

Article history:
Received 26 June 2025
Revised 10 October 2025
Accepted 16 October 2025
Published online 01 January 2026

Journal of Resource Management and
Decision Engineering

Volume 5, Issue 1, pp 1-15

Investigating Communication and Security Challenges in Power

Microgrids and Designing a Secure Communication Network Using

Appropriate Protocols and Encryption Techniques of Artificial

Intelligence Technology

Abolfazl. Taleghani1 , Sepehr. Soltani1*

1 Department of Electrical Engineering , Sab.c.,Islamic Azad university, Sabzevar,Iran

* Corresponding author email address: sep_soltani@iau.ac.ir

A r t i c l e I n f o A B S T R A C T

Article type:

Original Research

How to cite this article:

Taleghani , A. & Soltani , S. (2026).

Investigating Communication and Security

Challenges in Power Microgrids and

Designing a Secure Communication Network

Using Appropriate Protocols and Encryption

Techniques of Artificial Intelligence

Technology. Journal of Resource

Management and Decision Engineering,

5(1), 1-15.

https://doi.org/10.61838/kman.jrmde.5.1.183

© 2026 the authors. Published by KMAN

Publication Inc. (KMANPUB). This is an

open access article under the terms of the

Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-

NC 4.0) License.

With the expansion of the use of renewable energy sources and the need for smart

energy distribution systems, microgrids have become one of the vital

components of power systems. Considering the increasing importance of power

microgrids in modern energy systems and their key role in increasing efficiency

and reducing dependence on large power grids, designing a reliable

communication network for the utilization of these microgrids is crucial. In this

research, a comprehensive framework for simulating, designing, and evaluating

the communication network of power microgrids is presented. First, power

microgrids were simulated using the Python programming language to enable

analysis of the behavior and performance of these systems under different

conditions. Then, a communication network based on artificial intelligence

algorithms was designed and developed, which ensures the ability to coordinate

and manage microgrids optimally. Next, in order to investigate the stability and

security of the designed communication network, various types of cyber attacks

were simulated. These attacks included data intrusion, disruption of

communications, and various cyber-destruction scenarios. Also, smart defense

strategies were developed to counter these attacks and their effectiveness in

maintaining the performance of the communication network and preventing

negative impacts on microgrids and the main power grid during outage

conditions was evaluated. The results show that the designed communication

network is not only efficient in managing and utilizing microgrids, but also has

the ability to resist cyber attacks and maintain system stability. This research can

be used as a basis for developing smart and secure systems in energy

management and power microgrids and provide an effective solution to address

security and stability challenges in power systems.

Keywords: Communication network, microgrids, in power grid, artificial

intelligence

https://doi.org/10.61838/kman.jrmde.5.1.183
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0009-0002-2863-1317
https://orcid.org/0000-0001-6778-4581
https://crossmark.crossref.org/dialog/?doi=10.61838/kman.jrmde.4.2.5
http://creativecommons.org/licenses/by-nc/4.0

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 2

1. Introduction

icrogrids are small, autonomous networks of

distributed energy resources (DERs) that can

operate independently or be connected to the national grid.

These networks can be used to supply electricity to small

areas of buildings or specific communities. One of the main

challenges in microgrids is designing a secure and reliable

communication network for optimal resource management

and maintaining system security (Huang et al., 2024).

However, due to the direct connection of these systems to

the public electricity grid and the Internet, they are exposed

to security threats. Cyberattacks on microgrids can lead to

widespread disruptions in energy supply, damage to

equipment, and even safety risks for users (Serban et al.,

2020). Also, the reliability of the communication network in

microgrids is very important. Any disruption or delay in

sending and receiving information between microgrid

components can cause system inefficiency and even

blackouts. Hence, a secure and reliable communication

system that can transmit data in real time and is protected

against security threats is essential (Reddy, Kumar, &

Chakravarthi, 2022). Microgrids require a reliable

communication network to exchange information between

different components such as inverters, batteries, solar

panels, and energy storage units (Hu & Ma, 2023). Also,

given the high importance of microgrids in energy supply, it

is crucial to protect these networks against cyber attacks and

prevent information leakage (Liu et al., 2024). The main

issue of this paper is the design and implementation of a

secure and reliable communication network for power

microgrids. This network should be such that it is protected

in terms of security and at the same time can transfer data in

real time and with high accuracy between different

components of the microgrid. Since cyber attacks and

network disturbances can affect the performance of the

entire microgrid (Vaishnav et al., 2023), the aim of this

research is to find solutions to improve the security and

efficiency of these communications. In this paper, in

addition to focusing on the importance of communication

networks in microgrids, various methods and techniques for

designing secure and resilient networks will be examined.

Communication networks in microgrids are considered as

one of the most key components for the optimal management

of distributed energy. Given the essential role of these

networks in the exchange of data between different

components of microgrids, including energy producers (such

as renewable energy sources), storage units, and energy

consumers, efficient and stable communications between

these components are of great importance. However, due to

the distributed nature and continuous expansion of

microgrids, challenges such as scalability, management

complexity, and increased likelihood of cyber attacks arise

(Reddy, Kumar, Chakravarthi, et al., 2022).

The broader topics discussed in this paper include the

following:

In this research, we will analyze various cyber threats that

can attack microgrid communication networks. These

threats include intrusion attacks, unauthorized access

attacks, and denial of service (DoS) attacks (Niknejad et al.,

2021; Vaishnav et al., 2023). Also, existing solutions to

counter these threats will be reviewed, and advanced

cybersecurity methods such as encryption, intrusion

detection, and authentication systems will be used to

improve network security (Cai et al., 2023).

Another important topic to be discussed in this paper is

the reliability and stability of communication networks.

Microgrid communication networks of power systems must

be resilient to various failures and disturbances due to their

interaction with distributed energy resources. In this regard,

automatic recovery techniques and network redundancy are

investigated so that in the event of a fault, the system

operation continues without interruption (Reddy, Kumar,

Chakravarthi, et al., 2022). The reliability of communication

networks refers to the extent to which a network is able to

provide stable, uninterrupted services with minimal errors.

This concept is one of the key aspects of Quality of Service

(QoS) and is of particular importance in sensitive

communications, such as emergency or financial

communications (Hao et al., 2021).

The use of intelligent systems to predict possible failures

in communication networks and take preventive measures is

another part of this research. Machine learning algorithms

and data analytics can play an important role in early

detection of problems and prevention of potential crises

(Utkarsh et al., 2019).

Intelligent management and failure prediction is a new

approach in the field of industrial maintenance and repair,

which is implemented by utilizing new technologies such as

artificial intelligence (AI), machine learning (ML), and the

Internet of Things (IoT) with the aim of increasing efficiency

and reducing sudden equipment failures (Mannini et al.,

2022).

This article will provide a comprehensive review of the

principles, techniques, and applications of this approach.

With the rapid growth of technology and the increasing

M

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 3

importance of productivity, many industries are seeking to

optimize their maintenance and repair processes. Failures in

industrial equipment and machinery can lead to production

downtime, increased costs, and reduced productivity. One of

the key solutions to address this challenge is Smart

Maintenance Management, which uses predictive failure

analysis to reduce maintenance-related costs and minimize

equipment downtime (Reddy, Kumar, & Chakravarthi,

2022). Smart maintenance is a comprehensive system that,

based on data collected from industrial equipment and

machinery, uses advanced algorithms and data mining

techniques to predict failures and make practical

recommendations for optimizing maintenance and repair.

These systems typically use advanced sensors, historical

equipment performance data, and machine learning

algorithms to analyze the data (Cai et al., 2023).

