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The oil market, due to its extensive economic impact and high price volatility, 

has always posed significant challenges for risk prediction and management. In 

this study, advanced artificial intelligence models, particularly machine learning, 

were employed to achieve more accurate predictions of oil market risk and their 

performance was compared with traditional models such as GARCH. The 

research findings indicated that machine learning models—especially the 

Random Forest algorithm—demonstrate greater accuracy and stability in 

predicting oil price fluctuations and assessing associated risks. These models can 

simulate nonlinear complexities and capture the effects of various economic and 

financial factors, such as stock market turbulence, unemployment indices, and 

interest rates, on oil market risk. Moreover, the results revealed that negative 

shocks exert a stronger influence on oil market volatility, and artificial 

intelligence models can effectively predict these impacts. This study particularly 

confirms the importance of using artificial intelligence models to forecast both 

short-term and long-term oil market risks and provides economic decision-

makers with innovative tools to manage market risk effectively. 

Keywords: risk prediction, oil market, artificial intelligence, machine learning, 

Random Forest, GARCH, volatility, Value at Risk (VaR), oil market fluctuations. 

1. Introduction 

he volatility of crude oil prices and the resulting 

exposure to market risk have long been central issues 

in financial economics and risk management. Oil remains 

one of the most strategically important commodities in the 

global economy, influencing industrial production, trade 

balances, and geopolitical stability (Su et al., 2021; Wong et 

al., 2025). Its price swings create uncertainty not only for 

producers and consumers but also for policymakers and 

investors, making accurate risk measurement and prediction 

crucial for financial stability and strategic decision-making 

(Abdulrahman, 2011; Alles, 1995). Traditional frameworks 

for risk quantification—such as variance, covariance, and 

Value at Risk (VaR)—have provided the foundation for 

asset pricing and portfolio management (Mitra & Ji, 2010; 

Rachev et al., 2011), but the increasing complexity and 

nonlinearity of oil price dynamics call for more adaptive and 

intelligent models (Sugianto et al., 2024; Tatiparti et al., 

2023). 

Oil price fluctuations stem from a combination of supply-

demand imbalances, macroeconomic uncertainty, 

T 
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speculative trading, and exogenous shocks such as 

geopolitical conflicts and pandemics (Qian et al., 2022; Su 

et al., 2021; Zhao et al., 2024). Political tensions, sanctions, 

and wars—such as the Russia–Ukraine conflict—have been 

shown to amplify oil market volatility by disrupting supply 

chains and investor sentiment (Jahanshahi et al., 2022; Zhao 

et al., 2024). Additionally, economic indicators such as 

unemployment claims and interest rates shape market 

expectations and influence risk premia in energy markets 

(Alshabandar et al., 2023; Tatiparti et al., 2023). These 

multifaceted drivers cause oil price dynamics to deviate from 

normality, producing heavy tails, skewness, and regime 

shifts (Li et al., 2022; Qian et al., 2022). Such conditions 

challenge the efficiency of classical linear models and 

GARCH-type volatility estimators (Mehrara & Hamldar, 

2014; Silvapulle & Moosa, 1999). 

Early studies on oil price prediction relied heavily on 

time-series econometrics and cointegration analysis to 

explore the link between spot and futures markets (Nicolau, 

2012; Silvapulle & Moosa, 1999; Wong et al., 2025). While 

these approaches contributed to understanding market 

efficiency (Lean et al., 2010; Mehrara & Hamldar, 2014), 

their assumptions about stationarity, homoscedasticity, and 

linearity limit their predictive power in volatile and 

nonstationary markets (Kaznacheev et al., 2016; Kungwani, 

2014). VaR-based risk measures, widely used by financial 

institutions for capital allocation and stress testing, also 

depend on accurate volatility estimates and distributional 

assumptions (Mitra & Ji, 2010; Rachev et al., 2011). When 

oil returns exhibit fat tails or asymmetry, standard normal-

based VaR can underestimate tail risk, exposing decision-

makers to unexpected losses (Akash et al., 2024; Weirich, 

2020). 

In response, artificial intelligence (AI) and machine 

learning (ML) methods have emerged as robust alternatives 

for modeling nonlinear dependencies and complex risk 

structures (An et al., 2019; Aung et al., 2020; Dimitriadou et 

al., 2018). Techniques such as Random Forest, support 

vector regression (SVR), neural networks, and hybrid deep 

learning architectures have been successfully applied to 

predict oil price volatility and optimize risk assessment 

frameworks (Akash et al., 2024; Fallah et al., 2024; 

Mohamed & Messaadia, 2023). AI-driven models excel at 

capturing hidden interactions among macroeconomic 

indicators, market microstructure variables, and textual or 

sentiment-based signals (Wang et al., 2020; Zhao et al., 

2019; Zhao et al., 2020). They are particularly valuable when 

market conditions shift abruptly due to geopolitical or 

macroeconomic shocks (Guo et al., 2022; Jahanshahi et al., 

2022). 

Machine learning models also provide flexibility in 

integrating multiple heterogeneous data sources, including 

futures and spot price dynamics (An et al., 2019; Wong et 

al., 2025), global financial indicators (Tatiparti et al., 2023; 

Zupok, 2022), and sustainability-linked risk metrics 

(Gładysz & Kuchta, 2022). By doing so, they surpass 

traditional econometric methods in out-of-sample 

forecasting and tail-risk sensitivity (Dimitriadou et al., 2018; 

Nwulu, 2017). In the oil sector, hybrid AI systems—

combining neural networks with statistical volatility 

models—have shown improved accuracy in forecasting both 

short- and long-term risk horizons (Amin-Naseri & 

Gharacheh, 2007; Kaznacheev et al., 2016). 

