption

50. def encrypt_with_public_key (data , public_key):

51. pub_key = RSA . import_key (public_key)

52. cipher = PKCS1_OAEP . new (pub_key)

53. encrypted_data = cipher . encrypt (data . encode ())

54. return base64 . b64encode (encrypted_data). decode ('utf-8')

56. # Decrypt with private key

57. def decrypt_with_private_key (encrypted_data , private_key):

58. priv_key = RSA . import_key (private_key)

59. cipher = PKCS1_OAEP . new (priv_key)

60. decrypted_data = cipher . decrypt (base64 . b64decode (encrypted_data))
61. return decrypted_data . decode ('utf-8")

63. # Generate RSA keys
64. private_key , public_key = generate_rsa_keys ()

66. # Datawe want to encrypt
67. data = "Sensitive data in power grid."

69. # Public key data encryption
70. encrypted_data = encrypt_with_public_key (data , public_key)
71. print (f "Encrypted data: {encrypted_data}")

73. # Decrypt data with private key
74. decrypted_data = decrypt_with_private_key (encrypted_data , private_key)
75. print (f "Decrypted data: {decrypted_data}")

77. On foot Construction With Signature Digital With Use FromRSA :
78. Code:

79. from Crypto.Signature import pkcs1_15

80. from Crypto.Hash import SHA256

81. from Crypto.PublicKey import RSA

83. # GenerateRSA keys

84. def generate_rsa_keys ():

85. key = RSA . generate (2048)

86. private_key = key.export_key ()

87. public_key = key . publickey (). export_key ()
88. return private_key , public_key

90. # Digital data signature

91. def sign_data (data , private_key):

92. priv_key = RSA . import_key (private_key)

93. h=SHA256 . new (data . encode ())

94. signature = pkcsl_15 . new (priv_key). sign (h)

95. return base64 . b64encode (signature). decode ('utf-8")

97. # Digital signature verification

98. def verify_signature (data , signature , public_key):
99. pub_key = RSA . import_key (public_key)

100. h=SHA256 . new (data . encode ())

101. signature = base64 . b64decode (signature)

102. try:

103. pkes1_ 15 . new (pub_key). verify (h, signature)
104. return True # Signature is valid

105. except (ValueError , TypeError):

106. return False # .Signature is not valid

107.

108. # Generate RSA keys

109. private_key , public_key = generate_rsa_keys ()
110.

111. # The datawe want to sign
112. data = "Power grid control message."

114. # Data signature
115. signature = sign_data (data , private_key)
116. print (f "Signature: {signature}")

118. # Signature verification
119. is_valid = verify_signature (data , signature , public_key)
120. print (f"Signature valid: {is_valid}")

Implementing hashing using hashlib:
Code:

. import hashlib

1
2.
3. # Hashing function

4. def hash_data (data):

5. sha256_hash = hashlib.sha256 ()

6. sha256_hash . update (data . encode ())
7. return sha256_hash . hexdigest ()

8

9: # The datawe want to hash

10. data = "Integrity check for power grid."
11.

12. # Generate hash

13. hashed_data = hash_data (data)

14. print (f "SHA-256 Hash: {hashed_data}")
15.

2-6 Simulation of Cyber Attacks and Microgrid Defense

We assume that we have a power microgrid that includes
a generator and several loads. A DOS attack is considered to
disconnect the communication between nodes (some
network equipment). Then, a defense method, such as using
alerting and monitoring protocols, is applied to detect and
resolve the attack.

We use the network library to model the communication
networks and matplotlib for graphical display.

Install the required libraries:

1. pip install networkx matplotlib

Python code

1. import networkx as nx

. import matplotlib . pyplot as plt
. import random

. import time

. # Creating a microgrid network
. def create_microgrid_network ():
.G = nx.Graph ()

©o~NoOh~wN

10. # Addingnodes tothe network

11. G. add_node ('Genl', type = 'Generator ') # Generator

12. G. add_node ('Loadl', type ='Load ') # 1 time

13. G. add_node ('Load2', type ='Load ') # Bar2

14. G. add_node ('Load3', type ='Load ') # Bar3

15. G. add_node ('Comm1', type = 'Communication ') # Communicationl
16. G. add_node ('Comm2', type = '‘Communication ') # Communication2
17.