To examine how to optimize the performance of

microgrids through the use of intelligent communication

protocols and Internet of Things (IoT)-based networks that

can exchange critical information in real time between

different microgrid components. This section will examine

different communication protocols and their role in

improving energy efficiency and reducing costs (Ahmed et

al., 2024; Hao et al., 2021).

2. Network System Design

This research uses modeling and simulation to investigate

and analyze the performance of the communication network

in microgrids. For this purpose, a multi-stage approach is

used, including the stages of design, implementation,

simulation, and evaluation (Gaurav & Kumar, 2022).

2.1. Design

In designing a communication network, we must first

define and identify high-level requirements and strategies. In

this stage, we have actually made the necessary preparations.

2.2. Preparation stage

In this stage, we have considered power microgrids and

examined the requirements and strategies that they should

have. In this regard, we have studied the optimal operation

of multiple microgrids under network reliability based on

algorithms. Multiple microgrids can be connected to the

main grid as well as interconnected, so creating appropriate

operating conditions while maintaining their independence

is considered. The goal in optimization is in terms of

network reliability (Mannini et al., 2022). In this case, the

switches between microgrids are one of the items that are

considered to meet the conditions for optimizing microgrids.

In the presence of renewable energy sources and the impact

of reliability caused by these sources, simulation has been

performed by creating scenarios and applying them to the

optimization program. The optimization objective function

is performed by an evolutionary algorithm. Considering all

the characteristics of power microgrids and the extent of

communication between them, the definable communication

network must consider the above issues without disruption

during design (Liu et al., 2024).

2.3. Programming Steps

To design a communication network for power

microgrids, we have done programming in Python. In this

step, we first wrote the required codes and analyzed and

reviewed them. The codes include the following.

To simulate and model a simple communication network

for power microgrids, we use Python libraries such as

NetworkX to model and analyze the network topology and

Simpy to simulate the timing behavior.

Here, we used NetworkX to model and display the

network topology, and Simpy is used to simulate message

transmission with communication delays between nodes so

that the graph drawn shows the connection of the

components and specifies the delay on the links. Regarding

the message transfer simulation, messages transmitted

between nodes are shown with real-time timing. In fact, the

above simulation is a simple model and can be extended for

more complex models such as adding data traffic,

communication protocols or security issues (Leung et al.,

2023).

- In the code rewrite, we considered a more realistic

scenario for a power microgrid, which includes the

following network components:

The generator, battery, loads, and central controller will

be. Message transmission includes sending load

information, battery status, and generation to the central

controller.

The communication network is a graph network

consisting of the generator, battery, loads, and central

controller. The links have random delays that simulate real-

world communications. In sending messages, the generator

sends the status of electricity generation to the controller,

and the battery reports its charge level. The loads send their

energy consumption status, which results in a simulation of

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 4

the messages sent and received in real time with a certain

delay, which can add more states such as warnings or control

commands (Gaurav & Kumar, 2022).

Regarding the code expansion, adding control algorithms

for microgrid management is also implemented using a

Queue, and we will also include the simulation of MQTT or

Modbus communication protocols in the code expansion

(Leung et al., 2023).

The modeling of the communication network of power

microgrids can include the simulation of network topology,

communications between units, and system behavior. This

model can simulate two modes: connected to the power

distribution network and isolated from the grid.

Nodes represent generation units (such as generators),

loads, a central controller, and the distribution network. The

operating modes are in two modes: connected to the grid,

where the microgrid is connected to the power distribution

network, and islanded, where the microgrid is disconnected

from the power distribution network. The NetworkX library

is used for network structure and analysis. The

implementation is in the Python environment, and the output

will include network information and changes in different

modes.

2.4. Routing and optimization algorithms

2.4.1. Routing algorithms for data transmission such as

Dijkstra and A*

To design a routing algorithm for data transmission in a

communication network for a power microgrid, the

algorithm must consider certain characteristics such as delay

minimization, energy consumption optimization, reliability,

and outage handling. A simple algorithm is given for this

purpose (Reddy, Kumar, & Chakravarthi, 2022).

Adaptive routing algorithm with energy awareness:

Inputs:

Network graph: (V, E) = G, where V is the set of nodes

and E is the set of links.

Origin and destination: S and D

Initial energy values of nodes: v^E for each E Э〖v〗^

Link weights: Based on criteria such as delay, bandwidth

and energy consumption

Output: Optimal path P from S to D

Table 1

Energy-aware adaptive routing algorithm steps:

 Stage Description

1 Calculating link weight For each link𝐸 Э (𝑢 , 𝑣) We calculate link weight as a combination of the following criteria:
1

𝑢𝐸
. 𝛾 +

1

𝐵(𝑢 , 𝑣)
. 𝛽 + 𝑑(𝑢 , 𝑣). 𝛼 = 𝑤(𝑢 , 𝑣)

d(u,v) :link delay between u and v

B(u, v) :Link bandwidth between u and v

𝑢𝐸 :Residual energy of node u

𝛾, 𝛽, 𝛼 :Weighting coefficients to control the importance of each criterion.

2 Finding the initial path a routing algorithm such as Dijkstra or *A Search to find the shortest path based on the weights calculated in

step 1.

3 Updating weights After the path is selected, the energy of the nodes used in the path decreases.

We again update the link weights according to the remaining energy of the nodes.

4 Network dynamics control If the network changes (such as adding a new node or link) or the node runs out of energy, the algorithm must
recalculate the path.

We use a distributed routing protocol to ensure updates are made in real time.

5 Sending data We send the data via the selected route.

We monitor the quality of data transmission (such as packet loss rate.)

-Load and energy management and control

Demand Response Algorithm

This algorithm can be used as a basic framework for

demand management in power microgrids.

General steps of the algorithm:

Collecting initial data:

Demand analysis and consumption forecasting:

Prioritizing loads:

Adjusting energy production and storage:

Intelligent control system:

Communication and data management:

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 5

Alarm signals and reporting:

2.5. Implementing communication protocols:

Simulating protocols such as MQTT, Modbus or

IEC61850

To implement the load management algorithm and

control the charging and discharging of batteries in electric

power microgrids using the MQTT (Message Queuing

Telemetry Transport) protocol, the goal is to design a

communication system for data transfer between different

components of the microgrid. The MQTT protocol is a

lightweight communication protocol that is very suitable for

data transfer in IOT networks and distributed systems.[85]

Data transfer between different components of the

microgrid, including energy producers, consumers and

batteries

Load management and control of battery charging and

discharging through messages and commands sent between

nodes.

Implementation of the MQTT protocol for

communication between components to send information

about the status of energy consumption, production and

battery level

General structure:

Publisher: Energy sources such as solar panels, wind

turbines and batteries act as data publishers.

Subscriber: Control systems and consumers act as

subscribers to information about consumption, production

and battery status.

Broker: MQTT server that receives messages from

publishers and sends them to subscribers.

Scenario:

Energy generation from production sources such as solar

panels sends messages indicating the amount of energy

produced.

Batteries send their status through messages.

The controller monitors the status of the network and

automatically sends commands to charge and discharge the

batteries.

Energy consumers send their consumption information so

that the demand on the network can be accurately managed.

Steps:

1-Setting up an MQTT Broker:

The first step in implementing the system is to install and

configure an MQTT Broker. One of the most popular

brokers is Mosquitto, which we can run on a local or cloud

server.

On Linux operating systems, we can use the following

command to install Mosquitto.

1. sudo apt-get update

2. sudo apt-get install mosquitto mosquitto-clients

2- Message structure:

Messages must have a specific structure to send data

about different states and information. For example, for

batteries, different Topics can be used:

𝐴 =< 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑁𝑜𝑑𝑒_𝑖𝑑 Energy

generation by a source.

