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With the expansion of the use of renewable energy sources and the need for smart 

energy distribution systems, microgrids have become one of the vital 

components of power systems. Considering the increasing importance of power 

microgrids in modern energy systems and their key role in increasing efficiency 

and reducing dependence on large power grids, designing a reliable 

communication network for the utilization of these microgrids is crucial. In this 

research, a comprehensive framework for simulating, designing, and evaluating 

the communication network of power microgrids is presented. First, power 

microgrids were simulated using the Python programming language to enable 

analysis of the behavior and performance of these systems under different 

conditions. Then, a communication network based on artificial intelligence 

algorithms was designed and developed, which ensures the ability to coordinate 

and manage microgrids optimally. Next, in order to investigate the stability and 

security of the designed communication network, various types of cyber attacks 

were simulated. These attacks included data intrusion, disruption of 

communications, and various cyber-destruction scenarios. Also, smart defense 

strategies were developed to counter these attacks and their effectiveness in 

maintaining the performance of the communication network and preventing 

negative impacts on microgrids and the main power grid during outage 

conditions was evaluated. The results show that the designed communication 

network is not only efficient in managing and utilizing microgrids, but also has 

the ability to resist cyber attacks and maintain system stability. This research can 

be used as a basis for developing smart and secure systems in energy 

management and power microgrids and provide an effective solution to address 

security and stability challenges in power systems. 
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1. Introduction 

icrogrids are small, autonomous networks of 

distributed energy resources (DERs) that can 

operate independently or be connected to the national grid. 

These networks can be used to supply electricity to small 

areas of buildings or specific communities. One of the main 

challenges in microgrids is designing a secure and reliable 

communication network for optimal resource management 

and maintaining system security (Huang et al., 2024). 

However, due to the direct connection of these systems to 

the public electricity grid and the Internet, they are exposed 

to security threats. Cyberattacks on microgrids can lead to 

widespread disruptions in energy supply, damage to 

equipment, and even safety risks for users (Serban et al., 

2020). Also, the reliability of the communication network in 

microgrids is very important. Any disruption or delay in 

sending and receiving information between microgrid 

components can cause system inefficiency and even 

blackouts. Hence, a secure and reliable communication 

system that can transmit data in real time and is protected 

against security threats is essential (Reddy, Kumar, & 

Chakravarthi, 2022). Microgrids require a reliable 

communication network to exchange information between 

different components such as inverters, batteries, solar 

panels, and energy storage units (Hu & Ma, 2023). Also, 

given the high importance of microgrids in energy supply, it 

is crucial to protect these networks against cyber attacks and 

prevent information leakage (Liu et al., 2024). The main 

issue of this paper is the design and implementation of a 

secure and reliable communication network for power 

microgrids. This network should be such that it is protected 

in terms of security and at the same time can transfer data in 

real time and with high accuracy between different 

components of the microgrid. Since cyber attacks and 

network disturbances can affect the performance of the 

entire microgrid (Vaishnav et al., 2023), the aim of this 

research is to find solutions to improve the security and 

efficiency of these communications. In this paper, in 

addition to focusing on the importance of communication 

networks in microgrids, various methods and techniques for 

designing secure and resilient networks will be examined. 

Communication networks in microgrids are considered as 

one of the most key components for the optimal management 

of distributed energy. Given the essential role of these 

networks in the exchange of data between different 

components of microgrids, including energy producers (such 

as renewable energy sources), storage units, and energy 

consumers, efficient and stable communications between 

these components are of great importance. However, due to 

the distributed nature and continuous expansion of 

microgrids, challenges such as scalability, management 

complexity, and increased likelihood of cyber attacks arise 

(Reddy, Kumar, Chakravarthi, et al., 2022). 

The broader topics discussed in this paper include the 

following: 

In this research, we will analyze various cyber threats that 

can attack microgrid communication networks. These 

threats include intrusion attacks, unauthorized access 

attacks, and denial of service (DoS) attacks (Niknejad et al., 

2021; Vaishnav et al., 2023). Also, existing solutions to 

counter these threats will be reviewed, and advanced 

cybersecurity methods such as encryption, intrusion 

detection, and authentication systems will be used to 

improve network security (Cai et al., 2023). 

Another important topic to be discussed in this paper is 

the reliability and stability of communication networks. 

Microgrid communication networks of power systems must 

be resilient to various failures and disturbances due to their 

interaction with distributed energy resources. In this regard, 

automatic recovery techniques and network redundancy are 

investigated so that in the event of a fault, the system 

operation continues without interruption (Reddy, Kumar, 

Chakravarthi, et al., 2022). The reliability of communication 

networks refers to the extent to which a network is able to 

provide stable, uninterrupted services with minimal errors. 

This concept is one of the key aspects of Quality of Service 

(QoS) and is of particular importance in sensitive 

communications, such as emergency or financial 

communications (Hao et al., 2021). 

The use of intelligent systems to predict possible failures 

in communication networks and take preventive measures is 

another part of this research. Machine learning algorithms 

and data analytics can play an important role in early 

detection of problems and prevention of potential crises 

(Utkarsh et al., 2019). 

Intelligent management and failure prediction is a new 

approach in the field of industrial maintenance and repair, 

which is implemented by utilizing new technologies such as 

artificial intelligence (AI), machine learning (ML), and the 

Internet of Things (IoT) with the aim of increasing efficiency 

and reducing sudden equipment failures (Mannini et al., 

2022). 

This article will provide a comprehensive review of the 

principles, techniques, and applications of this approach. 

With the rapid growth of technology and the increasing 

M 
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importance of productivity, many industries are seeking to 

optimize their maintenance and repair processes. Failures in 

industrial equipment and machinery can lead to production 

downtime, increased costs, and reduced productivity. One of 

the key solutions to address this challenge is Smart 

Maintenance Management, which uses predictive failure 

analysis to reduce maintenance-related costs and minimize 

equipment downtime (Reddy, Kumar, & Chakravarthi, 

2022). Smart maintenance is a comprehensive system that, 

based on data collected from industrial equipment and 

machinery, uses advanced algorithms and data mining 

techniques to predict failures and make practical 

recommendations for optimizing maintenance and repair. 

These systems typically use advanced sensors, historical 

equipment performance data, and machine learning 

algorithms to analyze the data (Cai et al., 2023). 

To examine how to optimize the performance of 

microgrids through the use of intelligent communication 

protocols and Internet of Things (IoT)-based networks that 

can exchange critical information in real time between 

different microgrid components. This section will examine 

different communication protocols and their role in 

improving energy efficiency and reducing costs (Ahmed et 

al., 2024; Hao et al., 2021). 

2. Network System Design 

This research uses modeling and simulation to investigate 

and analyze the performance of the communication network 

in microgrids. For this purpose, a multi-stage approach is 

used, including the stages of design, implementation, 

simulation, and evaluation (Gaurav & Kumar, 2022). 

2.1. Design 

In designing a communication network, we must first 

define and identify high-level requirements and strategies. In 

this stage, we have actually made the necessary preparations. 

2.2. Preparation stage 

In this stage, we have considered power microgrids and 

examined the requirements and strategies that they should 

have. In this regard, we have studied the optimal operation 

of multiple microgrids under network reliability based on 

algorithms. Multiple microgrids can be connected to the 

main grid as well as interconnected, so creating appropriate 

operating conditions while maintaining their independence 

is considered. The goal in optimization is in terms of 

network reliability (Mannini et al., 2022). In this case, the 

switches between microgrids are one of the items that are 

considered to meet the conditions for optimizing microgrids. 