18. # Create connections betweennodes
19. G . add_edges_ from ([

20. ('Genl', 'Loadl"),

21, ('Genl','Load2'),

22. ('Genl', 'Load3"),

23. ('Loadl', 'Comml"),

24. ('Load2', 'Comml"),

25. ('Load3', 'Comm2"),

26. ('Comm1', 'Commz2")

27.)

29. return G

31. # Simulate a DoSattack (disconnection)

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

32. def dos_attack (G , target_node):

33. iftarget_node in G :

34. print (f "Performing DoS attack on {target_node}...")

35. # Delete the target node and all its connections

36. G. remove_node (target_node)

37. print (f "Node {target_node} is disconnected due to DoS attack.")
38. return G

40. # Defense simulation with communication path replacement

41. def defense (G , backup_node , restore_edge):

42. print (f "Restoring communication using backup node {backup_node}...")

43. G. add_edge (restore_edge [0], restore_edge [1])

44. print (f "Connection restored between {restore_edge[0]} and {restore_edge[1]}"

45. return G

47. # Network display

48. def draw_network (G):

49. pos = nx.spring_layout (G) # Graph settings

50. plt. figure (figsize =(8,6))

51 . draw_networkx (G, pos , with_labels = True , node_color = 'skyblue', node_size
=3000, font_size = 12 , font_weight = 'bold", edge_color =" gray")

52. plt. title ("Microgrid Network™")

53. plt.show ()

55. # Process simulation

56. def run_simulation ():

57. #1. Creating a microgrid network

58. G = create_microgrid_network ()

59. print ("Initial Microgrid Network created.")

61. #2. Network display before attack
62. draw_network (G)

64. #3.DoS attack on node"Comm1" (one connection)
65. G = dos_attack (G, ‘Comm1')

67. #4. Network display after attack
68. draw_network (G)

70. #5. Defend and rebuild the connection using a backup node
71. G = defense (G , '‘Backup_Comm', ('Loadl', 'Load3"))

73. #6. Post-Defense Network Display
74. draw_network (G)

76. # Run thesimulation
77. run_simulation ()

Code Description:

Create a Power Microgrid Network: First, a power
microgrid is created using the networkx library. This
network consists of a generator and three loads connected by
different connections.

Simulate a DoS attack: In a DoS attack simulation, the
communication of one of the nodes (here the connection
"Comm1") is interrupted. In this case, the target node is
removed from the network.

Defend against an attack: To defend against an attack, a
backup connection is re-established so that the network can
continue its activities. Here, we assume that the backup
nodes are ready to establish communications.

Graphical representation: The network is graphically
displayed using matplotlib to clearly see the changes after
the attack and defense.

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

2.8. Data monitoring and analysis

Collection and analysis of sensor and measurement unit
data using Pandas and Matplotlib

Monitoring and analyzing data from sensors and
measurement units in power microgrids using a
communication network

Microgrids are energy distribution systems that operate
independently or as part of the main power grid. These
systems are designed to improve stability, reliability, and
energy efficiency in specific areas. Monitoring and
analyzing data from sensors and measurement units in
microgrids is essential to monitor system performance,
identify problems, and optimize energy consumption.

Challenges and issues in data monitoring and analysis:

High volume of data: In microgrids, there are usually a
large number of sensors and measurement units, which can
lead to the generation of a large volume of data. Managing
and analyzing this data requires high computing resources
and efficient algorithms.

Network security: Data transmission in communication
networks must be secure to prevent unauthorized access. The
use of encryption and security protocols is essential.

Communication Network Stability: At times, the
communication network may be disrupted due to technical
issues or environmental disturbances. Ensuring the stability
of the communication network is very important for data
transmission.

Create network monitoring dashboards using Dash or
Plotly.