𝐵 =< 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑢𝑠 < 𝑁𝑜𝑑𝑒_𝑖𝑑 Battery status

(charge / discharge level)

𝐶 =< 𝑑𝑒𝑚𝑎𝑛𝑑 < 𝑁𝑜𝑑𝑒_𝑖𝑑 Energy consumption in a

specific area or consumer

𝐷 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 Control commands for

batteries or energy sources

3-Implementing the algorithm using MQTT in

Python:

Connecting to the MQTT server: Here we are using a

local server (localhost). We can change the MQTT server

address to any address we use.

Callback function on_connect: This function is executed

after a successful connection to the MQTT server and shares

the topics that need to be subscribed (such as energy

production and demand).

Callback function on_message: This function is executed

when receiving any message from different topics. These

messages contain energy production and energy demand

data.

Battery charge and discharge control: Based on the

energy production and demand data, the algorithm decides

whether the batteries should be charged or discharged.

Data dissemination: Data including energy generation,

energy demand, and battery status are regularly disseminated

to the MQTT server.

Using MQTT, we have developed a scalable and

lightweight communication system for the management and

control of electric power microgrids. This algorithm allows

for real-time control and monitoring of energy consumption,

energy generation, and battery status.

2.6. Artificial Intelligence and Machine Learning for

Network Management

Load and Energy Generation Forecasting Using Machine

Learning Algorithms (such as Scikit-learn or Tensorflow)

Model Number One:

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 6

import numpy as np

2. import pandas as pd

3. from sklearn . import preprocessing StandardScaler

4. from sklearn . svm import SVR

5. from sklearn . metrics import mean_squared_error

6. import paho . mqtt . client as mqtt

7.

8. # First step : Data collection and preprocessing

9. def data_preprocessing (data):

10. scaler = StandardScaler ()

11. scaled_data = scaler . fit_transform (data)

12. return scaled_data

13.

14. # Second step : Design and train the SVM model for load prediction

15. def train_svm_model (X_train , y_train):

16. model = SVR (kernel = 'rbf')

17. model . fit (X_train , y_train)

18. return model

19.

20. # Step Three : Load Forecasting

21. def predict_load (model , X_test):

22. return model . predict (X_test)

23.

24. # Step Four : Managing Communications Between Measuring Stations and the

Control Center

25. def on_message (client , userdata , message):

26. print (f "Message received: {message.payload}")

27. # Message analysis and making predictions

28.

29. def start_mqtt_client ():

30. client = mqtt.Client ()

31. client . on_message = on_message

32. client . connect ("mqtt_broker_url" , 1883 , 60)

33. client . subscribe ("microgrid/load_data" , qos = 1)

34. client.loop_forever ()

35.

36. # Step 5 : Update the model based on new data

37. def update_model (model , new_data , new_labels):

38. model . fit (new_data , new_labels)

39. return model

40.

41. # Algorithm execution

42. if name == "__main__" :

43. # Input data

44. data = pd . read_csv ("microgrid_data.csv")

45. X = data . drop (columns =["load"])

46. y = data ["load"]

47.

48. # Data preprocessing

49. X_scaled = data_preprocessing (X)

50.

51. # Dividing the data into training and testing sections

52. train_size = int (0.8 * len (X))

53. X_train , X_test = X_scaled [: train_size] , X_scaled [train_size :]

54. y_train , y_test = y [: train_size], y [train_size :]

55.

56. # Model training

57. model = train_svm_model (X_train , y_train)

58.

59. # Load forecasting

60. y_pred = predict_load (model , X_test)

61. mse = mean_squared_error (y_test , y_pred)

62. print (f "Mean Squared Error: {mse}")

63.

64. # Start MQTT communication to send data

65. start_mqtt_client ()

66.

Model Number Two:

A: Complex Neural Network for Load and Energy

Generation Forecasting

Code:

52. import numpy as np

2. import pandas as pd

3. from sklearn . import preprocessing MinMaxScaler

4. import tensorflow as tf

5. from tensorflow . keras import models Sequential

6. from tensorflow . keras layers import LSTM , Dense

7. from sklearn . metrics import mean_squared_error

8.

9. # First step : Data preprocessing

10. def preprocess_data (data):
11. scaler = MinMaxScaler (feature_range =(0 , 1))

12. data_scaled = scaler . fit_transform (data)

13. return data_scaled , scaler

14.

15. # Step 2 : Create temporal data to train the LSTM model

16. def create_dataset (data , time_step = 1):

17. X , y = [], []

18. for i in range (len (data) - time_step - 1):

19. X. append (data [i :(i + time_step), 0])

20. y . append (data [i + time_step , 0])

21. return np . array (X), np . array (y)

22.

23. # Step 3 : Create and train the LSTM model

24. def build_lstm_model (time_step):

25. model = Sequential ()

26. model . add (LSTM (units = 50 , return_sequences = True , input_shape =(

time_step , 1)))

27. model . add (LSTM (units = 50 , return_sequences = False))

28. model . add (Dense (units = 1))

29. model . compile (optimizer = 'adam' , loss = 'mean_squared_error')

30. return model

31.

32. # Step Four : Model Training and Evaluation

33. def train_and_evaluate_lstm (data , time_step = 60):

34. # Dividing data into training and testing sections

35. train_size = int (len (data) * 0.8)

36. train_data , test_data = data [: train_size], data [train_size :]

37.

38. # Create datasets

39. X_train , y_train = create_dataset (train_data , time_step)

40. X_test , y_test = create_dataset (test_data , time_step)

41.

42. # reshape data for input to LSTM

43. X_train = X_train . reshape (X_train . shape [0], X_train . shape [1], 1)

44. X_test = X_test . reshape (X_test . shape [0], X_test . shape [1], 1)

45.

46. # Model creation and training

47. model = build_lstm_model (time_step)

48. model . fit (X_train , y_train , epochs = 10 , batch_size = 32 , verbose = 1)

49.

50. # Model prediction and evaluation

51. y_pred = model.predict (X_test)

52. mse = mean_squared_error (y_test , y_pred)

53. print (f 'Mean Squared Error: {mse}')

54.

55. return model

56.

B: Reinforcement learning for optimizing resource

allocation

Code:

1. import random

2. import numpy as np

3.

4. class QLearningAgent :

5. def init (self , action_space , state_space , learning_rate = 0.1 , discount_factor =

0.99 , epsilon = 1.0):

6. self . action_space = action_space

7. self . state_space = state_space

8. self . learning_rate = learning_rate

9. self . discount_factor = discount_factor

10. self . epsilon = epsilon

11. self . q_table = np . zeros ((state_space , action_space))

12.

13. def choose_action (self , state):

14. if random.uniform (0 , 1) < self.epsilon :

15. return random . choice (range (self . action_space)) #Exploration

16. else :

17. return np . argmax (self . q_table [state]) #Exploitation

18.

19. def learn (self , state , action , reward , next_state):

20. best_next_action = np . argmax (self . q_table [next_state])

21. self . q_table [state , action] = self . q_table [state , action] + self . learning_rate

* (reward + self.discount_factor * self . q_table [next_state , best_next_action] - self

. q_table [state , action])

22.

23. def update_epsilon (self , decay_rate = 0.995):

24. self . epsilon = max (0.01 , self . epsilon * decay_rate)

25.

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 7

26. # Network Interaction and Optimization

27. def run_qlearning (agent , episodes = 1000):

28. for episode in range (episodes):

29. state = random . randint (0 , agent . state_space - 1) # Hypothesis for starting

a random situation

30. total_reward = 0

31.

32. for step in range (100): # Length of each episode

33. action = agent . choose_action (state)

34. reward , next_state = simulate_environment (state , action) # Environment

simulation function

35. agent . learn (state , action , reward , next_state)

36. state = next_state

37. total_reward += reward

38.