In the presence of renewable energy sources and the impact 

of reliability caused by these sources, simulation has been 

performed by creating scenarios and applying them to the 

optimization program. The optimization objective function 

is performed by an evolutionary algorithm. Considering all 

the characteristics of power microgrids and the extent of 

communication between them, the definable communication 

network must consider the above issues without disruption 

during design (Liu et al., 2024). 

2.3. Programming Steps 

To design a communication network for power 

microgrids, we have done programming in Python. In this 

step, we first wrote the required codes and analyzed and 

reviewed them. The codes include the following. 

To simulate and model a simple communication network 

for power microgrids, we use Python libraries such as 

NetworkX to model and analyze the network topology and 

Simpy to simulate the timing behavior. 

Here, we used NetworkX to model and display the 

network topology, and Simpy is used to simulate message 

transmission with communication delays between nodes so 

that the graph drawn shows the connection of the 

components and specifies the delay on the links. Regarding 

the message transfer simulation, messages transmitted 

between nodes are shown with real-time timing. In fact, the 

above simulation is a simple model and can be extended for 

more complex models such as adding data traffic, 

communication protocols or security issues (Leung et al., 

2023). 

- In the code rewrite, we considered a more realistic 

scenario for a power microgrid, which includes the 

following network components: 

The generator, battery, loads, and central controller will 

be. Message transmission includes sending load 

information, battery status, and generation to the central 

controller. 

The communication network is a graph network 

consisting of the generator, battery, loads, and central 

controller. The links have random delays that simulate real-

world communications. In sending messages, the generator 

sends the status of electricity generation to the controller, 

and the battery reports its charge level. The loads send their 

energy consumption status, which results in a simulation of 

https://journals.kmanpub.com/index.php/jppr/index
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the messages sent and received in real time with a certain 

delay, which can add more states such as warnings or control 

commands (Gaurav & Kumar, 2022). 

Regarding the code expansion, adding control algorithms 

for microgrid management is also implemented using a 

Queue, and we will also include the simulation of MQTT or 

Modbus communication protocols in the code expansion 

(Leung et al., 2023). 

The modeling of the communication network of power 

microgrids can include the simulation of network topology, 

communications between units, and system behavior. This 

model can simulate two modes: connected to the power 

distribution network and isolated from the grid. 

Nodes represent generation units (such as generators), 

loads, a central controller, and the distribution network. The 

operating modes are in two modes: connected to the grid, 

where the microgrid is connected to the power distribution 

network, and islanded, where the microgrid is disconnected 

from the power distribution network. The NetworkX library 

is used for network structure and analysis. The 

implementation is in the Python environment, and the output 

will include network information and changes in different 

modes. 

2.4. Routing and optimization algorithms 

2.4.1. Routing algorithms for data transmission such as 

Dijkstra and A* 

To design a routing algorithm for data transmission in a 

communication network for a power microgrid, the 

algorithm must consider certain characteristics such as delay 

minimization, energy consumption optimization, reliability, 

and outage handling. A simple algorithm is given for this 

purpose (Reddy, Kumar, & Chakravarthi, 2022). 

Adaptive routing algorithm with energy awareness: 

Inputs: 

Network graph: (V, E) = G, where V is the set of nodes 

and E is the set of links. 

Origin and destination: S and D 

Initial energy values of nodes: v^E for each E Э〖v〗^ 

Link weights: Based on criteria such as delay, bandwidth 

and energy consumption 

Output: Optimal path P from S to D 

Table 1 

Energy-aware adaptive routing algorithm steps: 

 Stage Description 

1 Calculating link weight For each link𝐸 Э (𝑢 , 𝑣)   We calculate link weight as a combination of the following criteria: 
1

𝑢𝐸
. 𝛾 +

1

𝐵(𝑢 , 𝑣)
. 𝛽 + 𝑑(𝑢 , 𝑣). 𝛼 = 𝑤(𝑢 , 𝑣) 

d(u,v)  :link delay between u and v 

B(u, v)  :Link bandwidth between u and v 

𝑢𝐸 :Residual energy of node u 

𝛾, 𝛽, 𝛼  :Weighting coefficients to control the importance of each criterion. 

2 Finding the initial path a routing algorithm such as Dijkstra or *A Search to find the shortest path based on the weights calculated in 

step 1. 

3 Updating weights After the path is selected, the energy of the nodes used in the path decreases. 

We again update the link weights according to the remaining energy of the nodes. 

4 Network dynamics control If the network changes (such as adding a new node or link) or the node runs out of energy, the algorithm must 
recalculate the path. 

We use a distributed routing protocol to ensure updates are made in real time. 

5 Sending data We send the data via the selected route. 

We monitor the quality of data transmission (such as packet loss rate.) 

-Load and energy management and control 

 

Demand Response Algorithm 

This algorithm can be used as a basic framework for 

demand management in power microgrids. 

General steps of the algorithm: 

Collecting initial data: 

Demand analysis and consumption forecasting: 

Prioritizing loads: 

Adjusting energy production and storage: 

Intelligent control system: 

Communication and data management: 

https://journals.kmanpub.com/index.php/jppr/index
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Alarm signals and reporting: 

2.5. Implementing communication protocols: 

Simulating protocols such as MQTT, Modbus or 

IEC61850 

To implement the load management algorithm and 

control the charging and discharging of batteries in electric 

power microgrids using the MQTT (Message Queuing 

Telemetry Transport) protocol, the goal is to design a 

communication system for data transfer between different 

components of the microgrid. The MQTT protocol is a 

lightweight communication protocol that is very suitable for 

data transfer in IOT networks and distributed systems.[85] 

Data transfer between different components of the 

microgrid, including energy producers, consumers and 

batteries 

Load management and control of battery charging and 

discharging through messages and commands sent between 

nodes. 

Implementation of the MQTT protocol for 

communication between components to send information 

about the status of energy consumption, production and 

battery level 

General structure: 

Publisher: Energy sources such as solar panels, wind 

turbines and batteries act as data publishers. 

Subscriber: Control systems and consumers act as 

subscribers to information about consumption, production 

and battery status. 

Broker: MQTT server that receives messages from 

publishers and sends them to subscribers. 

Scenario: 

Energy generation from production sources such as solar 

panels sends messages indicating the amount of energy 

produced. 

Batteries send their status through messages. 

The controller monitors the status of the network and 

automatically sends commands to charge and discharge the 

batteries. 

Energy consumers send their consumption information so 

that the demand on the network can be accurately managed. 

Steps: 

1-Setting up an MQTT Broker: 

The first step in implementing the system is to install and 

configure an MQTT Broker. One of the most popular 

brokers is Mosquitto, which we can run on a local or cloud 

server. 

On Linux operating systems, we can use the following 

command to install Mosquitto. 

1. sudo apt-get update 

2. sudo apt-get install mosquitto mosquitto-clients 

 

2- Message structure: 

Messages must have a specific structure to send data 

about different states and information. For example, for 

batteries, different Topics can be used: 

𝐴 =< 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑁𝑜𝑑𝑒_𝑖𝑑  Energy 

generation by a source. 

𝐵 =< 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑢𝑠 < 𝑁𝑜𝑑𝑒_𝑖𝑑 Battery status 

(charge / discharge level) 

𝐶 =< 𝑑𝑒𝑚𝑎𝑛𝑑 < 𝑁𝑜𝑑𝑒_𝑖𝑑 Energy consumption in a 

specific area or consumer 

𝐷 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 Control commands for 

batteries or energy sources 

3-Implementing the algorithm using MQTT in 

Python: 

Connecting to the MQTT server: Here we are using a 

local server (localhost). We can change the MQTT server 

address to any address we use. 