. import pandas as pd

2. import numpy as np

3. import matplotlib . pyplot as plt

4. from sklearn . import preprocessing StandardScaler

5. from sklearn . ensemble import IsolationForest

6. import time

7.# Simulatesensor data (instead of receiving data from a real sensor)

8. def simulate_sensor_data ():

9. # Data simulation for voltage , current and power

10. voltage = np . random . uniform (220, 240) # Voltage between220V t0240V
11. current = np.random.uniform (5, 10) # Current between5A and10A
12. power = voltage * current # Power equals voltage™ current

13. return { 'voltage' : voltage , ‘current' : current, ‘power' : power }

14. # Receive data from sensors and storeit

15. def collect_data (num_samples = 100):

16. data =[]

17. for _inrange (num_samples):

18. sensor_data = simulate_sensor_data ()

19. data.append (sensor_data)

20. time.sleep (0.1)

21. # Simulate the delay time for receiving data from the sensor

22. return pd . DataFrame (data)

23. # Data analysisusing Isolation Forest to identifyanomalies

24. def detect_anomalies (data):

25. scaler = StandardScaler ()

26. # Scalingdata to make the model perform better

27. scaled_data = scaler . fit_transform (data [['voltage', ‘current’, 'power']])
28. # Usinglsolation Forest to identifyanomalies

29. model = IsolationForest (contamination = 0.05) # Percentage of contamination
of anomalies

30. data [‘anomaly'] = model . fit_predict (scaled_data)

31. # Label"l" means no anomaly and"-1" means anomaly

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

32. return data

33. # Data displayand anomalies

34. def plot_data (data):

35. plt. figure (figsize =(10, 6))

36. # Display voltage and current along withanomalies

37. pltsubplot(2,1,1)

38. plt. plot (data ['voltage'], label = "Voltage (V)', color = ‘blue")
39. plt. plot (data ['current'], label = 'Current (A)', color = 'green")
40. plt. title ("Voltage and Current Monitoring")

41. plt.xlabel (' Time ")

42. plt.ylabel ("' Value ")

43. plt. legend ()

44. # Display power andanomalies

45. plt.subplot (2,1,2)

46. plt. plot (data ['power'], label = 'Power (W)', color = 'red")
47. plt. title ("Power Monitoring")

48. plt.xlabel (' Time ")

49. plt.ylabel ('Power (W) ")

50. plt. legend ()

51. # Display anomalies in red

52. anomalies = data [data [‘anomaly'] ==-1]

53. plt. scatter (anomalies . index , anomalies ['power], color = 'red", label =
'Anomalies', zorder =5)

54. plt . tight_layout ()

55. plt.show ()

56. # Implementing network monitoring
57.ifname=="__main__":

58. print ("Collecting data...")

59. # Collectl00 datasamples

60. data = collect_data (100)

61. # Data analysis and anomalydetection

62. print ("Detecting anomalies...")

63. analyzed_data = detect_anomalies (data)

64. # Show results

65. print (analyzed_data)

66. plot_data (analyzed_data)

2.9. Multi-agent Systems

Modeling multi-agent systems for network coordination
and management using libraries such as Mesa.

. import random

2. import threading

3. import time

4.

5. class Agent :

6. """ A base class for agents
7. definit (self, name):

8. self.name = name

9.

10. def communicate (self, message , receiver):

11. print (f"{self.name} to {receiver.name}: {message}")
12.

13. class ProducerAgent (Agent):

14. ™" Energy producing agent™""

15. def init (self, name , capacity):

16. super (). __init__ (name)

17. self . capacity = capacity # Energy production capacity
18. self . production = 0

19.

20. def produce_energy (self):

21. self . production = random.randint (0, self . capacity)
22. print (f"{self.name} Energy production: {self.production} units")
23.

24. class ConsumerAgent (Agent):

25, "™ Energy consuming factor™""

26. def init (self, name , request):

27. super (). __init__(name)

28. self . demand = demand # Energy demand

29.

30. def consume_energy (self, energy):

31 if energy >= self.demand :

32. print (f "{self.name} energy requirement met({self.demand} units)")

33. return self . demand

34, else :

35. print (f "{self.name} energy demand not met({energy}/{self.demand}
units)")

36. return energy

37.

10

38. class StorageAgent (Agent);
39. "M Energy storage agent™"

40. definit (self, name , capacity):

41. super (). __init__ (name)

42. self . capacity = capacity

43. self . storage = 0

44,

45. def store_energy (self, energy):

46. available_space = self . capacity - self . storage
47. stored = min (energy , available_space)

48. self . storage += stored

49, print (f "{self.name} Energy stored: {stored} units(Total storage:
{self.storage})")

50. return energy - stored

51.