39. if state == terminal_state :

40. break

41.

42. agent . update_epsilon () # Reduce the epsilon value to avoid overexploration

43. print (f "Episode {episode+1}, Total Reward: {total_reward}")

44.

C: Transfer learning to improve learning speed

Code:

1. from tensorflow . keras models import load_model

2.

3. # Load model from previous network

4. def transfer_learning (base_model_path , new_model , train_data , train_labels):

5. base_model = load_model (base_model_path)

6.

7. # Transferring weights from the base model to the new model

8. new_model . set_weights (base_model . get_weights ())

9.

10. # Train a new model with new data

11. new_model . fit (train_data , train_labels , epochs = 10 , batch_size = 32 , verbose

= 1)

12. return new_model

13.

Communication Management with MQTT

MQTT is used to send and receive data for data transfer

and coordination between production resources, consumers,

and forecasting systems.

Code:

1. import paho.mqtt.client as mqtt

 2.

 MQTTتنظیمات اتصال # .3

 4. def on_message(client, userdata, message):

 5. print(f"Received message: {message.payload}")

 های یادگیریروزرسانی مدلها و بهپردازش داده # .6

 7.

 8. def start_mqtt_client():

 9. client = mqtt.Client()

10. client.on_message = on_message

11. client.connect("mqtt_broker_url", 1883, 60)

12. client.subscribe("microgrid/data", qos=1)

13. client.loop_start()

14.

2.7. Cybersecurity in Communication Networks

Implementing Data Encryption Methods for

Communication Security Using Libraries Such as

Cryptography.

To increase security in communication networks of

electric power microgrids, the use of data encryption

methods is a necessity. This helps to protect sensitive

information related to network status, energy generation and

consumption, and other vital data from unauthorized access,

modification, or attacks. Here, we will implement various

encryption methods for data security in the communication

network of electric power microgrids.

Table 2

Different encryption methods for data security in the microgrid communication network

 Type scriptionDe

1 Symmetric

encryption

This method uses a shared key for encryption and decryption. One of the most popular algorithms in this category is AES

(Advanced Encryption Standard) .

2 Asymmetric
encryption

This method uses a pair of public and private keys and uses algorithms such as RSA for asymmetric encryption.

3 Digital
signature

Digital signatures are used to validate data and ensure the accuracy of information.

4 Hash Hash algorithms such as SHA-256 are used to verify data integrity.

Implementing AES encryption using pycryptodome

library:

Code

1. from Crypto . Cipher import AES

2. from Crypto . Util . Padding import pad , unpad

3. from Crypto.Random import get_random_bytes

4. import base64

5.

6. # Function for encryption

7. def encrypt_data (data , key):

8. cipher = AES . new (key , AES . MODE_CBC)

9. ct_bytes = cipher . encrypt (pad (data . encode (), AES . block_size))

10. iv = base64 . b64encode (cipher . iv). decode ('utf-8')

11. ct = base64 . b64encode (ct_bytes). decode ('utf-8')
12. return iv , ct

13.

14. # Function for decoding

15. def decrypt_data (iv , ct , key):

16. iv = base64 . b64decode (iv)

17. ct = base64 . b64decode (ct)

18. cipher = AES . new (key , AES . MODE_CBC , iv)

19. decrypted_data = unpad (cipher . decrypt (ct), AES . block_size). decode ('utf-

8')

20. return decrypted_data

21.

22. # Encryption key

23. key = get_random_bytes (16) # 128 -bit key

24.

25. # Data we want to encrypt

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 8

26. data = "This is a confidential message."

27.

28. # Data encryption

29. iv , ct = encrypt_data (data , key)

30. print (f "Encrypted data (IV + Ciphertext): {iv} + {ct}")

31.

32. # DecryptionData

33. decrypted_data = decrypt_data (iv , ct , key)

34. print (f "Decrypted data: {decrypted_data}")

35.

36. Cryptography Construction On foot RSA Library From Use with pycryptodome :

37. Code :

38. from Crypto.PublicKey import RSA

39. from Crypto . Cipher import PKCS1_OAEP

40. import base64

41.

42. # Generating public and private keys

43. def generate_rsa_keys ():

44. key = RSA . generate (2048)

45. private_key = key.export_key ()

46. public_key = key . publickey (). export_key ()

47. return private_key , public_key

48.

49. # Public key encryption

50. def encrypt_with_public_key (data , public_key):

51. pub_key = RSA . import_key (public_key)

52. cipher = PKCS1_OAEP . new (pub_key)

53. encrypted_data = cipher . encrypt (data . encode ())

54. return base64 . b64encode (encrypted_data). decode ('utf-8')

55.

56. # Decrypt with private key

57. def decrypt_with_private_key (encrypted_data , private_key):

58. priv_key = RSA . import_key (private_key)

59. cipher = PKCS1_OAEP . new (priv_key)

60. decrypted_data = cipher . decrypt (base64 . b64decode (encrypted_data))

61. return decrypted_data . decode ('utf-8')

62.

63. # Generate RSA keys

64. private_key , public_key = generate_rsa_keys ()

65.

66. # Data we want to encrypt

67. data = "Sensitive data in power grid."

68.

69. # Public key data encryption

70. encrypted_data = encrypt_with_public_key (data , public_key)

71. print (f "Encrypted data: {encrypted_data}")

72.

73. # with private keyDecrypt data

74. decrypted_data = decrypt_with_private_key (encrypted_data , private_key)

75. print (f "Decrypted data: {decrypted_data}")

76.

77. From Use With Digital Signature With Construction On foot RSA :

78. Code :

79. from Crypto.Signature import pkcs1_15

80. from Crypto.Hash import SHA256

81. from Crypto.PublicKey import RSA

82.

83. # Generate RSA keys

84. def generate_rsa_keys ():

85. key = RSA . generate (2048)

86. private_key = key.export_key ()

87. public_key = key . publickey (). export_key ()

88. return private_key , public_key

89.

90. # Digital data signature

91. def sign_data (data , private_key):

92. priv_key = RSA . import_key (private_key)

93. h = SHA256 . new (data . encode ())

94. signature = pkcs1_15 . new (priv_key). sign (h)

95. return base64 . b64encode (signature). decode ('utf-8')

96.

97. # Digital signature verification

98. def verify_signature (data , signature , public_key):

99. pub_key = RSA . import_key (public_key)

100. h = SHA256 . new (data . encode ())

101. signature = base64 . b64decode (signature)

102. try :

103. pkcs1_ 15 . new (pub_key). verify (h , signature)

104. return True # Signature is valid

105. except (ValueError , TypeError):

106. return False # Signature is not valid.

107.

108. # Generate RSA keys

109. private_key , public_key = generate_rsa_keys ()

110.

111. # The data we want to sign
112. data = "Power grid control message."

113.

114. # Data signature

115. signature = sign_data (data , private_key)

116. print (f "Signature: {signature}")

117.

118. # Signature verification

119. is_valid = verify_signature (data , signature , public_key)

120. print (f "Signature valid: {is_valid}")

121.

Implementing hashing using hashlib:

Code:

1. import hashlib

2.

3. # Hashing function

4. def hash_data (data):

5. sha256_hash = hashlib.sha256 ()

6. sha256_hash . update (data . encode ())

7. return sha256_hash . hexdigest ()

8.

9. # The data we hashwant to

10. data = "Integrity check for power grid."

11.

12. # Generate hash

13. hashed_data = hash_data (data)

14. print (f "SHA-256 Hash: {hashed_data}")

15.