Callback function on_connect: This function is executed 

after a successful connection to the MQTT server and shares 

the topics that need to be subscribed (such as energy 

production and demand). 

Callback function on_message: This function is executed 

when receiving any message from different topics. These 

messages contain energy production and energy demand 

data. 

Battery charge and discharge control: Based on the 

energy production and demand data, the algorithm decides 

whether the batteries should be charged or discharged. 

Data dissemination: Data including energy generation, 

energy demand, and battery status are regularly disseminated 

to the MQTT server. 

Using MQTT, we have developed a scalable and 

lightweight communication system for the management and 

control of electric power microgrids. This algorithm allows 

for real-time control and monitoring of energy consumption, 

energy generation, and battery status. 

2.6. Artificial Intelligence and Machine Learning for 

Network Management 

Load and Energy Generation Forecasting Using Machine 

Learning Algorithms (such as Scikit-learn or Tensorflow) 

Model Number One: 

https://journals.kmanpub.com/index.php/jppr/index
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import numpy as np 

2. import pandas as pd 

3. from sklearn . import preprocessing StandardScaler 

4. from sklearn . svm import SVR 

5. from sklearn . metrics import mean_squared_error 

6. import paho . mqtt . client as mqtt 

7.  

8. # First step : Data collection and preprocessing 

9. def data_preprocessing ( data ): 

10.    scaler = StandardScaler () 

11. scaled_data = scaler . fit_transform ( data ) 

12.    return scaled_data 

13.  

14. # Second step : Design and train the SVM model for load prediction 

15. def train_svm_model ( X_train , y_train ): 

16.    model = SVR ( kernel = 'rbf' ) 

17.    model . fit ( X_train , y_train ) 

18.    return model 

19.  

20. # Step Three : Load Forecasting 

21. def predict_load ( model , X_test ): 

22.    return model . predict ( X_test ) 

23.  

24. # Step Four : Managing Communications Between Measuring Stations and the 

Control Center 

25. def on_message ( client , userdata , message ): 

26.    print ( f "Message received: {message.payload}" ) 

27.    # Message analysis and making predictions 

28.  

29. def start_mqtt_client (): 

30.    client = mqtt.Client ( ) 

31.    client . on_message = on_message 

32.    client . connect ( "mqtt_broker_url" , 1883 , 60 ) 

33.    client . subscribe ( "microgrid/load_data" , qos = 1 ) 

34. client.loop_forever ( ) 

35.  

36. # Step 5 : Update the model based on new data 

37. def update_model ( model , new_data , new_labels ): 

38.    model . fit ( new_data , new_labels ) 

39.    return model 

40.  

41. # Algorithm execution 

42. if name == "__main__" : 

43.    # Input data 

44.    data = pd . read_csv ( "microgrid_data.csv" ) 

45. X = data . drop ( columns =[ "load" ]) 

46. y = data [ "load" ] 

47.  

48.    # Data preprocessing 

49. X_scaled = data_preprocessing ( X ) 

50.  

51.    # Dividing the data into training and testing sections 

52.    train_size = int ( 0.8 * len ( X )) 

53. X_train , X_test = X_scaled [ : train_size ] , X_scaled [ train_size :] 

54.    y_train , y_test = y [: train_size ], y [ train_size :] 

55.  

56.    # Model training 

57.    model = train_svm_model ( X_train , y_train ) 

58.  

59.    # Load forecasting 

60.    y_pred = predict_load ( model , X_test ) 

61.    mse = mean_squared_error ( y_test , y_pred ) 

62.    print ( f "Mean Squared Error: {mse}" ) 

63.  

64.    # Start MQTT communication to send data 

65. start_mqtt_client ( ) 

66.  

 

Model Number Two: 

A: Complex Neural Network for Load and Energy 

Generation Forecasting 

Code: 

52. import numpy as np 

2. import pandas as pd 

3. from sklearn . import preprocessing MinMaxScaler 

4. import tensorflow as tf 

5. from tensorflow . keras import models Sequential 

6. from tensorflow . keras layers import LSTM , Dense 

7. from sklearn . metrics import mean_squared_error 

8.  

9. # First step : Data preprocessing 

10. def preprocess_data ( data ): 
11.    scaler = MinMaxScaler ( feature_range =( 0 , 1 )) 

12. data_scaled = scaler . fit_transform ( data ) 

13.    return data_scaled , scaler 

14.  

15. # Step 2 : Create temporal data to train the LSTM model 

16. def create_dataset ( data , time_step = 1 ): 

17. X , y = [], [] 

18.    for i in range ( len ( data ) - time_step - 1 ): 

19.        X. append ( data [ i :( i + time_step ), 0 ]) 

20.        y . append ( data [ i + time_step , 0 ]) 

21.    return np . array ( X ), np . array ( y ) 

22.  

23. # Step 3 : Create and train the LSTM model 

24. def build_lstm_model ( time_step ): 

25.    model = Sequential () 

26.    model . add ( LSTM ( units = 50 , return_sequences = True , input_shape =( 

time_step , 1 ))) 

27.    model . add ( LSTM ( units = 50 , return_sequences = False )) 

28.    model . add ( Dense ( units = 1 )) 

29.    model . compile ( optimizer = 'adam' , loss = 'mean_squared_error' ) 

30.    return model 

31.  

32. # Step Four : Model Training and Evaluation 

33. def train_and_evaluate_lstm ( data , time_step = 60 ): 

34.    # Dividing data into training and testing sections 

35. train_size = int ( len ( data ) * 0.8 ) 

36.    train_data , test_data = data [: train_size ], data [ train_size :] 

37.     

38.    # Create datasets 

39. X_train , y_train = create_dataset ( train_data , time_step ) 

40. X_test , y_test = create_dataset ( test_data , time_step ) 

41.     

42.    # reshape data for input to LSTM 

43. X_train = X_train . reshape ( X_train . shape [ 0 ], X_train . shape [ 1 ], 1 ) 

44. X_test = X_test . reshape ( X_test . shape [ 0 ], X_test . shape [ 1 ], 1 ) 

45.  

46.    # Model creation and training 

47. model = build_lstm_model ( time_step ) 

48.    model . fit ( X_train , y_train , epochs = 10 , batch_size = 32 , verbose = 1 ) 

49.  

50.    # Model prediction and evaluation 

51.    y_pred = model.predict ( X_test ) 

52.    mse = mean_squared_error ( y_test , y_pred ) 

53.    print ( f 'Mean Squared Error: {mse}' ) 

54.     

55.    return model 

56.  

 

 

B: Reinforcement learning for optimizing resource 

allocation 

Code: 

1. import random 

2. import numpy as np 

3.  

4. class QLearningAgent : 

5.    def init ( self , action_space , state_space , learning_rate = 0.1 , discount_factor = 

0.99 , epsilon = 1.0 ): 

6.        self . action_space = action_space 

7.        self . state_space = state_space 

8.        self . learning_rate = learning_rate 

9.        self . discount_factor = discount_factor 

10.        self . epsilon = epsilon 

11.        self . q_table = np . zeros (( state_space , action_space )) 

12.  

13.    def choose_action ( self , state ): 

14.        if random.uniform ( 0 , 1 ) < self.epsilon : 

15.            return random . choice ( range ( self . action_space ))  #Exploration 

16.        else : 

17.            return np . argmax ( self . q_table [ state ])  #Exploitation 

18.  