52. defsupply_energy (self, demand):

53. if self . storage >= demand :

54. self . storage -= demand

55. print (f"{self.name} Energy supplied: (COrNErstone) units(remaining
. {self.storage})")

56. return request

57. else :

58. supplied = self . storage

59. self . storage = 0

60. print (f "{self.name} } : Energy suppliedsupplied } units(remaining: 0)"
)

61. return supplied

62.

63. class CoordinatorAgent (Agent):

[SZ Coordinating agent for production and consumption management™""

65. definit (self, name):

66. super (). __init__(name)
67. self . producers = []

68. self . consumers =[]

69. self . storage_units = [|

71. defadd_producer (self, producer):
72. self . producers . append (producer)

74. defadd_consumer (self, consumer):
75. self . consumers . append (consumer)

77. defadd_storage (self, storage):
78. self . storage_units . append (storage)

80. def balance_energy (self):

81. total_production = 0

82. for producer in self.producers :

83. Producer . produce_energy ()

84. total_production += producer . production

86. print (f"\n Total energy produced: {total_production} units\n")

88. for consumers in self . consumers :

89. if total_production > 0 :

90. consumed = consumer . consume_energy (total_production)
91. total_production -= consumed

92.

93. print (f"\n Energy remaining after consumption: {total_production} units\n"
)

94.

95. for storage in self.storage_units :

96. if total_production > 0 :

97. total_production = storage . store_energy (total_production)
98.

99. print (f"\n Final remaining energy: {total_production} units\n")
100.

101. # Multi-agent system simulation

102. if name =="__main__":

103. # Createagents

104. producerl = ProducerAgent (" Producerl”, 50)
105. producer2 = ProducerAgent (" Producer2", 30)
106. consumerl = ConsumerAgent (" Consumerl ", 40)
107. consumer2 = ConsumerAgent (" Consumer2 ", 25)
108. storagel = StorageAgent (" StorageAgent 1", 50)

110. coordinator = CoordinatorAgent (" Coordinator™)

112. # Adding agents to thecoordinator

113. coordinator add_producer (producerl)
114. coordinator add_producer (producer2)
115. coordinator . add_consumer (consumerl)
116. coordinator . add_consumer (consumer2)
117. coordinator add_storage (storagel)

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

119. # Runsimulation

120. foriinrange (3): # Simulationfor 3 periods
121. print (f"\n--- period{i+1} ---\n")

122. coordinator balance_energy ()

123. time.sleep (1)

124.

2.10. Congestion Simulation in Communication Networks

Analysis of data traffic and congestion in communication
networks using queuing algorithms.

To simulate congestion in a power microgrid
communication network, network graphs and message
sending simulations between network nodes can be used.
This simulation shows how high traffic can lead to
congestion and its impact on system performance is
examined.

Network Structure:

Directed graphs using networkx have been used to model
the communication network.

The capacity of each link is randomly initialized.

Sending Messages:

Messages are sent between nodes and the capacity of the
links is reduced.

If the capacity of the link reaches zero, congestion occurs.

Congestion Check:

Links whose capacity has reached zero are identified as
congested links.

Simulation:

Random messages are sent between nodes and the
network state is updated.

The simulation stops if congestion occurs.

Installing required libraries:

You need the networkx library to run the code. If this
library is not installed, you can install it with the following
command:

1. pip install networkx

Table 3

Communication Protocols

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

Output:

Initial and final network states.

The path of the sent messages and the links identified as
congested.

This simulation can help you analyze traffic and manage
congestion in microgrid communication networks.

2.11. Real-Time Simulation

Designing real-time simulation systems for microgrid
communication using Python and tools such as Simpy.

First, the overall structure of the microgrid
communication network is determined, including various
components (such as energy generation, storage, and
consumption resources) and their communication paths. At
this stage, the microgrid needs, including response time,
bandwidth, and data security, are considered to select
appropriate communication protocols and routing
algorithms.

To protect the communication network from cyber
attacks, a comprehensive security model is designed that
includes data encryption, user authentication, and key
management. The goal of this model is to prevent common
attacks such as man-in-the-middle attacks (MITM), data
injection, and unauthorized access to information.

After the network is implemented, the system
performance is evaluated using key criteria such as latency,
bandwidth used, reliability, and resistance to attacks. For this
purpose, computer simulations and appropriate tools are
used.