However, the deployment of AI for oil market risk 

prediction must address several conceptual and 

methodological considerations. Risk as a managerial 

construct encompasses both measurable uncertainty and 

subjective perception (Abdulrahman, 2011; Kungwani, 

2014). Misaligned model assumptions or poor 

interpretability can undermine decision usefulness and 

regulatory compliance (Sugianto et al., 2024; Wen et al., 

2024). For example, black-box ML models may provide 

excellent predictive accuracy but fail to meet the 

transparency requirements of financial governance 

frameworks (Nwulu, 2017; Косова et al., 2021). Moreover, 

the design of robust AI-based VaR systems requires careful 

selection of probability distributions to capture non-normal 

oil returns (Rachev et al., 2011; Zhao et al., 2019). Research 

suggests that skewed Student’s t and Johnson SU 

distributions can better accommodate heavy tails and 

asymmetries than conventional Gaussian assumptions (Li et 

al., 2022; Qian et al., 2022). 

Another critical research stream concerns the integration 

of geopolitical risk measures into oil risk prediction models 

(Su et al., 2021; Zhao et al., 2024). Political shocks—

including sanctions, armed conflict, and global supply 

disruptions—can cause sudden volatility spikes that are 

difficult to anticipate with purely historical models (Guo et 

al., 2022; Qian et al., 2022). Geopolitical indices and event-

based features help AI models adapt to nonstationary 

environments (Wen et al., 2024; Zhao et al., 2024). 

Similarly, macro-financial indicators such as unemployment 

claims, interest rate spreads, and equity market volatility 

(e.g., VIX, GSPC, DJI) act as systemic risk transmitters into 

commodity markets (Alshabandar et al., 2023; Guan et al., 

2021; Tatiparti et al., 2023). Combining these heterogeneous 
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risk drivers with machine learning can improve early 

warning systems for oil price shocks (Jumbe, 2022; Qin et 

al., 2023). 

Beyond predictive accuracy, sustainable and resilient risk 

management frameworks are increasingly emphasized in the 

energy and finance sectors (Gładysz & Kuchta, 2022; 

Sugianto et al., 2024). As the global economy transitions 

toward renewable energy, the dual exposure to fossil fuel 

price risk and green investment volatility complicates 

strategic planning (Wen et al., 2024; Zhao et al., 2024). 

Managers must integrate AI-enhanced forecasting with 

adaptive hedging, capital allocation, and sustainability 

objectives (Sugianto et al., 2024; Tatiparti et al., 2023). This 

is especially critical for oil-dependent economies, where 

revenue stability and macroeconomic policy are closely tied 

to crude price movements (Guan et al., 2021; Mehrara & 

Hamldar, 2014). 

The historical evolution of oil price forecasting models—

from early mean-variance approaches (Alles, 1995; Lean et 

al., 2010) to advanced hybrid AI solutions (An et al., 2019; 

Fallah et al., 2024)—illustrates the growing recognition that 

risk is multidimensional. It involves not only volatility but 

also tail exposure, correlation dynamics, and systemic 

contagion (Mitra & Ji, 2010; Weirich, 2020). Yet, despite 

these advances, gaps remain in designing models that are 

both highly predictive and interpretable, capable of adapting 

to evolving geopolitical and economic contexts while 

satisfying the practical needs of risk managers (Mohamed & 

Messaadia, 2023; Sugianto et al., 2024). 

Building on this background, the present study addresses 

these gaps by integrating advanced machine learning 

techniques with robust volatility modeling and tailored 

distributional assumptions. Specifically, it leverages 

Random Forest—a flexible ensemble learning algorithm 

with strong generalization capacity—and compares its risk 

forecasting performance against established 

heteroskedasticity models such as GARCH and TGARCH 

(An et al., 2019; Aung et al., 2020). By incorporating 

macroeconomic and geopolitical indicators alongside 

statistical volatility features, the research aims to improve 

the precision of Value at Risk estimates in the oil market 

(Guo et al., 2022; Zhao et al., 2020). Through rigorous 

backtesting and comparison with parametric methods, the 

study seeks to offer a more reliable and practical tool for 

energy market risk management. 

This study aims to develop and validate an advanced 

machine learning-based approach for predicting crude oil 

price volatility and estimating Value at Risk by integrating 

macroeconomic, financial, and geopolitical risk drivers, and 

to compare its performance with traditional 

heteroskedasticity models to provide a robust framework for 

market risk management. 

2. Methods and Materials 

To prepare the required variables for testing the 

hypotheses, Microsoft Excel was used. First, the collected 

data were entered into worksheets created in this software 

environment, and then the necessary calculations were 

performed to obtain the variables for this study. After 

computing all variables required for the research models, 

these variables were consolidated into unified worksheets to 

be transferred to the software used for the final analysis. It is 

important to note that the statistical analyses in this study 

were conducted using R version 4.3.1. 

The statistical population and the scope of the collected 

data in this study consist of the daily time series of several 

key macroeconomic and financial indicators from May 5, 

2014, to April 26, 2024. The return and volatility of oil prices 

were considered as the target variables, and in this study, a 

novel approach was applied to calculate the Value at Risk 

(VaR) of these price fluctuations. Table 1 presents the 

research variables along with their corresponding symbols 

(for simplicity in implementing the project within the 

software environment, the variables were symbolically 

coded). 

Table 1 

Research Variable Definitions 

Variable Name Symbol Type Description 

Oil Price Volatility Oil Dependent West Texas Intermediate (WTI) crude oil futures 

VIX Volatility Index VIX Independent One of the most important measures for assessing the level of fear and volatility in financial 
markets 

S&P 500 Index 
Volatility 

GSPC Independent The S&P 500 index includes 500 large and reputable U.S. companies 

Dow Jones Industrial 
Average Volatility 

DJI Independent The DJIA includes 30 major and reputable U.S. companies operating across various industries 

https://journals.kmanpub.com/index.php/jppr/index
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Changes in Initial 
Unemployment Claims 

ICSA Independent The Initial Claims for Unemployment Insurance (ICSA), published by the Federal Reserve Bank of 
St. Louis, represent the number of individuals filing for unemployment insurance for the first time. 
These data, originally weekly and seasonal, were converted to daily frequency in this study. 