2-6 Simulation of Cyber Attacks and Microgrid Defense

We assume that we have a power microgrid that includes

a generator and several loads. A DOS attack is considered to

disconnect the communication between nodes (some

network equipment). Then, a defense method, such as using

alerting and monitoring protocols, is applied to detect and

resolve the attack.

We use the network library to model the communication

networks and matplotlib for graphical display.

Install the required libraries:

1. pip install networkx matplotlib

Python code

1. import networkx as nx

2. import matplotlib . pyplot as plt

3. import random

4. import time

5.

6. # Creating a microgrid network

7. def create_microgrid_network ():

8. G = nx.Graph ()

9.

10. # Adding nodes to the network

11. G. add_node ('Gen1' , type = 'Generator ') # Generator

12. G. add_node ('Load1' , type = 'Load ') # 1 time

13. G. add_node ('Load2' , type = 'Load ') # Bar 2

14. G. add_node ('Load3' , type = 'Load ') # Bar 3

15. G. add_node ('Comm1' , type = 'Communication ') # Communication 1

16. G. add_node ('Comm2' , type = 'Communication ') # Communication 2

17.

18. # Create connections between nodes

19. G . add_edges_ from ([

20. ('Gen1' , 'Load1'),

21. ('Gen1' , 'Load2'),

22. ('Gen1' , 'Load3'),

23. ('Load1' , 'Comm1'),

24. ('Load2' , 'Comm1'),

25. ('Load3' , 'Comm2'),

26. ('Comm1' , 'Comm2')

27.])

28.

29. return G

30.

31. # Simulate a DoS attack (disconnection)

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 9

32. def dos_attack (G , target_node):

33. if target_node in G :

34. print (f "Performing DoS attack on {target_node}...")

35. # Delete the target node and all its connections

36. G. remove_node (target_node)

37. print (f "Node {target_node} is disconnected due to DoS attack.")

38. return G

39.

40. # Defense simulation with communication path replacement

41. def defense (G , backup_node , restore_edge):

42. print (f "Restoring communication using backup node {backup_node}...")

43. G. add_edge (restore_edge [0], restore_edge [1])

44. print (f "Connection restored between {restore_edge[0]} and {restore_edge[1]}"

)

45. return G

46.

47. # Network display

48. def draw_network (G):

49. pos = nx.spring_layout (G) # Graph settings

50. plt . figure (figsize =(8 , 6))

51 . draw_networkx (G , pos , with_labels = True , node_color = 'skyblue' , node_size

= 3000 , font_size = 12 , font_weight = 'bold' , edge_color = ' gray')

52. plt . title ("Microgrid Network")

53. plt.show ()

54.

55. # Process simulation

56. def run_simulation ():

57. #1. Creating a microgrid network

58. G = create_microgrid_network ()

59. print ("Initial Microgrid Network created.")

60.

61. #2. Network display before attack

62. draw_network (G)

63.

64. #3. DoS attack on node "Comm1" (one connection)

65. G = dos_attack (G , 'Comm1')

66.

67. #4. Network display after attack

68. draw_network (G)

69.

70. #5. Defend and rebuild the connection using a backup node

71. G = defense (G , 'Backup_Comm' , ('Load1' , 'Load3'))

72.

73. #6. Defense Network Display-Post

74. draw_network (G)

75.

76. # Run the simulation

77. run_simulation ()

78.

Code Description:

Create a Power Microgrid Network: First, a power

microgrid is created using the networkx library. This

network consists of a generator and three loads connected by

different connections.

Simulate a DoS attack: In a DoS attack simulation, the

communication of one of the nodes (here the connection

"Comm1") is interrupted. In this case, the target node is

removed from the network.

Defend against an attack: To defend against an attack, a

backup connection is re-established so that the network can

continue its activities. Here, we assume that the backup

nodes are ready to establish communications.

Graphical representation: The network is graphically

displayed using matplotlib to clearly see the changes after

the attack and defense.

2.8. Data monitoring and analysis

Collection and analysis of sensor and measurement unit

data using Pandas and Matplotlib

Monitoring and analyzing data from sensors and

measurement units in power microgrids using a

communication network

Microgrids are energy distribution systems that operate

independently or as part of the main power grid. These

systems are designed to improve stability, reliability, and

energy efficiency in specific areas. Monitoring and

analyzing data from sensors and measurement units in

microgrids is essential to monitor system performance,

identify problems, and optimize energy consumption.

Challenges and issues in data monitoring and analysis:

High volume of data: In microgrids, there are usually a

large number of sensors and measurement units, which can

lead to the generation of a large volume of data. Managing

and analyzing this data requires high computing resources

and efficient algorithms.

Network security: Data transmission in communication

networks must be secure to prevent unauthorized access. The

use of encryption and security protocols is essential.

Communication Network Stability: At times, the

communication network may be disrupted due to technical

issues or environmental disturbances. Ensuring the stability

of the communication network is very important for data

transmission.

Create network monitoring dashboards using Dash or

Plotly.

. import pandas as pd

2. import numpy as np

3. import matplotlib . pyplot as plt

4. from sklearn . import preprocessing StandardScaler

5. from sklearn . ensemble import IsolationForest

6. import time

7. # Simulate sensor data (instead of receiving data from a real sensor)

8. def simulate_sensor_data ():

9. # Data simulation for voltage , current and power

10. voltage = np . random . uniform (220 , 240) # Voltage between 220V to 240V

11. current = np.random.uniform (5 , 10) # Current between 5A and 10A

12. power = voltage * current # Power equals voltage * current

13. return { 'voltage' : voltage , 'current' : current , 'power' : power }

14. # Receive data from sensors and store it

15. def collect_data (num_samples = 100):

16. data = []

17. for _ in range (num_samples):

18. sensor_data = simulate_sensor_data ()

19. data.append (sensor_data)

20. time.sleep (0.1)

21. # sensorSimulate the delay time for receiving data from the

22. return pd . DataFrame (data)

23. # Data analysis using Isolation Forest to identify anomalies

24. def detect_anomalies (data):

25. scaler = StandardScaler ()

26. # Scaling data to make the model perform better

27. scaled_data = scaler . fit_transform (data [['voltage' , 'current' , 'power']])

28. # Using Isolation Forest to identify anomalies

29. model = IsolationForest (contamination = 0.05) # Percentage of contamination

of anomalies

30. data ['anomaly'] = model . fit_predict (scaled_data)

31. # Label "1" means no anomaly and "-1" means anomaly

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 10

32. return data

33. # Data display and anomalies

34. def plot_data (data):

35. plt . figure (figsize =(10 , 6))

36. # Display voltage and current along with anomalies

37. plt.subplot (2 , 1 , 1)

38. plt . plot (data ['voltage'], label = 'Voltage (V)' , color = 'blue')

39. plt . plot (data ['current'], label = 'Current (A)' , color = 'green')

40. plt . title ("Voltage and Current Monitoring")

41. plt.xlabel (' Time ')

42. plt.ylabel (' Value ')

43. plt . legend ()

44. # Display power and anomalies

45. plt.subplot (2 , 1 , 2)

46. plt . plot (data ['power'], label = 'Power (W)' , color = 'red')

47. plt . title ("Power Monitoring")

48. plt.xlabel (' Time ')

49. plt.ylabel ('Power (W) ')

50. plt . legend ()

51. # Display anomalies in red

52. anomalies = data [data ['anomaly'] == - 1]

53. plt . scatter (anomalies . index , anomalies ['power'], color = 'red' , label =

'Anomalies' , zorder = 5)

54. plt . tight_layout ()

55. plt.show ()

56. # Implementing network monitoring

57. if name == "__main__" :

58. print ("Collecting data...")