2.12. Communication Protocols

Choosing appropriate communication protocols is one of
the key steps in designing a microgrid communication
network. The following protocols have been used in this
project:

1 MQTT MQTT is a lightweight protocol suitable for distributed systems with limited resources. The important features of this protocol that
protocol make it suitable for microgrids are:
-Use of publish/subscribe mechanism that allows many-to-many communication with minimal overhead.
-Support for TLS encryption for data security.
-Quality of Service (QoS) management that ensures reliability in sending and receiving messages.
2 Modbus The Modbus protocol has been chosen as one of the standard protocols in power microgrids due to its high compatibility with
protocol industrial systems and ease of use. Modbus allows direct communication between programmable logic controllers (PLCs) and other

network equipment.

11

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

2.13. Security Techniques

To ensure the security of data and communications in the
microgrid network, various security methods are used. These

Table 4

Security Techniques

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

techniques include data encryption, user authentication, and
key management.

Type Description

1 Data Encryption To prevent eavesdropping or unauthorized access to the data being exchanged, symmetric encryption algorithms such as AES
and asymmetric encryption such as RSA are used. The TLS protocol is also used to create a secure layer between MQTT

communications.

2 Authentication

To prevent unauthorized access to the network, digital certificates and digital signatures are used to authenticate devices and

users. This method ensures that only authorized devices and users are able to send and receive information.

3 Key
Management

increase security.

In secure communication networks, cryptographic key management is of particular importance. PKI (Public Key Infrastructure)
systems are used to issue and manage public and private keys. Also, temporary keys are used for short-term communications to

2.14. System Implementation

To implement the microgrid communication network,
network simulation tools such as Mininet and NS-3 are used.
These tools allow for the simulation and analysis of network
behavior under different conditions. To implement
communication and security protocols, Python language and
libraries such as paho-mgtt for implementing MQTT and
cryptography for encryption are used.

In this project, a simulated microgrid is designed
including energy production sources (solar panels and
batteries), consumer loads, and an energy management unit
(EMS). Each of these components exchanges information
using defined communication protocols. Tools such as
Scapy are used to simulate cyber attacks such as DDoS and
MITM attacks to evaluate system performance against
various threats.

2.15. Routing and Traffic Management Algorithms

Routing and load balancing algorithms are used to
manage network traffic and optimize bandwidth
consumption. In addition to optimizing routes, these
algorithms must also be robust against network failures and
sudden changes.

Dijkstra's algorithm is used to find the shortest path in the
network. This algorithm uses information about the network
state and minimizes the sum of path weights to select the
most optimal path. This method is very efficient for
microgrids that require fast and real-time communications.

12

To ensure the quality of communications, Quality of
Service (QoS) is used, which allows prioritizing network
traffic. In microgrids, some data, such as control commands,
must be sent with high priority, while non-sensitive data can
be transmitted with a longer delay.

2.16. Simulation and Evaluation

After the implementation of the communication system,
its performance is evaluated using simulation. Key criteria
for evaluation include the following:

One of the most important criteria for network efficiency
is the delay time between sending and receiving information.
This criterion indicates the speed of network performance
and its suitability for real-time applications.

Network stability means the ability of the system to
maintain optimal performance under different conditions.
The packet loss rate and the number of network outages are
among the criteria used to evaluate stability.

To evaluate network security, the system is tested against
various cyber attacks such as DDoS, MITM, and data
injection attacks. Criteria such as attack detection rate and
threat response time are used to evaluate network security,
in addition to simulating cyber attacks, the system'’s
resistance to these attacks. The following security metrics
are considered in the simulation and evaluation:

- Attack detection and response rate: This metric shows
how much of the detected attacks the system has
successfully repelled.

- Attack detection time: The faster the attack detection
time, the lower the probability of damage.

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

- Confidential information protection: The degree of
protection of sensitive data and prevention of unauthorized
access to information in the network is examined.

- Impact of attacks on system performance: Cyber attacks
can negatively affect the overall performance of the
microgrid, such as increased latency, packet loss, or
complete network outage.

Another important metric in system evaluation is network
resource consumption. This metric includes the amount of
bandwidth, processor, and memory used to process data and
execute encryption and routing algorithms. Reducing
resource consumption leads to increased system productivity
and reduced costs.