Changes in Interest 
Rate 

DGS10 Independent Yield on 10-year fixed-maturity U.S. Treasury bonds 

 

Several points regarding the selected research variables 

are noteworthy. The aim of this study is to provide a 

relatively comprehensive measurement of oil market risk, 

considering multiple dimensions. Therefore, based on the 

review of previous studies and to account for the impact of 

financial markets, three key and influential U.S. financial 

market indices were selected: the S&P 500 index, the Dow 

Jones Industrial Average, and the VIX Fear and Greed 

Index. The conditional variance of the S&P 500 and Dow 

Jones indices was used to represent volatility in the model 

because the goal was to incorporate the risk effect of these 

variables into modeling oil market risk. Since the VIX Fear 

and Greed Index inherently represents risk, it was directly 

included as an input variable in the model. The same 

principle was applied to other macroeconomic and 

econometric variables; for example, the conditional variance 

of initial unemployment claims and the U.S. Federal Reserve 

interest rate was used to capture economic risk dimensions. 

3. Findings and Results 

As shown in Table 2, the number of observations within 

the research scope reached 2,495 days after historical 

alignment. For the variables “Oil,” “GSPC,” and “DJI,” 

logarithmic returns were calculated, and the descriptive 

statistics provided correspond to these logarithmic returns 

(price differentials). Based on this information, the daily 

return range for West Texas Intermediate (WTI) oil prices 

fluctuates between -33% and +32%. According to 

concentration measures such as mean and median, the 

average daily return for oil is approximately 0 to 1%, and its 

standard deviation is about 3%, indicating the risk of 

deviation from expected returns. The skewness values range 

between -0.71 and -2, showing relative symmetry in the data 

distribution, while the kurtosis value of 26.54 indicates that 

the distribution’s peak is sharper compared to a normal 

distribution. 

Regarding the “VIX” variable (volatility index), the range 

of this index fluctuated between 9.14 and 82.69. A VIX 

value between 10 and 20 indicates stable conditions and 

market confidence, while values above 20 show increased 

uncertainty and fear. In crisis situations, such as the 2008 

financial crisis or the COVID-19 pandemic, the index can 

exceed 40 or even reach above 80. According to the 

descriptive statistics in the table, the average value of this 

index ranged from 16 to 18, indicating a relatively stable 

level of fear and uncertainty in the market. 

For the “ICSA” variable (changes in initial 

unemployment claims), the number of individuals filing for 

unemployment benefits during the study period varied 

between 187,000 and 6,137,000. These data are published 

weekly, but in this research, they were converted into daily 

frequency using interpolation techniques. On average, the 

daily number of unemployment claims ranged between 

245,000 and 374,988, indicating significant fluctuations in 

the number of newly unemployed individuals. 

Finally, regarding the “DGS10” variable (changes in 

interest rates), the U.S. Treasury bond yields fluctuated 

between 0.5% and 5%. This reflects moderate volatility in 

bond yields and changes over time. These descriptive 

statistics and analyses collectively provide a picture of oil 

market volatility and associated macroeconomic and 

financial risks, forming a foundation for testing the research 

hypotheses. Figures (1) through (6) illustrate the time series 

graphs of these variables. 

Table 2 

Summary of Descriptive Statistics of Research Variables 

Variables Observations Minimum Maximum Mean Median Standard Deviation Skewness Kurtosis 

Oil 2,495 -0.335 0.319 -0.00007 0.0012 0.030 -0.71 26.54 

VIX 2,495 9.14 82.69 18.118 16.09 7.335 2.60 12.79 

GSPC 2,495 -0.127 0.089 0.0004 0.0006 0.011 -0.81 15.98 

DJI 2,495 -0.138 0.107 0.00034 0.0007 0.011 -0.96 22.81 

ICSA 2,495 187,000 6,137,000 374,988.38 245,000 545,226.16 6.95 57.69 

DGS10 2,495 0.52 4.98 2.361 2.29 0.945 0.42 -0.13 
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These characteristics emphasize the necessity of using 

advanced approaches such as machine learning in modeling 

and forecasting oil market risk and make detailed analysis of 

this data essential for hypothesis testing.  

Figure 1 

Logarithmic return of WTI oil 

 

Figure 2 

VIX Fear and Greed Index 

 

Figure 3 

Logarithmic return of the S&P 500 index 

 

https://journals.kmanpub.com/index.php/jppr/index


 Majdi et al.                                                                                                       Journal of Resource Management and Decision Engineering 5:1 (2026) 1-18 

 

 6 

Figure 4 

Logarithmic return of the Dow Jones Industrial Average 

 

Figure 5 

Conceptual Model 

 

Figure 6 

Fixed-income bond yields (interest rates) 

 

 

Figures (1) through (6) present the time series plots of 

these variables. 

To model oil market risk, it is first necessary to transform 

the study variables into risk-based features using feature 

engineering. For instance, the target variable in this study is 

https://journals.kmanpub.com/index.php/jppr/index
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the volatility of oil market returns, which is inherently 

related to market risk. For this purpose, conditional variance 

(heteroskedasticity) models were used to extract volatility. 

This process was also applied to the “GSPC,” “DJI,” and 

“DGS10” variables. Since the “VIX” index is itself a 

volatility and risk measure, no transformation was needed. 

Based on these explanations, the basic assumptions were 

tested only for the “Oil,” “GSPC,” “DJI,” and “DGS10” 

variables, and the results are presented in Table 3. 

Table 3 

Preliminary Test Results for Basic Assumptions Prior to Modeling 

Row Variables Jarque–Bera Test  Augmented Dickey–Fuller Test  ARCH Effects Test  

  Statistic p-value Statistic p-value Statistic p-value 

1 Oil 73,583.31 <0.01 -12.99 <0.01 848.57 <0.01 

2 GSPC 26,872.29 <0.01 -13.41 <0.01 974.81 <0.01 

3 DJI 54,551.29 <0.01 -13.45 <0.01 1,011.43 <0.01 

4 DGS10 76.01 <0.01 -0.89 0.95 2,473.90 <0.01 

 

As observed in Table 3, the p-values for the Jarque–Bera 

normality test and the ARCH heteroskedasticity effects test 

are all below 0.05, indicating non-normal data distribution 

and the presence of heteroskedasticity. Thus, the variables 

exhibit variance instability and non-normal distributions. 