59. # Collect 100 data samples

60. data = collect_data (100)

61. # Data analysis and anomaly detection

62. print ("Detecting anomalies...")

63. analyzed_data = detect_anomalies (data)

64. # Show results

65. print (analyzed_data)

66. plot_data (analyzed_data)

67.

2.9. Multi-agent Systems

Modeling multi-agent systems for network coordination

and management using libraries such as Mesa.

. import random

2. import threading

3. import time

4.

5. class Agent :

6. """ A base class for agents " ""

7. def init (self , name):

8. self.name = name

9.

10. def communicate (self , message , receiver):

11. print (f "{self.name} to {receiver.name}: {message}")

12.

13. class ProducerAgent (Agent):

14. """ Energy producing agent """

15. def init (self , name , capacity):

16. super (). __init__ (name)

17. self . capacity = capacity # Energy production capacity

18. self . production = 0

19.

20. def produce_energy (self):

21. self . production = random.randint (0 , self . capacity)

22. print (f "{self.name} Energy production : {self.production} units ")

23.

24. class ConsumerAgent (Agent):

25. """ Energy consuming factor """

26. def init (self , name , request):

27. super (). __init__ (name)

28. self . demand = demand # Energy demand

29.

30. def consume_energy (self , energy):

31. if energy >= self.demand :

32. print (f "{self.name} energy requirement met ({self.demand} units)")

33. return self . demand

34. else :

35. print (f "{self.name} energy demand not met ({energy}/{self.demand}

units)")

36. return energy

37.

38. class StorageAgent (Agent):
39. """ Energy storage agent """

40. def init (self , name , capacity):

41. super (). __init__ (name)

42. self . capacity = capacity

43. self . storage = 0

44.

45. def store_energy (self , energy):

46. available_space = self . capacity - self . storage

47. stored = min (energy , available_space)

48. self . storage += stored

49. print (f "{self.name} Energy stored : {stored} units (Total storage :

{self.storage})")

50. return energy - stored

51.

52. def supply_energy (self , demand):

53. if self . storage >= demand :

54. self . storage -= demand

55. print (f "{self.name} Energy supplied : (Cornerstone) units (remaining

: {self.storage})")

56. return request

57. else :

58. supplied = self . storage

59. self . storage = 0

60. print (f "{self.name} Energy supplied { : supplied } units (remaining : 0)"

)

61. return supplied

62.

63. class CoordinatorAgent (Agent):

64. """ Coordinating agent for production and consumption management """

65. def init (self , name):

66. super (). __init__ (name)

67. self . producers = []

68. self . consumers = []

69. self . storage_units = []

70.

71. def add_producer (self , producer):

72. self . producers . append (producer)

73.

74. def add_consumer (self , consumer):

75. self . consumers . append (consumer)

76.

77. def add_storage (self , storage):

78. self . storage_units . append (storage)

79.

80. def balance_energy (self):

81. total_production = 0

82. for producer in self.producers :

83. Producer . produce_energy ()

84. total_production += producer . production

85.

86. print (f "\n Total energy produced : {total_production} units \n")

87.

88. for consumers in self . consumers :

89. if total_production > 0 :

90. consumed = consumer . consume_energy (total_production)

91. total_production -= consumed

92.

93. print (f "\n Energy remaining after consumption : {total_production} units \n"

)

94.

95. for storage in self.storage_units :

96. if total_production > 0 :

97. total_production = storage . store_energy (total_production)

98.

99. print (f "\n Final remaining energy : {total_production} units \n")

100.

101. # agent system simulation-Multi

102. if name == "__main__" :

103. # Create agents

104. producer1 = ProducerAgent (" Producer 1" , 50)

105. producer2 = ProducerAgent (" Producer 2" , 30)

106. consumer1 = ConsumerAgent (" Consumer 1 " , 40)

107. consumer2 = ConsumerAgent (" Consumer 2 " , 25)

108. storage1 = StorageAgent (" Storage Agent 1" , 50)

109.

110. coordinator = CoordinatorAgent (" Coordinator ")

111.

112. # Adding agents to the coordinator

113. coordinator add_producer (producer1)

114. coordinator add_producer (producer2)

115. coordinator . add_consumer (consumer1)

116. coordinator . add_consumer (consumer2)

117. coordinator add_storage (storage1)

118.

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 11

119. # Run simulation

120. for i in range (3): # Simulation for 3 periods

121. print (f "\n--- period {i+1} ---\n")

122. coordinator balance_energy ()

123. time.sleep (1)

124.

2.10. Congestion Simulation in Communication Networks

Analysis of data traffic and congestion in communication

networks using queuing algorithms.

To simulate congestion in a power microgrid

communication network, network graphs and message

sending simulations between network nodes can be used.

This simulation shows how high traffic can lead to

congestion and its impact on system performance is

examined.

Network Structure:

Directed graphs using networkx have been used to model

the communication network.

The capacity of each link is randomly initialized.

Sending Messages:

Messages are sent between nodes and the capacity of the

links is reduced.

If the capacity of the link reaches zero, congestion occurs.

Congestion Check:

Links whose capacity has reached zero are identified as

congested links.

Simulation:

Random messages are sent between nodes and the

network state is updated.

The simulation stops if congestion occurs.

Installing required libraries:

You need the networkx library to run the code. If this

library is not installed, you can install it with the following

command:

1. pip install networkx

Output:

Initial and final network states.

The path of the sent messages and the links identified as

congested.

This simulation can help you analyze traffic and manage

congestion in microgrid communication networks.

2.11. Real-Time Simulation

Designing real-time simulation systems for microgrid

communication using Python and tools such as Simpy.

First, the overall structure of the microgrid

communication network is determined, including various

components (such as energy generation, storage, and

consumption resources) and their communication paths. At

this stage, the microgrid needs, including response time,

bandwidth, and data security, are considered to select

appropriate communication protocols and routing

algorithms.

To protect the communication network from cyber

attacks, a comprehensive security model is designed that

includes data encryption, user authentication, and key

management. The goal of this model is to prevent common

attacks such as man-in-the-middle attacks (MITM), data

injection, and unauthorized access to information.

After the network is implemented, the system

performance is evaluated using key criteria such as latency,

bandwidth used, reliability, and resistance to attacks. For this

purpose, computer simulations and appropriate tools are

used.

2.12. Communication Protocols

Choosing appropriate communication protocols is one of

the key steps in designing a microgrid communication

network. The following protocols have been used in this

project:

Table 3

Communication Protocols

1 MQTT

protocol
MQTT is a lightweight protocol suitable for distributed systems with limited resources. The important features of this protocol that

make it suitable for microgrids are:

- Use of publish/subscribe mechanism that allows many-to-many communication with minimal overhead.

- Support for TLS encryption for data security.

- Quality of Service (QoS) management that ensures reliability in sending and receiving messages.

2 Modbus

protocol
The Modbus protocol has been chosen as one of the standard protocols in power microgrids due to its high compatibility with
industrial systems and ease of use. Modbus allows direct communication between programmable logic controllers (PLCs) and other

network equipment.

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 12

2.13. Security Techniques

To ensure the security of data and communications in the

microgrid network, various security methods are used. These

techniques include data encryption, user authentication, and

key management.

Table 4

Security Techniques

 Type Description

1 Data Encryption To prevent eavesdropping or unauthorized access to the data being exchanged, symmetric encryption algorithms such as AES
and asymmetric encryption such as RSA are used. The TLS protocol is also used to create a secure layer between MQTT

communications.

2 Authentication To prevent unauthorized access to the network, digital certificates and digital signatures are used to authenticate devices and

users. This method ensures that only authorized devices and users are able to send and receive information.