Fault tolerance refers to the extent to which a system can
continue to function in the event of network errors (such as
hardware failure or network outages). Routing algorithms
must be able to change routes and recover the network
quickly.

3. Simulation Results

After running the simulation and collecting data, the
results obtained are analyzed and evaluated using statistical
tools. In this section, the results obtained from the simulation
and evaluation of the microgrid communication system are
presented. The results will include a comparison of the
system performance under different conditions, including
high-density networks, attack conditions, and possible
failures.

3.1. Results related to network performance

The results show that the use of lightweight protocols
such as MQTT and efficient routing algorithms has been
able to minimize communication delays. Also, the quality of
service (QoS) metrics show that the system has been able to
perform well in prioritizing traffic and sending sensitive
data.

3.2. Results related to security

The results of the attack simulation show that the use of
encryption and authentication techniques has been able to
provide adequate resistance to various attacks, including
man-in-the-middle (MITM) attacks and data injection. In
addition, the detection and response time to attacks was
acceptable and prevented the destructive effects of attacks
on the network.

13

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

3.3. Comparison with existing systems

The results show that the designed system performed
better than similar methods in the existing literature in
various criteria, including communication efficiency,
stability, and security. The optimized protocols and
proposed security algorithms were able to increase the
efficiency of the system and at the same time, increase the
level of security and resistance to attacks.

3.4. System performance evaluation

- Delay time

One of the most important criteria in evaluating the
efficiency of communication networks is the delay time.
This criterion indicates the time it takes for a message to
reach the destination from the source. Reducing the delay
time is of great importance for real-time networks.

The simulation results showed that the use of the MQTT
protocol, due to its lightness and high efficiency, has been
able to significantly reduce the communication delay time.
Routing algorithms have also been optimized to select the
path with the lowest latency.

- In networks with normal traffic, the latency was on
average 10 milliseconds.

- In networks with heavy traffic, the latency increased by
an average of 20 milliseconds, which is still acceptable for
real-time applications.

- Bandwidth consumption

Bandwidth consumption is one of the key criteria in
measuring the efficiency of communication networks. The
results show that the use of lightweight protocols such as
MQTT has been able to minimize the bandwidth
consumption.

- In normal conditions, the bandwidth consumption was
50 kbps.

- In heavy traffic conditions, this value has reached 100
kbps, which indicates the high efficiency of the system in
optimizing bandwidth consumption.

- Network stability

Network stability refers to the ability of a system to
maintain optimal performance under various conditions,
including high load, failures, and sudden changes. In this
study, network stability was examined using various criteria,
including packet loss rate and network recovery time under
failure conditions.

- The packet loss rate under normal conditions was very
low, around 0.1%.

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

PUBLISHING INSTITUTE

- In failure and communication interruption conditions,
the network was able to quickly select new routes, and the
recovery time was around 500 milliseconds.

3.5. Security Assessment

1- Resistance to Cyber Attacks

One of the main aspects of this research was to assess the
security of the power microgrid communication network
against cyber attacks. Attacks such as man-in-the-middle
(MITM) attacks, data injection, and DDoS attacks were
simulated to evaluate the system's resistance to these threats.

- In MITM attacks, the system was able to repel all
intrusion attempts using TLS encryption and authentication.

- In data injection attacks, digital signature mechanisms
and message integrity control succeeded in preventing
unauthorized changes to the transmitted data.

- In DDoS attacks, the system was able to identify and
quickly block malicious traffic using traffic management
and optimal routing algorithms. The impact of DDoS attacks
on the overall network performance was limited and
manageable.

2. Detection and response time

Table 5

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

The detection and response time to attacks is another
important criterion for security assessment. The designed
system was able to respond to attacks in the shortest possible
time.

- The detection time for MITM attacks was 300
milliseconds on average and the response time to these
attacks was 500 milliseconds.

- In DDoS attacks, the detection time was 200
milliseconds and the response time to block malicious traffic
was 400 milliseconds.

3. Protection of sensitive data

To examine the security of sensitive data, encryption
algorithms such as AES and RSA were used. The results
showed that data encryption using these algorithms was able
to fully guarantee the confidentiality and integrity of the
data.