However, regarding stationarity testing, except for the 

interest rate variable, the other variables are stationary at the 

95% confidence level. 

Since one of the fundamental assumptions of GARCH 

modeling is variable stationarity, the non-stationary interest 

rate variable will be directly included in the machine 

learning model without GARCH transformation. Therefore, 

GARCH modeling was performed for the “Oil,” “GSPC,” 

and “DJI” variables, and their extracted conditional 

variances (volatilities) were then used as inputs in the 

machine learning model. 

In this section, the input features and the target variable 

for the machine learning model were prepared. According to 

the results of the previous section, heteroskedasticity 

modeling was performed for the three variables “Oil,” 

“GSPC,” and “DJI,” and their respective conditional 

variances were extracted to represent the volatility of these 

indices. For this purpose, an appropriate GARCH family 

model with a suitable distribution was first selected and then 

applied to the variables. Tables (4) through (6) report the 

results obtained from comparing various heteroskedasticity 

model families across different statistical distributions for 

each variable. 

Table 4 

Comparison of Different Heteroskedasticity Model Families by Statistical Distribution for Oil 

Model Distribution LogLikelihood AIC BIC 

GARCH norm 5844.39 -4.68007 -4.66607 

GARCH snorm 5873.753 -4.70281 -4.68647 

GARCH std 5924.533 -4.74351 -4.72718 

GARCH sstd 5943.635 -4.75802 -4.73936 

GARCH ged 5908.511 -4.73067 -4.71434 

GARCH sged 5932.234 -4.74888 -4.73022 

GARCH jsu 5943.175 -4.75766 -4.73899 

EGARCH norm 5870.867 -4.70049 -4.68416 

EGARCH snorm 5900.725 -4.72363 -4.70496 

EGARCH std 5939.839 -4.75498 -4.73631 

EGARCH sstd 5960.312 -4.77059 -4.74959 

EGARCH ged 5924.085 -4.74235 -4.72368 

EGARCH sged 5949.78 -4.76215 -4.74115 

EGARCH jsu 5959.89 -4.77025 -4.74925 

GJRGARCH norm 5866.766 -4.69721 -4.68087 

GJRGARCH snorm 5893.296 -4.71767 -4.699 

GJRGARCH std 5933.71 -4.75007 -4.7314 

GJRGARCH sstd 5952.706 -4.76449 -4.74349 

GJRGARCH ged 5919.675 -4.73882 -4.72015 

https://journals.kmanpub.com/index.php/jppr/index
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GJRGARCH sged 5942.806 -4.75656 -4.73556 

GJRGARCH jsu 5952.326 -4.76419 -4.74319 

TGARCH norm 5878.99 -4.70701 -4.69067 

TGARCH snorm 5909.944 -4.73102 -4.71235 

TGARCH std 5946.504 -4.76032 -4.74166 

TGARCH sstd 5967.626 -4.77645 -4.75545 

TGARCH ged 5930.216 -4.74727 -4.7286 

TGARCH sged 5956.469 -4.76751 -4.74651 

TGARCH jsu 5967.148 -4.77607 -4.75507 

Table 5 

Comparison of Different Heteroskedasticity Model Families by Statistical Distribution for GSPC 

Model Distribution LogLikelihood AIC BIC 

GARCH norm 8322.205 -6.6663 -6.6523 

GARCH snorm 8368.72 -6.70278 -6.68645 

GARCH std 8400.02 -6.72787 -6.71154 

GARCH sstd 8415.576 -6.73954 -6.72087 

GARCH ged 8394.312 -6.7233 -6.70696 

GARCH sged 8408.165 -6.7336 -6.71493 

GARCH jsu 8422.596 -6.74517 -6.7265 

EGARCH norm 8362.137 -6.6975 -6.68117 

EGARCH snorm 8407.165 -6.7328 -6.71413 

EGARCH std 8441.951 -6.76068 -6.74201 

EGARCH sstd 8458.55 -6.77319 -6.75218 

EGARCH ged 8430.392 -6.75142 -6.73275 

EGARCH sged 8446.512 -6.76354 -6.74254 

EGARCH jsu 8464.106 -6.77764 -6.75664 

GJRGARCH norm 8354.302 -6.69122 -6.67489 

GJRGARCH snorm 8396.526 -6.72427 -6.7056 

GJRGARCH std 8434.974 -6.75509 -6.73642 

GJRGARCH sstd 8449.48 -6.76592 -6.74491 

GJRGARCH ged 8423.917 -6.74623 -6.72756 

GJRGARCH sged 8438.075 -6.75677 -6.73577 

GJRGARCH jsu 8454.662 -6.77007 -6.74907 

TGARCH norm 8375.22 -6.70799 -6.69166 

TGARCH snorm 8422.082 -6.74475 -6.72609 

TGARCH std 8453.477 -6.76992 -6.75125 

TGARCH sstd 8471.84 -6.78384 -6.76284 

TGARCH ged 8440.388 -6.75943 -6.74076 

TGARCH sged 8458.25 -6.77295 -6.75194 

TGARCH jsu 8477.414 -6.78831 -6.76731 

Table 6 

Comparison of Different Heteroskedasticity Model Families by Statistical Distribution for DJI 

Model Distribution LogLikelihood AIC BIC 

GARCH norm 8415.63 -6.74119 -6.72719 

GARCH snorm 8447.777 -6.76615 -6.74982 

GARCH std 8484.315 -6.79544 -6.77911 

GARCH sstd 8492.65 -6.80132 -6.78265 

GARCH ged 8485.07 -6.79605 -6.77971 

GARCH sged 8493.872 -6.8023 -6.78363 

GARCH jsu 8501.764 -6.80863 -6.78996 

EGARCH norm 8451.4 -6.76906 -6.75272 

EGARCH snorm 8475.922 -6.78791 -6.76925 

EGARCH std 8517.819 -6.8215 -6.80283 

EGARCH sstd 8528.71 -6.82943 -6.80843 

EGARCH ged 8514.025 -6.81846 -6.79979 

https://journals.kmanpub.com/index.php/jppr/index
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EGARCH sged 8525.288 -6.82668 -6.80568 