3 Key
Management

In secure communication networks, cryptographic key management is of particular importance. PKI (Public Key Infrastructure)
systems are used to issue and manage public and private keys. Also, temporary keys are used for short-term communications to

increase security.

2.14. System Implementation

To implement the microgrid communication network,

network simulation tools such as Mininet and NS-3 are used.

These tools allow for the simulation and analysis of network

behavior under different conditions. To implement

communication and security protocols, Python language and

libraries such as paho-mqtt for implementing MQTT and

cryptography for encryption are used.

In this project, a simulated microgrid is designed

including energy production sources (solar panels and

batteries), consumer loads, and an energy management unit

(EMS). Each of these components exchanges information

using defined communication protocols. Tools such as

Scapy are used to simulate cyber attacks such as DDoS and

MITM attacks to evaluate system performance against

various threats.

2.15. Routing and Traffic Management Algorithms

Routing and load balancing algorithms are used to

manage network traffic and optimize bandwidth

consumption. In addition to optimizing routes, these

algorithms must also be robust against network failures and

sudden changes.

Dijkstra's algorithm is used to find the shortest path in the

network. This algorithm uses information about the network

state and minimizes the sum of path weights to select the

most optimal path. This method is very efficient for

microgrids that require fast and real-time communications.

To ensure the quality of communications, Quality of

Service (QoS) is used, which allows prioritizing network

traffic. In microgrids, some data, such as control commands,

must be sent with high priority, while non-sensitive data can

be transmitted with a longer delay.

2.16. Simulation and Evaluation

After the implementation of the communication system,

its performance is evaluated using simulation. Key criteria

for evaluation include the following:

One of the most important criteria for network efficiency

is the delay time between sending and receiving information.

This criterion indicates the speed of network performance

and its suitability for real-time applications.

Network stability means the ability of the system to

maintain optimal performance under different conditions.

The packet loss rate and the number of network outages are

among the criteria used to evaluate stability.

To evaluate network security, the system is tested against

various cyber attacks such as DDoS, MITM, and data

injection attacks. Criteria such as attack detection rate and

threat response time are used to evaluate network security,

in addition to simulating cyber attacks, the system's

resistance to these attacks. The following security metrics

are considered in the simulation and evaluation:

- Attack detection and response rate: This metric shows

how much of the detected attacks the system has

successfully repelled.

- Attack detection time: The faster the attack detection

time, the lower the probability of damage.

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 13

- Confidential information protection: The degree of

protection of sensitive data and prevention of unauthorized

access to information in the network is examined.

- Impact of attacks on system performance: Cyber attacks

can negatively affect the overall performance of the

microgrid, such as increased latency, packet loss, or

complete network outage.

Another important metric in system evaluation is network

resource consumption. This metric includes the amount of

bandwidth, processor, and memory used to process data and

execute encryption and routing algorithms. Reducing

resource consumption leads to increased system productivity

and reduced costs.

Fault tolerance refers to the extent to which a system can

continue to function in the event of network errors (such as

hardware failure or network outages). Routing algorithms

must be able to change routes and recover the network

quickly.

3. Simulation Results

After running the simulation and collecting data, the

results obtained are analyzed and evaluated using statistical

tools. In this section, the results obtained from the simulation

and evaluation of the microgrid communication system are

presented. The results will include a comparison of the

system performance under different conditions, including

high-density networks, attack conditions, and possible

failures.

3.1. Results related to network performance

The results show that the use of lightweight protocols

such as MQTT and efficient routing algorithms has been

able to minimize communication delays. Also, the quality of

service (QoS) metrics show that the system has been able to

perform well in prioritizing traffic and sending sensitive

data.

3.2. Results related to security

The results of the attack simulation show that the use of

encryption and authentication techniques has been able to

provide adequate resistance to various attacks, including

man-in-the-middle (MITM) attacks and data injection. In

addition, the detection and response time to attacks was

acceptable and prevented the destructive effects of attacks

on the network.

3.3. Comparison with existing systems

The results show that the designed system performed

better than similar methods in the existing literature in

various criteria, including communication efficiency,

stability, and security. The optimized protocols and

proposed security algorithms were able to increase the

efficiency of the system and at the same time, increase the

level of security and resistance to attacks.

3.4. System performance evaluation

- Delay time

One of the most important criteria in evaluating the

efficiency of communication networks is the delay time.

This criterion indicates the time it takes for a message to

reach the destination from the source. Reducing the delay

time is of great importance for real-time networks.

The simulation results showed that the use of the MQTT

protocol, due to its lightness and high efficiency, has been

able to significantly reduce the communication delay time.

Routing algorithms have also been optimized to select the

path with the lowest latency.

- In networks with normal traffic, the latency was on

average 10 milliseconds.

- In networks with heavy traffic, the latency increased by

an average of 20 milliseconds, which is still acceptable for

real-time applications.

- Bandwidth consumption

Bandwidth consumption is one of the key criteria in

measuring the efficiency of communication networks. The

results show that the use of lightweight protocols such as

MQTT has been able to minimize the bandwidth

consumption.

- In normal conditions, the bandwidth consumption was

50 kbps.

- In heavy traffic conditions, this value has reached 100

kbps, which indicates the high efficiency of the system in

optimizing bandwidth consumption.

- Network stability

Network stability refers to the ability of a system to

maintain optimal performance under various conditions,

including high load, failures, and sudden changes. In this

study, network stability was examined using various criteria,

including packet loss rate and network recovery time under

failure conditions.

- The packet loss rate under normal conditions was very

low, around 0.1%.

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 14

- In failure and communication interruption conditions,

the network was able to quickly select new routes, and the

recovery time was around 500 milliseconds.

3.5. Security Assessment

1- Resistance to Cyber Attacks

One of the main aspects of this research was to assess the

security of the power microgrid communication network

against cyber attacks. Attacks such as man-in-the-middle

(MITM) attacks, data injection, and DDoS attacks were

simulated to evaluate the system's resistance to these threats.

- In MITM attacks, the system was able to repel all

intrusion attempts using TLS encryption and authentication.

- In data injection attacks, digital signature mechanisms

and message integrity control succeeded in preventing

unauthorized changes to the transmitted data.

- In DDoS attacks, the system was able to identify and

quickly block malicious traffic using traffic management

and optimal routing algorithms. The impact of DDoS attacks

on the overall network performance was limited and

manageable.

2. Detection and response time

The detection and response time to attacks is another

important criterion for security assessment. The designed

system was able to respond to attacks in the shortest possible

time.

- The detection time for MITM attacks was 300

milliseconds on average and the response time to these

attacks was 500 milliseconds.

- In DDoS attacks, the detection time was 200

milliseconds and the response time to block malicious traffic

was 400 milliseconds.

3. Protection of sensitive data

To examine the security of sensitive data, encryption

algorithms such as AES and RSA were used. The results

showed that data encryption using these algorithms was able

to fully guarantee the confidentiality and integrity of the

data.

4. Comparative analysis with existing systems

To examine the efficiency and security of the designed

system, its results were compared with similar systems

available in the scientific literature. This comparison was

made from various aspects including latency, bandwidth

consumption, resistance to attacks, and stability.

Table 5

Comparison of various aspects including latency, bandwidth consumption, attack resistance and stability

Type Description

Network
Efficiency

Comparison

Compared to similar systems, the designed system was able to reduce latency by about 15% and improve bandwidth consumption
by 10%. These improvements indicate the high efficiency of the communication protocols and routing algorithms used in this

research.