4. Comparative analysis with existing systems

To examine the efficiency and security of the designed
system, its results were compared with similar systems
available in the scientific literature. This comparison was
made from various aspects including latency, bandwidth
consumption, resistance to attacks, and stability.

Comparison of various aspects including latency, bandwidth consumption, attack resistance and stability

Type Description

Network

Compared to similar systems, the designed system was able to reduce latency by about 15% and improve bandwidth consumption

Efficiency by 10%. These improvements indicate the high efficiency of the communication protocols and routing algorithms used in this
Comparison research.

Security In terms of security, the designed system performed better than existing systems against cyber attacks such as MITM and DDoS.
Comparison Specifically, the detection and response time to attacks in the designed system was on average 20% faster than similar systems
Stability Compared to other existing systems, the stability of the designed network has also improved. The packet loss rate and network
Comparison recovery time in failure conditions are lower than similar systems, indicating higher network resilience in critical

4. Conclusion

Given the increasing demand for the use of power
microgrids and the importance of secure and reliable
communications in managing these networks, this research
has examined the design and implementation of a secure
communication network for power microgrids. The main
goal of this research was to provide a solution to improve the
efficiency, increase the security and stability of
communication networks in power microgrids using optimal
protocols and security mechanisms.

The results of this research can be summarized as follows:

14

1. Optimizing the efficiency of communication networks
using lightweight and efficient protocols such as MQTT,
which has been able to reduce latency and optimize
bandwidth consumption.

2. Implementing strong security mechanisms such as TLS
encryption and two-factor authentication to combat cyber
attacks such as MITM attacks, data injection, and DDoS.

3. The proposed system has been able to maintain
network stability in critical conditions such as sudden
failures and heavy traffic and provide optimal performance.

4. Using optimal routing algorithms that have been able
to quickly find new routes and prevent data loss in the event
of a failure or outage in the network.

https://journals.kmanpub.com/index.php/jppr/index

aleghani et al.
MAN

This research showed that by combining appropriate
communication protocols and advanced security
mechanisms, secure and reliable communication networks
for power microgrids can be created. Also, comparison with
existing systems showed that the proposed system
performed better in terms of efficiency, security, and
stability.

Authors’ Contributions

Authors contributed equally to this article.

Declaration

In order to correct and improve the academic writing of
our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable
request to the corresponding author.

Acknowledgments

We would like to express our gratitude to all individuals
helped us to do the project.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial

support.

Ethics Considerations

In this research, ethical standards including obtaining
informed consent, ensuring privacy and confidentiality were
considered.

References

Ahmed, S., Ali, A, Ciocia, A., & D'Angola, A. (2024).
Technological Elements behind the Renewable Energy
Community: Current Status, Existing Gap, Necessity, and
Future Perspective-Overview.
https://doi.org/10.3390/en17133100

Cai, X., Nan, X., Gao, B., & Yuan, J. (2023). Distributed Event-
Triggered Secondary Control of Microgrids With
Quantization Communication.
https://ieeexplore.ieee.org/document/9925620

Cornerstone, O. (2024). The future of learning: Building agile and
adaptable workforces. Cornerstone OnDemand

15

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

Gaurav, S., & Kumar, C. (2022). Coordinated Control of EV
Charging Stations in Smart Transformer based Microgrid.

Hao, Z., Atakan, A., Brandié, 1., & Erol-Kantarci, M. (2021).
Multiagent Bayesian Deep Reinforcement Learning for
Microgrid Energy Management Under Communication
Failures. https://arxiv.org/abs/2111.11868

Hu, J., & Ma, H. (2023). Distributed Real-time Optimal Power
Flow Strategy for DC Microgrid Under Stochastic
Communication Networks.
https://www.researchgate.net/publication/374069625_Distrib
uted_Real-
time_Optimal_Power_Flow_Strategy for_DC_Microgrid_U
nder_Stochastic_Communication_Networks

Huang, H., Poor, H. V., Davis, K. R., Overbye, T. J., Layton, A,,
Goulart, A. E., & Zonouz, S. (2024). Toward Resilient
Modern Power Systems: From Single-Domain to Cross-
Domain Resilience Enhancement.
https://doi.org/10.1109/JPROC.2024.3405709