EGARCH jsu 8531.644 -6.83178 -6.81078 

GJRGARCH norm 8448.795 -6.76697 -6.75064 

GJRGARCH snorm 8474.242 -6.78657 -6.7679 

GJRGARCH std 8516.568 -6.8205 -6.80183 

GJRGARCH sstd 8526.981 -6.82804 -6.80704 

GJRGARCH ged 8512.674 -6.81737 -6.79871 

GJRGARCH sged 8524.009 -6.82566 -6.80466 

GJRGARCH jsu 8529.906 -6.83039 -6.80938 

TGARCH norm 8460.745 -6.77655 -6.76021 

TGARCH snorm 8487.239 -6.79698 -6.77832 

TGARCH std 8525.614 -6.82775 -6.80908 

TGARCH sstd 8538.488 -6.83726 -6.81626 

TGARCH ged 8521.164 -6.82418 -6.80551 

TGARCH sged 8534.148 -6.83379 -6.81278 

TGARCH jsu 8541.506 -6.83968 -6.81868 

 

For the purpose of selecting a heteroskedasticity model 

with an appropriate distribution, the log-likelihood, AIC, 

and BIC information criteria were used. According to the 

results in the above table, the Threshold GARCH model 

(TGARCH) with a skewed Student’s t distribution (SSTD) 

was selected as the optimal model for Oil, and the Threshold 

GARCH model (TGARCH) with the Johnson SU (JSU) 

distribution was selected as the optimal model for GSPC and 

DJI. In standard GARCH models, it is assumed that positive 

and negative shocks have identical effects on volatility 

(conditional variance). However, in many financial datasets, 

negative shocks (e.g., price declines) exert a stronger impact 

on volatility. TGARCH incorporates these asymmetric 

effects through a threshold indicator, explicitly accounting 

for the differential impact of positive and negative shocks on 

volatility. Because this model allows negative and positive 

shocks to have different effects on the variance, it can be far 

more effective for computing Value at Risk (VaR), in which 

asymmetric volatility is important. The Johnson SU 

distribution is a flexible family used to model non-normal 

data. Financial asset returns often have heavier tails than the 

normal distribution, a property that the Johnson SU 

distribution captures well. The Johnson SU distribution can 

also account for skewness more effectively than symmetric 

distributions (e.g., normal). In general, due to its multiple 

parameters, the Johnson SU distribution can adapt to various 

shapes (heavy tails, skewness, or near-normal). 

Accordingly, in what follows, volatility is modeled using the 

Threshold GARCH model with the skewed Student’s t and 

Johnson SU distributions. The modeling results for these 

three variables are reported in Tables (7) through (9) and 

depicted in Figures (7) through (9). 

It should be noted that 20% of the full sample, equal to 

504 observations, was treated as out-of-sample (test set), and 

forecasts were generated using a rolling window. VaR is 

computed from the volatility forecasts of the Oil variable. 

The volatility forecasts of GSPC and DJI are also used as 

inputs to the machine learning model for forecasting oil 

volatility and, consequently, computing VaR. In other 

words, this study computes oil volatility in two ways. In the 

first approach, volatility is modeled using a univariate 

GARCH specification only; in the second approach, 

volatility is modeled using additional variables. Under both 

approaches, VaR is computed and then backtested and 

compared. 

Table 7 

Estimation Results of the Threshold Heteroskedasticity GARCH Model with a Skewed Student’s t Distribution for Oil 

Parameters Estimated Coefficient Standard Error t-Statistic p-Value 

mu -0.0002 0.00036 -0.56 0.00 

omega 0.00057 0.00013 4.21 0.00 

alpha1 0.10225 0.01353 7.56 0.00 

beta1 0.90113 0.0129 69.85 0.00 

eta11 0.51472 0.09946 5.18 0.00 

skew 0.84792 0.0261 32.49 0.00 

shape 6.305 0.85432 7.38 0.00 
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Table 8 

Estimation Results of the Threshold Heteroskedasticity GARCH Model with a Johnson SU Distribution for GSPC 

Parameters Estimated Coefficient Standard Error t-Statistic p-Value 

mu 0.00017 0.00014 1.21 0.23 

omega 0.00042 0.00006 6.68 0.00 

alpha1 0.14482 0.01762 8.22 0.00 

beta1 0.84893 0.01653 51.37 0.00 

eta11 0.93112 0.10482 8.88 0.00 

skew -0.82507 0.1706 -4.84 0.00 

shape 2.00011 0.17401 11.49 0.00 

Table 9 

Estimation Results of the Threshold Heteroskedasticity GARCH Model with a Johnson SU Distribution for DJI 

Parameters Estimated Coefficient Standard Error t-Statistic p-Value 

mu 0.00025 0.00014 1.75 0.08 

omega 0.00037 0.00006 6.15 0.00 

alpha1 0.14295 0.01851 7.72 0.00 

beta1 0.85261 0.01707 49.95 0.00 

eta11 0.79651 0.10419 7.64 0.00 

skew -0.52982 0.1149 -4.61 0.00 

shape 1.83309 0.14618 12.54 0.00 

 

Given that the p-values for alpha1 and beta1 are less than 

0.05 in all three tables, the parameters capturing 

heteroskedasticity effects are statistically significant for all three 

variables. Moreover, in all three tables the asymmetry 

(threshold) parameter is estimated to be positive and its p-value 

is also less than 0.05; thus, negative shocks have a significantly 

larger effect than positive shocks for all three variables. This 

indicates that in these three markets, investors react more 

strongly to negative news.  