19.    def learn ( self , state , action , reward , next_state ): 

20.        best_next_action = np . argmax ( self . q_table [ next_state ]) 

21.        self . q_table [ state , action ] = self . q_table [ state , action ] + self . learning_rate 

* ( reward + self.discount_factor * self . q_table [ next_state , best_next_action ] - self 

. q_table [ state , action ]) 

22.  

23.    def update_epsilon ( self , decay_rate = 0.995 ): 

24.        self . epsilon = max ( 0.01 , self . epsilon * decay_rate ) 

25.  

https://journals.kmanpub.com/index.php/jppr/index
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26. # Network Interaction and Optimization 

27. def run_qlearning ( agent , episodes = 1000 ): 

28.    for episode in range ( episodes ): 

29.        state = random . randint ( 0 , agent . state_space - 1 )  # Hypothesis for starting 

a random situation 

30. total_reward = 0 

31.         

32.        for step in range ( 100 ):  # Length of each episode 

33.            action = agent . choose_action ( state ) 

34.            reward , next_state = simulate_environment ( state , action )  # Environment 

simulation function 

35.            agent . learn ( state , action , reward , next_state ) 

36. state = next_state 

37. total_reward += reward 

38.             

39.            if state == terminal_state : 

40.                break 

41.                 

42. agent . update_epsilon ( )  # Reduce the epsilon value to avoid overexploration 

43.        print ( f "Episode {episode+1}, Total Reward: {total_reward}" ) 

44.  

C: Transfer learning to improve learning speed 

Code: 

1. from tensorflow . keras models import load_model 

2.  

3. # Load model from previous network 

4. def transfer_learning ( base_model_path , new_model , train_data , train_labels ): 

5. base_model = load_model ( base_model_path ) 

6.     

7.    # Transferring weights from the base model to the new model 

8. new_model . set_weights ( base_model . get_weights () ) 

9.     

10.    # Train a new model with new data 

11. new_model . fit ( train_data , train_labels , epochs = 10 , batch_size = 32 , verbose 

= 1 ) 

12.    return new_model 

13.  

 

Communication Management with MQTT 

MQTT is used to send and receive data for data transfer 

and coordination between production resources, consumers, 

and forecasting systems. 

Code: 

1. import paho.mqtt.client as mqtt 

 2.   

 MQTTتنظیمات اتصال  # .3 

 4. def on_message(client, userdata, message): 

 5.     print(f"Received message: {message.payload}") 

 های یادگیریروزرسانی مدلها و بهپردازش داده #     .6 

 7.   

 8. def start_mqtt_client(): 

 9.     client = mqtt.Client() 

10.     client.on_message = on_message 

11.     client.connect("mqtt_broker_url", 1883, 60) 

12.     client.subscribe("microgrid/data", qos=1) 

13.     client.loop_start() 

14.   

 

2.7. Cybersecurity in Communication Networks 

Implementing Data Encryption Methods for 

Communication Security Using Libraries Such as 

Cryptography. 

To increase security in communication networks of 

electric power microgrids, the use of data encryption 

methods is a necessity. This helps to protect sensitive 

information related to network status, energy generation and 

consumption, and other vital data from unauthorized access, 

modification, or attacks. Here, we will implement various 

encryption methods for data security in the communication 

network of electric power microgrids. 

Table 2 

Different encryption methods for data security in the microgrid communication network 

 Type scriptionDe  

1 Symmetric 

encryption 

This method uses a shared key for encryption and decryption. One of the most popular algorithms in this category is AES 

(Advanced Encryption Standard) . 

 

2 Asymmetric 
encryption  

This method uses a pair of public and private keys and uses algorithms such as RSA for asymmetric encryption. 

3 Digital 
signature 

Digital signatures are used to validate data and ensure the accuracy of information.  

 

4 Hash Hash algorithms such as SHA-256 are used to verify data integrity.  

 

 

Implementing AES encryption using pycryptodome 

library: 

Code 

1. from Crypto . Cipher import AES 

2. from Crypto . Util . Padding import pad , unpad 

3. from Crypto.Random import get_random_bytes 

4. import base64 

5.  

6. # Function for encryption 

7. def encrypt_data ( data , key ): 

8.    cipher = AES . new ( key , AES . MODE_CBC ) 

9.    ct_bytes = cipher . encrypt ( pad ( data . encode (), AES . block_size )) 

10.    iv = base64 . b64encode ( cipher . iv ). decode ( 'utf-8' ) 

11.    ct = base64 . b64encode ( ct_bytes ). decode ( 'utf-8' ) 
12.    return iv , ct 

13.  

14. # Function for decoding 

15. def decrypt_data ( iv , ct , key ): 

16. iv = base64 . b64decode ( iv ) 

17. ct = base64 . b64decode ( ct ) 

18.    cipher = AES . new ( key , AES . MODE_CBC , iv ) 

19.    decrypted_data = unpad ( cipher . decrypt ( ct ), AES . block_size ). decode ( 'utf-

8' ) 

20.    return decrypted_data 

21.  

22. # Encryption key 

23. key = get_random_bytes ( 16 )  # 128 -bit key  

24.  

25. # Data we want to encrypt 
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26. data = "This is a confidential message." 

27.  

28. # Data encryption 

29. iv , ct = encrypt_data ( data , key ) 

30. print ( f "Encrypted data (IV + Ciphertext): {iv} + {ct}" ) 

31.  

32. # DecryptionData  

33. decrypted_data = decrypt_data ( iv , ct , key ) 

34. print ( f "Decrypted data: {decrypted_data}" ) 

35.  

36. Cryptography Construction On foot RSA Library From Use with pycryptodome : 

37. Code : 

38. from Crypto.PublicKey import RSA 

39. from Crypto . Cipher import PKCS1_OAEP 

40. import base64 

41.  

42. # Generating public and private keys 

43. def generate_rsa_keys (): 

44. key = RSA . generate ( 2048 ) 

45.    private_key = key.export_key ( ) 

46.    public_key = key . publickey (). export_key () 

47.    return private_key , public_key 

48.  

49. # Public key encryption 

50. def encrypt_with_public_key ( data , public_key ): 

51. pub_key = RSA . import_key ( public_key ) 

52. cipher = PKCS1_OAEP . new ( pub_key ) 

53.    encrypted_data = cipher . encrypt ( data . encode ()) 

54.    return base64 . b64encode ( encrypted_data ). decode ( 'utf-8' ) 

55.  

56. # Decrypt with private key 

57. def decrypt_with_private_key ( encrypted_data , private_key ): 

58. priv_key = RSA . import_key ( private_key ) 

59. cipher = PKCS1_OAEP . new ( priv_key ) 

60.    decrypted_data = cipher . decrypt ( base64 . b64decode ( encrypted_data )) 

61.    return decrypted_data . decode ( 'utf-8' ) 

62.  

63. # Generate RSA keys 

64. private_key , public_key = generate_rsa_keys () 

65.  

66. # Data we want to encrypt 

67. data = "Sensitive data in power grid." 

68.  

69. # Public key data encryption 

70. encrypted_data = encrypt_with_public_key ( data , public_key ) 

71. print ( f "Encrypted data: {encrypted_data}" ) 

72.  

73. # with private keyDecrypt data  

74. decrypted_data = decrypt_with_private_key ( encrypted_data , private_key ) 

75. print ( f "Decrypted data: {decrypted_data}" ) 

76.  