Security
Comparison

In terms of security, the designed system performed better than existing systems against cyber attacks such as MITM and DDoS.
Specifically, the detection and response time to attacks in the designed system was on average 20% faster than similar systems

Stability

Comparison
Compared to other existing systems, the stability of the designed network has also improved. The packet loss rate and network

recovery time in failure conditions are lower than similar systems, indicating higher network resilience in critical

4. Conclusion

Given the increasing demand for the use of power

microgrids and the importance of secure and reliable

communications in managing these networks, this research

has examined the design and implementation of a secure

communication network for power microgrids. The main

goal of this research was to provide a solution to improve the

efficiency, increase the security and stability of

communication networks in power microgrids using optimal

protocols and security mechanisms.

The results of this research can be summarized as follows:

1. Optimizing the efficiency of communication networks

using lightweight and efficient protocols such as MQTT,

which has been able to reduce latency and optimize

bandwidth consumption.

2. Implementing strong security mechanisms such as TLS

encryption and two-factor authentication to combat cyber

attacks such as MITM attacks, data injection, and DDoS.

3. The proposed system has been able to maintain

network stability in critical conditions such as sudden

failures and heavy traffic and provide optimal performance.

4. Using optimal routing algorithms that have been able

to quickly find new routes and prevent data loss in the event

of a failure or outage in the network.

https://journals.kmanpub.com/index.php/jppr/index

 Taleghani et al. Journal of Resource Management and Decision Engineering 5:1 (2026) 1-15

 15

This research showed that by combining appropriate

communication protocols and advanced security

mechanisms, secure and reliable communication networks

for power microgrids can be created. Also, comparison with

existing systems showed that the proposed system

performed better in terms of efficiency, security, and

stability.

Authors’ Contributions

Authors contributed equally to this article.

Declaration

In order to correct and improve the academic writing of

our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable

request to the corresponding author.

Acknowledgments

We would like to express our gratitude to all individuals

helped us to do the project.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial

support.

Ethics Considerations

In this research, ethical standards including obtaining

informed consent, ensuring privacy and confidentiality were

considered.

References

Ahmed, S., Ali, A., Ciocia, A., & D'Angola, A. (2024).

Technological Elements behind the Renewable Energy

Community: Current Status, Existing Gap, Necessity, and

Future Perspective-Overview.

https://doi.org/10.3390/en17133100

Cai, X., Nan, X., Gao, B., & Yuan, J. (2023). Distributed Event-

Triggered Secondary Control of Microgrids With

Quantization Communication.

https://ieeexplore.ieee.org/document/9925620

Cornerstone, O. (2024). The future of learning: Building agile and

adaptable workforces. Cornerstone OnDemand

Gaurav, S., & Kumar, C. (2022). Coordinated Control of EV

Charging Stations in Smart Transformer based Microgrid.

Hao, Z., Atakan, A., Brandić, I., & Erol-Kantarci, M. (2021).

Multiagent Bayesian Deep Reinforcement Learning for

Microgrid Energy Management Under Communication

Failures. https://arxiv.org/abs/2111.11868

Hu, J., & Ma, H. (2023). Distributed Real-time Optimal Power

Flow Strategy for DC Microgrid Under Stochastic

Communication Networks.

https://www.researchgate.net/publication/374069625_Distrib

uted_Real-

time_Optimal_Power_Flow_Strategy_for_DC_Microgrid_U

nder_Stochastic_Communication_Networks

Huang, H., Poor, H. V., Davis, K. R., Overbye, T. J., Layton, A.,

Goulart, A. E., & Zonouz, S. (2024). Toward Resilient

Modern Power Systems: From Single-Domain to Cross-

Domain Resilience Enhancement.

https://doi.org/10.1109/JPROC.2024.3405709

Leung, K.-C., Zhu, X., Ding, H., & He, Q. (2023). Energy

Management for Renewable Microgrid Cooperation: Theory

and Algorithm.

https://www.researchgate.net/publication/369787563_Energy

_Management_for_Renewable_Microgrid_Cooperation_The

ory_and_Algorithm

Liu, X. K., Wang, S. Q., Chi, M., Liu, Z. W., & Wang, Y. W.

(2024). Resilient Secondary Control and Stability Analysis for

DC Microgrids Under Mixed Cyber Attacks.

https://ieeexplore.ieee.org/document/10092457

Mannini, R., Eynard, J., & Grieu, S. (2022). A Survey of Recent

Advances in the Smart Management of Microgrids and

Networked Microgrids. https://doi.org/10.3390/en15197009

Niknejad, P., Rahmani, F., Barzegaran, M., & Vanfretti, L. (2021).

A time-sensitive networking-enabled synchronized three-

phase and phasor measurement-based monitoring system for

microgrids.

Reddy, G. P., Kumar, Y. V. P., & Chakravarthi, M. (2022).

Communication Technologies for Interoperable Smart

Microgrids in Urban Energy Community: A Broad Review of

the State of the Art, Challenges, and Research Perspectives.

https://doi.org/10.3390/s22155881

Reddy, G. P., Kumar, Y. V. P., Chakravarthi, M. K., & Flah, A.

(2022). Refined Network Topology for Improved Reliability

and Enhanced Dijkstra Algorithm for Optimal Path Selection

during Link Failures in Cluster Microgrids.

https://doi.org/10.3390/su141610367

Serban, I., Céspedes, S., Marinescu, C., Azurdia-Meza, C. A.,

Gómez, J., & Sáez Hueichapan, D. (2020). Communication

Requirements in Microgrids: A Practical Survey.

https://www.researchgate.net/publication/339566854_Comm

unication_Requirements_in_Microgrids_A_Practical_Survey

Utkarsh, K., Srinivasan, D., Trivedi, A., Zhang, W., & Reindl, T.

(2019). Distributed Model-Predictive Real-Time Optimal

Operation of a Network of Smart Microgrids.

https://doi.org/10.1109/TSG.2018.2810897

Vaishnav, V., Jain, A., & Sharma, D. (2023). Auxiliary Network-

Enabled Attack Detection and Resilient Control of Islanded

AC Microgrid. https://arxiv.org/abs/2401.00180

https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.3390/en17133100
https://ieeexplore.ieee.org/document/9925620
https://arxiv.org/abs/2111.11868
https://www.researchgate.net/publication/374069625_Distributed_Real-time_Optimal_Power_Flow_Strategy_for_DC_Microgrid_Under_Stochastic_Communication_Networks
https://www.researchgate.net/publication/374069625_Distributed_Real-time_Optimal_Power_Flow_Strategy_for_DC_Microgrid_Under_Stochastic_Communication_Networks
https://www.researchgate.net/publication/374069625_Distributed_Real-time_Optimal_Power_Flow_Strategy_for_DC_Microgrid_Under_Stochastic_Communication_Networks
https://www.researchgate.net/publication/374069625_Distributed_Real-time_Optimal_Power_Flow_Strategy_for_DC_Microgrid_Under_Stochastic_Communication_Networks
https://doi.org/10.1109/JPROC.2024.3405709
https://www.researchgate.net/publication/369787563_Energy_Management_for_Renewable_Microgrid_Cooperation_Theory_and_Algorithm
https://www.researchgate.net/publication/369787563_Energy_Management_for_Renewable_Microgrid_Cooperation_Theory_and_Algorithm
https://www.researchgate.net/publication/369787563_Energy_Management_for_Renewable_Microgrid_Cooperation_Theory_and_Algorithm
https://ieeexplore.ieee.org/document/10092457
https://doi.org/10.3390/en15197009
https://doi.org/10.3390/s22155881
https://doi.org/10.3390/su141610367
https://www.researchgate.net/publication/339566854_Communication_Requirements_in_Microgrids_A_Practical_Survey
https://www.researchgate.net/publication/339566854_Communication_Requirements_in_Microgrids_A_Practical_Survey
https://doi.org/10.1109/TSG.2018.2810897
https://arxiv.org/abs/2401.00180