Figure 7 

Distribution plots of residuals from the threshold conditional heteroskedasticity model for Oil 
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Figure 8 

Distribution plots of residuals from the threshold conditional heteroskedasticity model for GSPC 

  

 

Figure 9 

Distribution plots of residuals from the threshold conditional heteroskedasticity model for DJI 

  
 

 

Looking at the estimated skewness coefficient (skew), the 

estimated skewness for Oil is positive and statistically 

significant (p < 0.05), implying a heavier right tail and a 

greater likelihood of positive returns. For GSPC and DJI, the 

situation is entirely different: the estimated skewness is 

negative and significant, indicating a heavier left tail relative 
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to the right tail and, in other words, a higher likelihood of 

negative returns. The (shape) parameter pertains to the form 

and kurtosis (tail thickness) of the distribution; values 

greater than one that are statistically significant indicate the 

intensity of tail events. The significance of this parameter 

implicitly suggests that rare events in the market are quite 

plausible. Comparing the shape parameters across the three 

tables shows that the intensity of rare events and the impact 

of their shocks is greater in the oil market than in GSPC and 

DJI. 

To examine the independent effect of each variable on oil 

volatility, a multiple linear regression model was used. The 

results are presented in Table (10). 

Table 10 

Results of the Linear Regression Model for Testing the Significance of Independent Variables on Oil Volatility 

Parameters Estimated Coefficient Standard Error t-statistic p-value 

(Intercept) 0.01352 0.000646 20.93 0.00 

GSPC Volatility 0.588344 0.16119 3.65 0.00 

DJI Volatility 0.217305 0.152929 1.42 0.16 

DGS10 -0.00193 0.001102 -1.75 0.08 

ICSA 0.078681 0.002781 28.30 0.00 

VIX 0.009124 0.004281 2.13 0.03 

Adjusted coefficient of determination (R-squared): 0.5727; Durbin–Watson statistic: 0.14327 

 

Before interpreting the regression results, the quality of 

the model must be evaluated. Considering the adjusted 

coefficient of determination (R-squared) of approximately 

0.57, the fitted linear model can be regarded as moderately 

adequate; in other words, about 57% of the variation in the 

dependent variable is explained by the explanatory variables. 

Another point of concern is the Durbin–Watson statistic, 

which was approximately 0.14, reinforcing the spurious 

regression hypothesis proposed by Granger and Newbold 

(1974). Granger and Newbold argued that in spurious 

regressions, we often observe high R-squared values and 

autocorrelated residuals, indicated by low Durbin–Watson 

values. Based on this, Granger and Newbold suggest that 

when R-squared > Durbin–Watson, the functional form of 

the regression should be estimated using first-order 

differencing. 

Examining the statistical distribution of residuals (Figure 

10) clearly rejects the normality assumption. 

Figure 10 

Q–Q Norm Plot of Regression Model Residuals 

 

The Q–Q norm plot compares the quantiles of residuals 

with the quantiles of a normal distribution. If the points align 

along a straight line, it indicates normality; however, as 

shown in the figure above, the normality assumption is 

visually rejected. Therefore, given the model adequacy 

evaluation results, the significance of the estimated 

coefficients cannot be fully trusted. 
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Nevertheless, the results suggest that GSPC volatility, 

changes in unemployment claims (ICSA), and the VIX index 

have a positive and significant effect on oil market volatility. 

The rationale for the significance of these variables is as 

follows: 

 GSPC Volatility reflects financial market 

expectations, economic conditions, and the level of 

activity of industrial and energy-related companies, 

which can directly affect oil demand and price 

volatility. 

 ICSA (Initial Unemployment Claims) increases 

may signal declining economic activity and thus 

decreasing energy (oil) demand. However, its effect 

may be delayed and indirect because 

unemployment changes typically show lagged 

impacts. 

 VIX represents market expectations of future 

GSPC volatility over the next 30 days. It is 

calculated from option prices on the GSPC and is 

recognized as a measure of risk and uncertainty in 

financial markets. A rising VIX indicates that 

investors feel more uncertainty and risk, leading 

them to shift toward safe-haven assets such as 

bonds or risk-free instruments. This capital flight 

from risky markets (such as oil) reduces liquidity 

and increases volatility in the oil market. 

Conversely, when VIX is low, investors feel more 

secure, markets become more stable, and oil prices 

usually exhibit less volatility and greater stability 

because liquidity remains and speculative 

behaviors decline. A low VIX also indicates stable 

economic growth, supporting steady oil demand 

and reduced price volatility. 

In summary, the linear regression model provides insights 

into possible linear relationships between independent 

variables and oil volatility. However, given the rejection of 

model adequacy assumptions, its results cannot be fully 

relied upon. Therefore, in this study, machine learning 

models—more robust to such assumptions—are employed 

for volatility modeling. Table (11) summarizes the strengths 

and weaknesses of classical linear regression compared with 

machine learning models. 

Table 11 

Comparison of Advantages and Disadvantages of Linear Regression and Machine Learning Models 

Model Advantages Disadvantages Suitable When 

Linear 
Regression 

Simple, interpretable Requires key assumptions (e.g., normality of 
errors, data independence) 

When linear relationships between 
variables exist 

Machine 
Learning 

Flexible, nonlinear modeling, robust to noise, 
capable of learning complex patterns 

Computationally intensive, difficult model 
interpretation (“black box”) 

When dealing with complex data 
and nonlinear patterns 

 

As shown in Table (11), machine learning models do not 

require fundamental assumptions such as normal residual 

distribution or serial independence of errors and can also 

uncover nonlinear relationships between variables. 

However, their interpretation is highly complex and 

challenging due to their “black box” nature. Therefore, in the 

following section, oil volatility modeling is carried out using 

one of the well-known machine learning models. 

In this section, after preparing the data, four common 

machine learning models were trained. As previously 

mentioned, 80% of observations were used as the training 

dataset and 20% as the test dataset. Table (12) presents the 

prediction accuracy of these four models based on the widely 

used loss functions: Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE), defined as follows: 

MAE = (1/N) ∑ |y_i − ŷ_i| 

RMSE = √(1/N ∑ (y_i − ŷ_i)²) 

The MAE metric indicates the average magnitude of 

errors, while RMSE reflects the dispersion of prediction 

errors around zero. Thus, lower values of both metrics 

indicate higher prediction accuracy. Typically, MAE is 

smaller than RMSE. 