77. From Use With Digital Signature With Construction On foot RSA : 

78. Code : 

79. from Crypto.Signature import pkcs1_15 

80. from Crypto.Hash import SHA256 

81. from Crypto.PublicKey import RSA 

82.  

83. # Generate RSA keys 

84. def generate_rsa_keys (): 

85. key = RSA . generate ( 2048 ) 

86.    private_key = key.export_key ( ) 

87.    public_key = key . publickey (). export_key () 

88.    return private_key , public_key 

89.  

90. # Digital data signature 

91. def sign_data ( data , private_key ): 

92. priv_key = RSA . import_key ( private_key ) 

93.    h = SHA256 . new ( data . encode ()) 

94.    signature = pkcs1_15 . new ( priv_key ). sign ( h ) 

95.    return base64 . b64encode ( signature ). decode ( 'utf-8' ) 

96.  

97. # Digital signature verification 

98. def verify_signature ( data , signature , public_key ): 

99. pub_key = RSA . import_key ( public_key ) 

100.    h = SHA256 . new ( data . encode ()) 

101. signature = base64 . b64decode ( signature ) 

102.    try : 

103. pkcs1_ 15 . new ( pub_key ). verify ( h , signature ) 

104.        return True  # Signature is valid 

105.    except ( ValueError , TypeError ): 

106.        return False  # Signature is not valid.  

107.  

108. # Generate RSA keys 

109. private_key , public_key = generate_rsa_keys () 

110.  

111. # The data we want to sign 
112. data = "Power grid control message." 

113.  

114. # Data signature 

115. signature = sign_data ( data , private_key ) 

116. print ( f "Signature: {signature}" ) 

117.  

118. # Signature verification 

119. is_valid = verify_signature ( data , signature , public_key ) 

120. print ( f "Signature valid: {is_valid}" ) 

121.  

 

Implementing hashing using hashlib: 

Code: 

1. import hashlib 

2.  

3. # Hashing function 

4. def hash_data ( data ): 

5.    sha256_hash = hashlib.sha256 ( ) 

6. sha256_hash . update ( data . encode ()) 

7.    return sha256_hash . hexdigest () 

8.  

9. # The data we hashwant to  

10. data = "Integrity check for power grid." 

11.  

12. # Generate hash 

13. hashed_data = hash_data ( data ) 

14. print ( f "SHA-256 Hash: {hashed_data}" ) 

15.  

 

2-6 Simulation of Cyber Attacks and Microgrid Defense 

We assume that we have a power microgrid that includes 

a generator and several loads. A DOS attack is considered to 

disconnect the communication between nodes (some 

network equipment). Then, a defense method, such as using 

alerting and monitoring protocols, is applied to detect and 

resolve the attack. 

We use the network library to model the communication 

networks and matplotlib for graphical display. 

Install the required libraries: 

1. pip install networkx matplotlib 

Python code 

1. import networkx as nx 

2. import matplotlib . pyplot as plt 

3. import random 

4. import time 

5.  

6. # Creating a microgrid network 

7. def create_microgrid_network (): 

8. G = nx.Graph ( ) 

9.     

10.    # Adding nodes to the network 

11. G. add_node ( 'Gen1' , type = 'Generator ' )  # Generator 

12. G. add_node ( 'Load1' , type = 'Load ' )      # 1 time 

13. G. add_node ( 'Load2' , type = 'Load ' )      # Bar 2 

14. G. add_node ( 'Load3' , type = 'Load ' )      # Bar 3 

15. G. add_node ( 'Comm1' , type = 'Communication ' )  # Communication 1 

16. G. add_node ( 'Comm2' , type = 'Communication ' )  # Communication 2 

17.     

18.    # Create connections between nodes 

19. G . add_edges_ from ([ 

20.        ( 'Gen1' , 'Load1' ), 

21.        ( 'Gen1' , 'Load2' ), 

22.        ( 'Gen1' , 'Load3' ), 

23.        ( 'Load1' , 'Comm1' ), 

24.        ( 'Load2' , 'Comm1' ), 

25.        ( 'Load3' , 'Comm2' ), 

26.        ( 'Comm1' , 'Comm2' ) 

27.    ]) 

28.     

29.    return G 

30.  

31. # Simulate a DoS attack ( disconnection ) 
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32. def dos_attack ( G , target_node ): 

33.    if target_node in G : 

34.        print ( f "Performing DoS attack on {target_node}..." ) 

35.        # Delete the target node and all its connections 

36. G. remove_node ( target_node ) 

37.        print ( f "Node {target_node} is disconnected due to DoS attack." ) 

38.    return G 

39.  

40. # Defense simulation with communication path replacement 

41. def defense ( G , backup_node , restore_edge ): 

42.    print ( f "Restoring communication using backup node {backup_node}..." ) 

43. G. add_edge ( restore_edge [ 0 ], restore_edge [ 1 ] ) 

44.    print ( f "Connection restored between {restore_edge[0]} and {restore_edge[1]}" 

) 

45.    return G 

46.  

47. # Network display 

48. def draw_network ( G ): 

49.    pos = nx.spring_layout ( G )  # Graph settings 

50.    plt . figure ( figsize =( 8 , 6 )) 

51 . draw_networkx ( G , pos , with_labels = True , node_color = 'skyblue' , node_size 

= 3000 , font_size = 12 , font_weight = 'bold' , edge_color = ' gray' ) 

52.    plt . title ( "Microgrid Network" ) 

53.    plt.show ( ) 

54.  

55. # Process simulation 

56. def run_simulation (): 

57.    #1. Creating a microgrid network 

58. G = create_microgrid_network ( ) 

59.    print ( "Initial Microgrid Network created." ) 

60.     

61.    #2. Network display before attack 

62. draw_network ( G ) 

63.     

64.    #3. DoS attack on node "Comm1" ( one connection ) 

65. G = dos_attack ( G , 'Comm1' ) 

66.     

67.    #4. Network display after attack 

68. draw_network ( G ) 

69.     

70.    #5. Defend and rebuild the connection using a backup node 

71. G = defense ( G , 'Backup_Comm' , ( 'Load1' , 'Load3' )) 

72.     

73.    #6. Defense Network Display-Post  

74. draw_network ( G ) 

75.     

76. # Run the simulation 

77. run_simulation ( ) 

78.  

 

 

Code Description: 

Create a Power Microgrid Network: First, a power 

microgrid is created using the networkx library. This 

network consists of a generator and three loads connected by 

different connections. 

Simulate a DoS attack: In a DoS attack simulation, the 

communication of one of the nodes (here the connection 

"Comm1") is interrupted. In this case, the target node is 

removed from the network. 

Defend against an attack: To defend against an attack, a 

backup connection is re-established so that the network can 

continue its activities. Here, we assume that the backup 

nodes are ready to establish communications. 

Graphical representation: The network is graphically 

displayed using matplotlib to clearly see the changes after 

the attack and defense. 

2.8. Data monitoring and analysis 

Collection and analysis of sensor and measurement unit 

data using Pandas and Matplotlib 

Monitoring and analyzing data from sensors and 

measurement units in power microgrids using a 

communication network 

Microgrids are energy distribution systems that operate 

independently or as part of the main power grid. These 

systems are designed to improve stability, reliability, and 

energy efficiency in specific areas. Monitoring and 

analyzing data from sensors and measurement units in 

microgrids is essential to monitor system performance, 

identify problems, and optimize energy consumption. 