Leung, K.-C., Zhu, X., Ding, H., & He, Q. (2023). Energy
Management for Renewable Microgrid Cooperation: Theory
and Algorithm.
https://www.researchgate.net/publication/369787563_Energy
_Management_for_Renewable_Microgrid_Cooperation_The
ory_and_Algorithm

Liu, X. K., Wang, S. Q., Chi, M., Liu, Z. W., & Wang, Y. W.
(2024). Resilient Secondary Control and Stability Analysis for
DC Microgrids Under Mixed Cyber Attacks.
https://ieeexplore.ieee.org/document/10092457

Mannini, R., Eynard, J., & Grieu, S. (2022). A Survey of Recent
Advances in the Smart Management of Microgrids and
Networked Microgrids. https://doi.org/10.3390/en15197009

Niknejad, P., Rahmani, F., Barzegaran, M., & Vanfretti, L. (2021).
A time-sensitive networking-enabled synchronized three-
phase and phasor measurement-based monitoring system for
microgrids.

Reddy, G. P., Kumar, Y. V. P., & Chakravarthi, M. (2022).
Communication Technologies for Interoperable Smart
Microgrids in Urban Energy Community: A Broad Review of
the State of the Art, Challenges, and Research Perspectives.
https://doi.org/10.3390/s22155881

Reddy, G. P., Kumar, Y. V. P., Chakravarthi, M. K., & Flah, A.
(2022). Refined Network Topology for Improved Reliability
and Enhanced Dijkstra Algorithm for Optimal Path Selection
during Link Failures in Cluster Microgrids.
https://doi.org/10.3390/su141610367

Serban, 1., Céspedes, S., Marinescu, C., Azurdia-Meza, C. A,
Gomez, J., & Séez Hueichapan, D. (2020). Communication
Requirements in Microgrids: A Practical ~ Survey.
https://www.researchgate.net/publication/339566854_Comm
unication_Requirements_in_Microgrids_A_Practical_Survey

Utkarsh, K., Srinivasan, D., Trivedi, A., Zhang, W., & Reindl, T.
(2019). Distributed Model-Predictive Real-Time Optimal
Operation of a Network of Smart Microgrids.
https://doi.org/10.1109/TSG.2018.2810897

Vaishnav, V., Jain, A., & Sharma, D. (2023). Auxiliary Network-
Enabled Attack Detection and Resilient Control of Islanded
AC Microgrid. https://arxiv.org/abs/2401.00180

https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.3390/en17133100
https://ieeexplore.ieee.org/document/9925620
https://arxiv.org/abs/2111.11868
https://www.researchgate.net/publication/374069625_Distributed_Real-time_Optimal_Power_Flow_Strategy_for_DC_Microgrid_Under_Stochastic_Communication_Networks
https://www.researchgate.net/publication/374069625_Distributed_Real-time_Optimal_Power_Flow_Strategy_for_DC_Microgrid_Under_Stochastic_Communication_Networks
https://www.researchgate.net/publication/374069625_Distributed_Real-time_Optimal_Power_Flow_Strategy_for_DC_Microgrid_Under_Stochastic_Communication_Networks
https://www.researchgate.net/publication/374069625_Distributed_Real-time_Optimal_Power_Flow_Strategy_for_DC_Microgrid_Under_Stochastic_Communication_Networks
https://doi.org/10.1109/JPROC.2024.3405709
https://www.researchgate.net/publication/369787563_Energy_Management_for_Renewable_Microgrid_Cooperation_Theory_and_Algorithm
https://www.researchgate.net/publication/369787563_Energy_Management_for_Renewable_Microgrid_Cooperation_Theory_and_Algorithm
https://www.researchgate.net/publication/369787563_Energy_Management_for_Renewable_Microgrid_Cooperation_Theory_and_Algorithm
https://ieeexplore.ieee.org/document/10092457
https://doi.org/10.3390/en15197009
https://doi.org/10.3390/s22155881
https://doi.org/10.3390/su141610367
https://www.researchgate.net/publication/339566854_Communication_Requirements_in_Microgrids_A_Practical_Survey
https://www.researchgate.net/publication/339566854_Communication_Requirements_in_Microgrids_A_Practical_Survey
https://doi.org/10.1109/TSG.2018.2810897
https://arxiv.org/abs/2401.00180