Table 12 

Prediction Accuracy Comparison of Machine Learning Models for Oil Volatility 

Model Training RMSE Training MAE Test RMSE Test MAE 

Support Vector Regression (SVR) 0.006037 0.00349 0.00909 0.007341 

Random Forest 0.002068 0.001381 0.006188 0.005011 

Decision Tree 0.007355 0.005629 0.007638 0.006115 

Artificial Neural Network (ANN) 0.00454 0.003604 0.009671 0.007382 

https://journals.kmanpub.com/index.php/jppr/index


 Majdi et al.                                                                                                       Journal of Resource Management and Decision Engineering 5:1 (2026) 1-18 

 

 14 

As previously noted, MAE shows the average size of 

prediction errors (both positive and negative). Based on the 

obtained results, the oil market volatility predictions from 

the Random Forest model exhibit the lowest average 

prediction error compared to the other models. Furthermore, 

the RMSE value for Random Forest shows that the 

dispersion of its prediction errors is also lower than the other 

models, indicating greater stability. Therefore, the Random 

Forest model was selected to estimate the conditional 

standard deviation for computing Value at Risk (VaR). 

After obtaining the conditional standard deviation 

estimates for the test dataset through the Random Forest 

model predictions, the Value at Risk (VaR) was calculated 

using the following formula: 

VaR_t = σ_t * q_α 

In this formula, VaR_t represents the Value at Risk at 

time t. The term σ_t denotes the conditional standard 

deviation obtained from the machine learning model, and 

q_α is the quantile of the appropriate statistical distribution. 

Based on the findings of the previous sections, the skewed 

Student’s t distribution was selected as the appropriate 

distribution for oil price returns. 

To better evaluate the VaR results, VaR was also 

computed using the heteroskedasticity model for 

comparison with the proposed model of this research. 

Accordingly, Figures (11) and (12) show the estimated VaR 

from the proposed model and the GARCH model, 

respectively, alongside the oil price returns. Table (13) 

reports the backtesting results to assess the overall adequacy 

of the VaR estimates for both methods. 

Considering the obtained p-values greater than 0.05, the 

null hypothesis of accuracy adequacy for the estimated VaR 

values is confirmed at the 95% confidence level; thus, the 

results are reliable. Moreover, according to the Lopez 

statistic, the VaR estimates from the proposed model 

outperform the GARCH-based results. 

Table 13 

Backtesting Results of Estimated Value at Risk for Two Methods 

Methods Test Statistic p-value Lopez Statistic 

Proposed Model of This Research Unconditional Coverage (Kupiec) 1.585372 0.21 4080.745 

 Conditional Coverage (Christoffersen) 1.814173 0.40  

Parametric Method Based on Heteroskedasticity Unconditional Coverage (Kupiec) 0.001715 0.97 4033.800 

 Conditional Coverage (Christoffersen) 0.117722 0.94  

Figure 11 

VaR estimated by the proposed model at the 5% level 
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Figure 12 

VaR estimated by the threshold heteroskedasticity model at the 5% level 

 

 

4. Discussion and Conclusion 

The present study aimed to improve the accuracy of oil 

market risk prediction by integrating machine learning-

based volatility modeling with robust distributional 

assumptions. The results indicated that the Random Forest 

model significantly outperformed traditional 

heteroskedasticity frameworks such as GARCH and 

TGARCH in forecasting oil price volatility and, 

consequently, in computing Value at Risk (VaR). The 

superiority of Random Forest was evidenced by lower Root 

Mean Square Error (RMSE) and Mean Absolute Error 

(MAE) values, both in the training and testing sets. This 

finding confirms that nonparametric ensemble approaches 

are highly effective when the underlying data are nonlinear, 

nonstationary, and influenced by multiple interacting risk 

drivers (An et al., 2019; Dimitriadou et al., 2018). 

The enhanced predictive power of the Random Forest 

model can be attributed to its ability to capture complex, 

nonlinear interactions between macroeconomic indicators 

and oil price returns. Traditional GARCH-type models 

assume a single conditional variance process and require 

strong parametric distributional assumptions (Alles, 1995; 

Silvapulle & Moosa, 1999). However, oil market returns are 

known to exhibit heavy tails, volatility clustering, and 

asymmetric responses to shocks (Li et al., 2022; Qian et al., 

2022). By comparison, Random Forest avoids the 

constraints of predefined functional forms and uses recursive 

partitioning to approximate nonlinear and high-order effects 

(Aung et al., 2020; Kaznacheev et al., 2016). This 

adaptability makes it particularly suitable in the presence of 

abrupt structural breaks and exogenous shocks, such as 

geopolitical disruptions (Jahanshahi et al., 2022; Su et al., 

2021). 

One key insight from the analysis was the asymmetric 

effect of positive and negative shocks on oil volatility. 

TGARCH modeling confirmed that negative shocks exert a 

stronger influence on conditional variance than positive 

shocks, aligning with the “leverage effect” widely 

documented in financial and commodity markets (Mehrara 

& Hamldar, 2014; Wong et al., 2025). This asymmetry is 

consistent with investor behavior theories suggesting 

heightened sensitivity to adverse news, leading to abrupt 

price declines and liquidity contractions (Mitra & Ji, 2010; 

Weirich, 2020). The decision to model returns using skewed 

Student’s t and Johnson SU distributions further addressed 

this characteristic by accommodating fat tails and skewness 

in the data (Li et al., 2022; Rachev et al., 2011). Prior 

research has highlighted that using Gaussian assumptions 

underestimates extreme downside risk, producing unreliable 

VaR estimates (Wang et al., 2020; Zhao et al., 2019). 

Another major contribution of this study is the integration 

of macroeconomic and financial indicators, including the 

S&P 500 (GSPC), Dow Jones Industrial Average (DJI), VIX 

volatility index, unemployment claims (ICSA), and U.S. 

Treasury yields (DGS10), into the predictive framework. 

The regression analysis suggested that volatility in GSPC 

and the level of VIX significantly contribute to oil price risk, 

while interest rate changes had weaker and statistically 

insignificant effects. This supports findings by (Tatiparti et 

al., 2023) and (Alshabandar et al., 2023) showing that global 

equity market sentiment and systemic fear indicators can 

transmit risk into the oil market. The predictive strength of 
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VIX in particular confirms its value as a forward-looking 

measure of market anxiety and tail risk (Guan et al., 2021; 

Zhao et al., 2024). 