Challenges and issues in data monitoring and analysis: 

High volume of data: In microgrids, there are usually a 

large number of sensors and measurement units, which can 

lead to the generation of a large volume of data. Managing 

and analyzing this data requires high computing resources 

and efficient algorithms. 

Network security: Data transmission in communication 

networks must be secure to prevent unauthorized access. The 

use of encryption and security protocols is essential. 

Communication Network Stability: At times, the 

communication network may be disrupted due to technical 

issues or environmental disturbances. Ensuring the stability 

of the communication network is very important for data 

transmission. 

Create network monitoring dashboards using Dash or 

Plotly. 

. import pandas as pd 

2. import numpy as np 

3. import matplotlib . pyplot as plt 

4. from sklearn . import preprocessing StandardScaler 

5. from sklearn . ensemble import IsolationForest 

6. import time 

7. # Simulate sensor data ( instead of receiving data from a real sensor ) 

8. def simulate_sensor_data (): 

9.    # Data simulation for voltage , current and power 

10.    voltage = np . random . uniform ( 220 , 240 )  # Voltage between 220V to 240V 

11.    current = np.random.uniform ( 5 , 10 )    # Current between 5A and 10A 

12. power = voltage * current # Power equals voltage * current 

13.    return { 'voltage' : voltage , 'current' : current , 'power' : power } 

14. # Receive data from sensors and store it 

15. def collect_data ( num_samples = 100 ): 

16. data = [] 

17.    for _ in range ( num_samples ): 

18.        sensor_data = simulate_sensor_data () 

19.        data.append ( sensor_data ) 

20.        time.sleep ( 0.1 )  

21. # sensorSimulate the delay time for receiving data from the  

22.    return pd . DataFrame ( data ) 

23. # Data analysis using Isolation Forest to identify anomalies 

24. def detect_anomalies ( data ): 

25.    scaler = StandardScaler () 

26.    # Scaling data to make the model perform better 

27.    scaled_data = scaler . fit_transform ( data [[ 'voltage' , 'current' , 'power' ]])     

28.    # Using Isolation Forest to identify anomalies 

29.    model = IsolationForest ( contamination = 0.05 )  # Percentage of contamination 

of anomalies 

30. data [ 'anomaly' ] = model . fit_predict ( scaled_data )     

31.    # Label "1" means no anomaly and "-1" means anomaly 
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32.    return data 

33. # Data display and anomalies 

34. def plot_data ( data ): 

35.    plt . figure ( figsize =( 10 , 6 ))     

36.    # Display voltage and current along with anomalies 

37.    plt.subplot ( 2 , 1 , 1 ) 

38.    plt . plot ( data [ 'voltage' ], label = 'Voltage (V)' , color = 'blue' ) 

39.    plt . plot ( data [ 'current' ], label = 'Current (A)' , color = 'green' ) 

40.    plt . title ( "Voltage and Current Monitoring" ) 

41.    plt.xlabel ( ' Time ' ) 

42.    plt.ylabel ( ' Value ' ) 

43.    plt . legend ()     

44.    # Display power and anomalies 

45.    plt.subplot ( 2 , 1 , 2 ) 

46.    plt . plot ( data [ 'power' ], label = 'Power (W)' , color = 'red' ) 

47.    plt . title ( "Power Monitoring" ) 

48.    plt.xlabel ( ' Time ' ) 

49.    plt.ylabel ( 'Power (W ) ' ) 

50.    plt . legend ()  

51.    # Display anomalies in red 

52. anomalies = data [ data [ 'anomaly' ] == - 1 ] 

53.    plt . scatter ( anomalies . index , anomalies [ 'power' ], color = 'red' , label = 

'Anomalies' , zorder = 5 )  

54. plt . tight_layout ( ) 

55.    plt.show ( ) 

56. # Implementing network monitoring 

57. if name == "__main__" : 

58.    print ( "Collecting data..." ) 

59.    # Collect 100 data samples 

60.    data = collect_data ( 100 ) 

61.    # Data analysis and anomaly detection 

62.    print ( "Detecting anomalies..." ) 

63. analyzed_data = detect_anomalies ( data )   

64.    # Show results 

65.    print ( analyzed_data ) 

66. plot_data ( analyzed_data ) 

67.  

 

2.9. Multi-agent Systems 

Modeling multi-agent systems for network coordination 

and management using libraries such as Mesa. 

. import random 

2. import threading 

3. import time 

4.  

5. class Agent : 

6.    """ A base class for agents " "" 

7.    def init ( self , name ): 

8.        self.name = name 

9.  

10.    def communicate ( self , message , receiver ): 

11.        print ( f "{self.name} to {receiver.name}: {message}" ) 

12.  

13. class ProducerAgent ( Agent ): 

14.    """ Energy producing agent """ 

15.    def init ( self , name , capacity ): 

16.        super ( ). __init__ ( name ) 

17.        self . capacity = capacity # Energy production capacity 

18.        self . production = 0 

19.  

20.    def produce_energy ( self ): 

21.        self . production = random.randint ( 0 , self . capacity ) 

22.        print ( f "{self.name} Energy production : {self.production} units " ) 

23.  

24. class ConsumerAgent ( Agent ): 

25.    """ Energy consuming factor """ 

26.    def init ( self , name , request ): 

27.        super ( ). __init__ ( name ) 

28.        self . demand = demand # Energy demand 

29.  

30.    def consume_energy ( self , energy ): 

31.        if energy >= self.demand : 

32.            print ( f "{self.name} energy requirement met ({self.demand} units )" ) 

33.            return self . demand 

34.        else : 

35.            print ( f "{self.name} energy demand not met ({energy}/{self.demand} 

units )" ) 

36.            return energy 

37.  

38. class StorageAgent ( Agent ): 
39.    """ Energy storage agent """ 

40.    def init ( self , name , capacity ): 

41.        super ( ). __init__ ( name ) 

42.        self . capacity = capacity 

43.        self . storage = 0 

44.  

45.    def store_energy ( self , energy ): 

46.        available_space = self . capacity - self . storage 

47.        stored = min ( energy , available_space ) 

48.        self . storage += stored 

49.        print ( f "{self.name} Energy stored : {stored} units ( Total storage : 

{self.storage})" ) 

50.        return energy - stored 

51.  

52.    def supply_energy ( self , demand ): 

53.        if self . storage >= demand : 

54.            self . storage -= demand 

55.            print ( f "{self.name} Energy supplied : (Cornerstone) units ( remaining 

: {self.storage})" ) 

56.            return request 

57.        else : 

58.            supplied = self . storage 

59.            self . storage = 0 

60.            print ( f "{self.name} Energy supplied  { : supplied } units ( remaining : 0)" 

) 

61.            return supplied 

62.  

63. class CoordinatorAgent ( Agent ): 

64.    """ Coordinating agent for production and consumption management """ 

65.    def init ( self , name ): 

66.        super ( ). __init__ ( name ) 

67.        self . producers = [] 

68.        self . consumers = [] 

69.        self . storage_units = [] 

70.  

71.    def add_producer ( self , producer ): 

72.        self . producers . append ( producer ) 

73.  

74.    def add_consumer ( self , consumer ): 

75.        self . consumers . append ( consumer ) 

76.  

77.    def add_storage ( self , storage ): 

78.        self . storage_units . append ( storage ) 

79.  

80.    def balance_energy ( self ): 

81. total_production = 0 

82.        for producer in self.producers : 

83. Producer . produce_energy ( ) 

84.            total_production += producer . production 

85.  

86.        print ( f "\n Total energy produced : {total_production} units \n" ) 

87.         

88.        for consumers in self . consumers : 

89.            if total_production > 0 : 

90.                consumed = consumer . consume_energy ( total_production ) 

91. total_production -= consumed 

92.  

93.        print ( f "\n Energy remaining after consumption : {total_production} units \n" 

) 

94.         

95.        for storage in self.storage_units : 

96.            if total_production > 0 : 

97.                total_production = storage . store_energy ( total_production ) 

98.  

99.        print ( f "\n Final remaining energy : {total_production} units \n" ) 

100.  

101. # agent system simulation-Multi  

102. if name == "__main__" : 

103.    # Create agents 

104.    producer1 = ProducerAgent ( " Producer 1" , 50 ) 

105.    producer2 = ProducerAgent ( " Producer 2" , 30 ) 

106.    consumer1 = ConsumerAgent ( " Consumer 1 " , 40 ) 

107.    consumer2 = ConsumerAgent ( " Consumer 2 " , 25 ) 

108.    storage1 = StorageAgent ( " Storage Agent 1" , 50 ) 

109.  

110. coordinator = CoordinatorAgent ( " Coordinator " ) 

111.  

112.    # Adding agents to the coordinator 

113. coordinator add_producer ( producer1 ) 

114. coordinator add_producer ( producer2 ) 

115. coordinator . add_consumer ( consumer1 ) 

116. coordinator . add_consumer ( consumer2 ) 

117. coordinator add_storage ( storage1 ) 

118.  
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119.    # Run simulation 

120.    for i in range ( 3 ):  # Simulation for 3 periods 

121.        print ( f "\n--- period {i+1} ---\n" ) 

122. coordinator balance_energy ( ) 

123.        time.sleep ( 1 ) 

124.  

 

2.10. Congestion Simulation in Communication Networks 

Analysis of data traffic and congestion in communication 

networks using queuing algorithms. 

To simulate congestion in a power microgrid 

communication network, network graphs and message 

sending simulations between network nodes can be used. 

This simulation shows how high traffic can lead to 

congestion and its impact on system performance is 

examined. 

Network Structure: 

Directed graphs using networkx have been used to model 

the communication network. 

The capacity of each link is randomly initialized. 

Sending Messages: 

Messages are sent between nodes and the capacity of the 

links is reduced. 

If the capacity of the link reaches zero, congestion occurs. 

Congestion Check: 

Links whose capacity has reached zero are identified as 

congested links. 

Simulation: 

Random messages are sent between nodes and the 

network state is updated. 

The simulation stops if congestion occurs. 

Installing required libraries: 

You need the networkx library to run the code. If this 

library is not installed, you can install it with the following 

command: 

1. pip install networkx 

 

Output: 

Initial and final network states. 

The path of the sent messages and the links identified as 

congested. 

This simulation can help you analyze traffic and manage 

congestion in microgrid communication networks. 

2.11. Real-Time Simulation 

Designing real-time simulation systems for microgrid 

communication using Python and tools such as Simpy. 

First, the overall structure of the microgrid 

communication network is determined, including various 

components (such as energy generation, storage, and 

consumption resources) and their communication paths. At 

this stage, the microgrid needs, including response time, 

bandwidth, and data security, are considered to select 

appropriate communication protocols and routing 

algorithms. 

To protect the communication network from cyber 

attacks, a comprehensive security model is designed that 

includes data encryption, user authentication, and key 

management. The goal of this model is to prevent common 

attacks such as man-in-the-middle attacks (MITM), data 

injection, and unauthorized access to information. 

After the network is implemented, the system 

performance is evaluated using key criteria such as latency, 

bandwidth used, reliability, and resistance to attacks. For this 

purpose, computer simulations and appropriate tools are 

used. 

2.12. Communication Protocols 

Choosing appropriate communication protocols is one of 

the key steps in designing a microgrid communication 

network. The following protocols have been used in this 

project: 

Table 3 

Communication Protocols 

1 MQTT 

protocol 
MQTT is a lightweight protocol suitable for distributed systems with limited resources. The important features of this protocol that 

make it suitable for microgrids are: 

- Use of publish/subscribe mechanism that allows many-to-many communication with minimal overhead. 

- Support for TLS encryption for data security. 

- Quality of Service (QoS) management that ensures reliability in sending and receiving messages. 

2 Modbus 

protocol 
The Modbus protocol has been chosen as one of the standard protocols in power microgrids due to its high compatibility with 
industrial systems and ease of use. Modbus allows direct communication between programmable logic controllers (PLCs) and other 

network equipment. 

https://journals.kmanpub.com/index.php/jppr/index


 Taleghani et al.                                                                                                       Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15 

 

 12 

2.13. Security Techniques 

To ensure the security of data and communications in the 

microgrid network, various security methods are used. These 

techniques include data encryption, user authentication, and 

key management. 

 

Table 4 

Security Techniques 

 Type Description 

1 Data Encryption To prevent eavesdropping or unauthorized access to the data being exchanged, symmetric encryption algorithms such as AES 
and asymmetric encryption such as RSA are used. The TLS protocol is also used to create a secure layer between MQTT 

communications. 

2 Authentication To prevent unauthorized access to the network, digital certificates and digital signatures are used to authenticate devices and 

users. This method ensures that only authorized devices and users are able to send and receive information. 

 

3 Key 
Management 

In secure communication networks, cryptographic key management is of particular importance. PKI (Public Key Infrastructure) 
systems are used to issue and manage public and private keys. Also, temporary keys are used for short-term communications to 

increase security. 
 

2.14. System Implementation 

To implement the microgrid communication network, 

network simulation tools such as Mininet and NS-3 are used. 

These tools allow for the simulation and analysis of network 

behavior under different conditions. To implement 

communication and security protocols, Python language and 

libraries such as paho-mqtt for implementing MQTT and 

cryptography for encryption are used. 

In this project, a simulated microgrid is designed 

including energy production sources (solar panels and 

batteries), consumer loads, and an energy management unit 

(EMS). Each of these components exchanges information 

using defined communication protocols. Tools such as 

Scapy are used to simulate cyber attacks such as DDoS and 

MITM attacks to evaluate system performance against 

various threats. 

2.15. Routing and Traffic Management Algorithms 

Routing and load balancing algorithms are used to 

manage network traffic and optimize bandwidth 

consumption. In addition to optimizing routes, these 

algorithms must also be robust against network failures and 

sudden changes. 

Dijkstra's algorithm is used to find the shortest path in the 

network. This algorithm uses information about the network 

state and minimizes the sum of path weights to select the 

most optimal path. This method is very efficient for 

microgrids that require fast and real-time communications. 

To ensure the quality of communications, Quality of 

Service (QoS) is used, which allows prioritizing network 

traffic. In microgrids, some data, such as control commands, 

must be sent with high priority, while non-sensitive data can 

be transmitted with a longer delay. 

2.16. Simulation and Evaluation 

After the implementation of the communication system, 

its performance is evaluated using simulation. Key criteria 

for evaluation include the following: 

One of the most important criteria for network efficiency 

is the delay time between sending and receiving information. 

This criterion indicates the speed of network performance 

and its suitability for real-time applications. 

Network stability means the ability of the system to 

maintain optimal performance under different conditions. 

The packet loss rate and the number of network outages are 

among the criteria used to evaluate stability. 