Interestingly, the unemployment claims (ICSA) variable 

showed a significant relationship with oil volatility, but the 

effect was indirect and lagged. This is consistent with 

(Jumbe, 2022) and (Mohamed & Messaadia, 2023), who 

observed that labor market shocks influence energy demand 

expectations with some delay. During economic slowdowns, 

investors anticipate reduced industrial activity and energy 

consumption, increasing uncertainty and speculative 

positioning in oil derivatives (Akash et al., 2024; Tatiparti et 

al., 2023). However, the relatively weak role of interest rates 

(DGS10) diverges from some earlier studies (Ghaffari, 2013; 

Kungwani, 2014), suggesting that in the current oil market, 

other macro-financial channels dominate risk transmission 

compared to conventional monetary policy indicators. 

Backtesting results further validated the proposed 

model’s VaR estimates. The unconditional and conditional 

coverage tests (Kupiec and Christoffersen) confirmed that 

the Random Forest-based VaR predictions were statistically 

adequate at the 95% confidence level. Additionally, the 

Lopez loss function indicated that the proposed model 

outperformed TGARCH-based VaR in terms of predictive 

accuracy. This finding strengthens the argument made by 

(Dimitriadou et al., 2018) and (Nwulu, 2017) that machine 

learning-driven risk frameworks can surpass parametric 

volatility models in both tail sensitivity and robustness under 

nonstationary conditions. 

The observed performance advantage also aligns with 

advances in hybrid modeling that combine AI flexibility 

with econometric structure (Amin-Naseri & Gharacheh, 

2007; Fallah et al., 2024). While this study primarily used 

Random Forest, the integration of macroeconomic 

predictors and flexible distributions creates a semi-hybrid 

approach, preserving interpretability in risk attribution while 

benefiting from machine learning’s nonlinear adaptability. 

Similar approaches have been successful in other energy 

markets (Gładysz & Kuchta, 2022; Kaznacheev et al., 2016). 

Furthermore, this research highlights the practical 

significance of adapting risk models to extreme market 

conditions caused by geopolitical events. The recent Russia–

Ukraine conflict has intensified supply-side shocks and price 

uncertainty (Jahanshahi et al., 2022; Su et al., 2021). By 

incorporating risk measures sensitive to such exogenous 

events, including VIX and market-wide volatility indicators, 

the proposed model remains resilient when traditional 

models struggle (Guo et al., 2022; Qian et al., 2022). These 

results suggest that AI-driven frameworks could become 

indispensable for managing commodity risk in highly 

uncertain and politically sensitive global markets. 

Additionally, the focus on sustainable and forward-

looking risk management contributes to bridging the gap 

between prediction and managerial action. As the global 

energy transition introduces new uncertainties—such as 

renewable energy adoption and green investment 

volatility—the ability to adapt oil risk models to dynamic 

macro-financial and geopolitical factors becomes essential 

(Sugianto et al., 2024; Zhao et al., 2024). This approach 

provides decision-makers with an advanced tool for 

proactive risk mitigation, hedging strategy design, and 

capital allocation (Gładysz & Kuchta, 2022; Tatiparti et al., 

2023). 

Finally, this study reaffirms that risk in the oil market is 

multidimensional and cannot be fully captured by single-

factor volatility models (Alles, 1995; Weirich, 2020). A 

robust framework must consider tail events, asymmetries, 

systemic linkages, and adaptive learning mechanisms to 

remain relevant in fast-changing markets. The integration of 

machine learning with heteroskedastic volatility modeling 

represents a meaningful step toward building such resilient 

frameworks (An et al., 2019; Dimitriadou et al., 2018). 

Despite its contributions, this study is subject to several 

limitations. First, although Random Forest significantly 

improved predictive accuracy, the model’s “black-box” 

nature limits interpretability. While variable importance 

measures were used, they cannot fully explain the dynamic 

interactions between risk drivers and oil volatility. Second, 

the dataset was primarily built from macroeconomic and 

financial indicators available at a daily frequency; 

incorporating higher-frequency data, such as intraday 

trading activity or real-time news sentiment, might further 

enhance responsiveness but was beyond the scope of this 

research. Third, the study focused on U.S.-centric financial 

indicators such as GSPC, DJI, and VIX. While these markets 

strongly influence global oil prices, the model might not 

fully capture region-specific risk factors relevant to other 

major oil-consuming or producing economies. Finally, 

although skewed Student’s t and Johnson SU distributions 

improved VaR accuracy, tail risk under extreme black-swan 

events might still be underestimated due to limited historical 

samples of such rare crises. 

Future studies should consider extending this framework 

by incorporating alternative machine learning algorithms, 

such as gradient boosting machines or deep learning 

architectures, to compare predictive stability and 
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interpretability. Hybrid models that integrate explainable AI 

techniques could bridge the gap between predictive power 

and managerial transparency. Another promising direction is 

the integration of text-based features, such as global news 

sentiment, social media analytics, and policy 

announcements, which have proven effective in forecasting 

commodity market movements. Future research could also 

explore cross-market spillover effects by including variables 

from foreign exchange, bond, and renewable energy 

markets, providing a more global and interconnected view 

of oil risk. Additionally, applying the proposed approach to 

multi-step forecasting horizons and stress testing under 

scenario analysis could help decision-makers prepare for 

both routine volatility and systemic disruptions. 

Practitioners can benefit from adopting AI-driven risk 

prediction models to complement and, in some cases, replace 

traditional volatility estimators when managing oil market 

exposure. Risk managers should integrate diverse 

macroeconomic and geopolitical indicators into their 

predictive systems to build resilience against sudden shocks. 

At the same time, developing clear communication strategies 

around model outputs is essential to ensure that decision-

makers can act effectively on AI-generated risk signals. 

Finally, organizations involved in energy trading and policy 

planning should consider embedding such advanced 

forecasting models into their risk governance frameworks to 

strengthen hedging strategies, capital allocation, and market 

stability. 
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