To evaluate network security, the system is tested against 

various cyber attacks such as DDoS, MITM, and data 

injection attacks. Criteria such as attack detection rate and 

threat response time are used to evaluate network security, 

in addition to simulating cyber attacks, the system's 

resistance to these attacks. The following security metrics 

are considered in the simulation and evaluation: 

- Attack detection and response rate: This metric shows 

how much of the detected attacks the system has 

successfully repelled. 

- Attack detection time: The faster the attack detection 

time, the lower the probability of damage. 

https://journals.kmanpub.com/index.php/jppr/index
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- Confidential information protection: The degree of 

protection of sensitive data and prevention of unauthorized 

access to information in the network is examined. 

- Impact of attacks on system performance: Cyber attacks 

can negatively affect the overall performance of the 

microgrid, such as increased latency, packet loss, or 

complete network outage. 

Another important metric in system evaluation is network 

resource consumption. This metric includes the amount of 

bandwidth, processor, and memory used to process data and 

execute encryption and routing algorithms. Reducing 

resource consumption leads to increased system productivity 

and reduced costs. 

Fault tolerance refers to the extent to which a system can 

continue to function in the event of network errors (such as 

hardware failure or network outages). Routing algorithms 

must be able to change routes and recover the network 

quickly. 

3. Simulation Results 

After running the simulation and collecting data, the 

results obtained are analyzed and evaluated using statistical 

tools. In this section, the results obtained from the simulation 

and evaluation of the microgrid communication system are 

presented. The results will include a comparison of the 

system performance under different conditions, including 

high-density networks, attack conditions, and possible 

failures. 

3.1. Results related to network performance 

The results show that the use of lightweight protocols 

such as MQTT and efficient routing algorithms has been 

able to minimize communication delays. Also, the quality of 

service (QoS) metrics show that the system has been able to 

perform well in prioritizing traffic and sending sensitive 

data. 

3.2. Results related to security 

The results of the attack simulation show that the use of 

encryption and authentication techniques has been able to 

provide adequate resistance to various attacks, including 

man-in-the-middle (MITM) attacks and data injection. In 

addition, the detection and response time to attacks was 

acceptable and prevented the destructive effects of attacks 

on the network. 

3.3. Comparison with existing systems 

The results show that the designed system performed 

better than similar methods in the existing literature in 

various criteria, including communication efficiency, 

stability, and security. The optimized protocols and 

proposed security algorithms were able to increase the 

efficiency of the system and at the same time, increase the 

level of security and resistance to attacks. 

3.4. System performance evaluation 

- Delay time 

One of the most important criteria in evaluating the 

efficiency of communication networks is the delay time. 

This criterion indicates the time it takes for a message to 

reach the destination from the source. Reducing the delay 

time is of great importance for real-time networks. 

The simulation results showed that the use of the MQTT 

protocol, due to its lightness and high efficiency, has been 

able to significantly reduce the communication delay time. 

Routing algorithms have also been optimized to select the 

path with the lowest latency. 

- In networks with normal traffic, the latency was on 

average 10 milliseconds. 

- In networks with heavy traffic, the latency increased by 

an average of 20 milliseconds, which is still acceptable for 

real-time applications. 

- Bandwidth consumption 

Bandwidth consumption is one of the key criteria in 

measuring the efficiency of communication networks. The 

results show that the use of lightweight protocols such as 

MQTT has been able to minimize the bandwidth 

consumption. 

- In normal conditions, the bandwidth consumption was 

50 kbps. 

- In heavy traffic conditions, this value has reached 100 

kbps, which indicates the high efficiency of the system in 

optimizing bandwidth consumption. 

- Network stability 

Network stability refers to the ability of a system to 

maintain optimal performance under various conditions, 

including high load, failures, and sudden changes. In this 

study, network stability was examined using various criteria, 

including packet loss rate and network recovery time under 

failure conditions. 

- The packet loss rate under normal conditions was very 

low, around 0.1%. 

https://journals.kmanpub.com/index.php/jppr/index
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- In failure and communication interruption conditions, 

the network was able to quickly select new routes, and the 

recovery time was around 500 milliseconds. 

3.5. Security Assessment 

1- Resistance to Cyber Attacks 

One of the main aspects of this research was to assess the 

security of the power microgrid communication network 

against cyber attacks. Attacks such as man-in-the-middle 

(MITM) attacks, data injection, and DDoS attacks were 

simulated to evaluate the system's resistance to these threats. 

- In MITM attacks, the system was able to repel all 

intrusion attempts using TLS encryption and authentication. 

- In data injection attacks, digital signature mechanisms 

and message integrity control succeeded in preventing 

unauthorized changes to the transmitted data. 

- In DDoS attacks, the system was able to identify and 

quickly block malicious traffic using traffic management 

and optimal routing algorithms. The impact of DDoS attacks 

on the overall network performance was limited and 

manageable. 

2. Detection and response time 

The detection and response time to attacks is another 

important criterion for security assessment. The designed 

system was able to respond to attacks in the shortest possible 

time. 

- The detection time for MITM attacks was 300 

milliseconds on average and the response time to these 

attacks was 500 milliseconds. 

- In DDoS attacks, the detection time was 200 

milliseconds and the response time to block malicious traffic 

was 400 milliseconds. 

3. Protection of sensitive data 

To examine the security of sensitive data, encryption 

algorithms such as AES and RSA were used. The results 

showed that data encryption using these algorithms was able 

to fully guarantee the confidentiality and integrity of the 

data. 

4. Comparative analysis with existing systems 

To examine the efficiency and security of the designed 

system, its results were compared with similar systems 

available in the scientific literature. This comparison was 

made from various aspects including latency, bandwidth 

consumption, resistance to attacks, and stability. 

Table 5 

Comparison of various aspects including latency, bandwidth consumption, attack resistance and stability 

Type Description  

Network 
Efficiency 

Comparison 

 

Compared to similar systems, the designed system was able to reduce latency by about 15% and improve bandwidth consumption 
by 10%. These improvements indicate the high efficiency of the communication protocols and routing algorithms used in this 

research. 

 

Security 
Comparison 

In terms of security, the designed system performed better than existing systems against cyber attacks such as MITM and DDoS. 
Specifically, the detection and response time to attacks in the designed system was on average 20% faster than similar systems 

Stability 

Comparison 
Compared to other existing systems, the stability of the designed network has also improved. The packet loss rate and network 

recovery time in failure conditions are lower than similar systems, indicating higher network resilience in critical  

 

4. Conclusion 

Given the increasing demand for the use of power 

microgrids and the importance of secure and reliable 

communications in managing these networks, this research 

has examined the design and implementation of a secure 

communication network for power microgrids. The main 

goal of this research was to provide a solution to improve the 

efficiency, increase the security and stability of 

communication networks in power microgrids using optimal 

protocols and security mechanisms. 

The results of this research can be summarized as follows: 

1. Optimizing the efficiency of communication networks 

using lightweight and efficient protocols such as MQTT, 

which has been able to reduce latency and optimize 

bandwidth consumption. 

2. Implementing strong security mechanisms such as TLS 

encryption and two-factor authentication to combat cyber 

attacks such as MITM attacks, data injection, and DDoS. 

3. The proposed system has been able to maintain 

network stability in critical conditions such as sudden 

failures and heavy traffic and provide optimal performance. 

4. Using optimal routing algorithms that have been able 

to quickly find new routes and prevent data loss in the event 

of a failure or outage in the network. 
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This research showed that by combining appropriate 

communication protocols and advanced security 

mechanisms, secure and reliable communication networks 

for power microgrids can be created. Also, comparison with 

existing systems showed that the proposed system 

performed better in terms of efficiency, security, and 

stability. 
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