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The rapid growth of technology and the emergence of new production processes, 

along with the substitution of synthetic materials and chemical compounds, have 

resulted in an increased volume of industrial waste and, in some cases, the 

generation of hazardous waste. Improper handling, transportation, and disposal of 

this waste, part of which contains dangerous substances, pose serious challenges to 

human health and the environment. Under such circumstances, establishing an 

efficient reverse logistics network emerges as an inevitable necessity. With 

growing social concerns about environmental issues, reverse logistics has become 

increasingly integrated with waste management, and the management of industrial 

waste is now considered a core pillar of reverse supply chain management. This 

study, employing the grounded theory method based on the Strauss and Corbin 

(1998) model and using the insights of 17 academic and industrial experts in the 

national gas refining sector, proposes a comprehensive model for the reverse supply 

chain of waste in this industry. The analysis of data obtained from semi-structured 

interviews led to the identification of 25 core concepts categorized into six main 

themes. The application of Interpretive Structural Modeling (ISM) revealed 

hierarchical and causal relationships among these factors, indicating that 

regulations and policies, infrastructure, and organizational culture act as 

fundamental and driving forces with the greatest impact on the success of the 

system. This paradigmatic model can serve as a roadmap for managers in the gas 

refining industry to design and implement an effective and sustainable reverse 

logistics system. 
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grounded theory, interpretive structural modeling (ISM) 
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1. Introduction 

he rapid industrial expansion and technological 

progress of the past decades have accelerated the 

complexity of global supply chains, while simultaneously 

intensifying environmental and sustainability concerns. 

Among these, the accumulation of industrial waste and the 

increasing societal and regulatory pressure for sustainable 

production and consumption patterns have pushed 

organizations to rethink how they design, operate, and 

monitor supply networks. Reverse logistics, once perceived 

primarily as a cost recovery mechanism, has emerged as a 

strategic, sustainability-driven function essential for waste 

minimization, resource recovery, and competitive 

differentiation (Guarnieri et al., 2020; Meilenda & Syarif, 

2024). In particular, integrating reverse flows into traditional 

supply chains—known as closed-loop supply chain 

management—has become a key response to regulatory 

mandates, environmental challenges, and the circular 

economy agenda (Khosravi et al., 2019; Neha et al., 2023). 

Reverse logistics encompasses the systematic process of 

moving products or by-products from the point of 

consumption back to the origin or designated facilities for 

proper reuse, recycling, remanufacturing, or disposal 

(Guarnieri et al., 2020). Its scope extends beyond simple 

product returns, encompassing the recovery of valuable 

materials, the safe handling of hazardous substances, and the 

mitigation of environmental impacts from industrial 

production (Yu et al., 2020a). Industrial sectors such as 

automotive, petrochemical, and electronics generate vast 

quantities of complex waste streams that require 

sophisticated, technology-driven reverse logistics networks 

(Aghaeipour & Pirdasht, 2022; Gharaakhani, 2022). In the 

automotive sector, for example, challenges include the safe 

treatment of end-of-life vehicles and the recovery of high-

value components under sustainability criteria (Aghaeipour 

& Pirdasht, 2022; Islampanah et al., 2023). Similarly, in oil 

and gas supply chains, particularly in regions like 

Gachsaran, barriers such as infrastructure gaps, fragmented 

oversight, and uncertain regulatory compliance impede 

reverse logistics adoption (Ghazifard & Rasouli, 2021; Qazi 

Far & Rasouli, 2021). 

Industrial waste in large energy complexes, including gas 

refineries, poses unique challenges due to hazardous by-

products, stringent environmental regulations, and 

operational complexity. Proper handling and valorization of 

such waste can create new economic and environmental 

value streams but require systemic redesign and advanced 

planning (Taheri et al., 2022). As environmental concerns 

intensify globally, industries face increasing expectations to 

adopt circular economy principles and to integrate reverse 

flows across their networks, ensuring both compliance and 

competitiveness (Meilenda & Syarif, 2024; Mugoni et al., 

2023). 

Sustainability has moved beyond corporate social 

responsibility to become a strategic imperative influencing 

supply chain design (Mugoni et al., 2023; Singh et al., 2025). 

Reverse logistics networks directly contribute to multiple 

sustainability pillars: environmental preservation by 

reducing landfill waste and pollution, economic resilience 

through cost recovery and secondary markets, and social 

value creation by addressing public health and community 

expectations (Guarnieri et al., 2020; Yu et al., 2020b). 

Empirical studies show that adopting eco-design and 

sustainable technology enhances reverse logistics efficiency 

and resilience under demand uncertainty (Hsin et al., 2023; 

Neha et al., 2023). Moreover, integrating digital intelligence 

and artificial intelligence (AI) tools can significantly 

optimize waste monitoring, routing, and resource allocation 

(Mohghar et al., 2024), reducing system uncertainty and 

improving cost-effectiveness. 

The regulatory environment is another critical driver. 

Comprehensive, enforceable environmental regulations and 

extended producer responsibility (EPR) schemes push 

industries to reclaim and responsibly process waste 

(Guarnieri et al., 2020; Kouchaki Tajani et al., 2022). In the 

Iranian context, gaps in environmental governance and 

fragmented enforcement have often slowed the 

institutionalization of reverse logistics (Vaez & Shahbazi 

Chagani, 2022). However, studies reveal a growing 

alignment between policy and operational needs, with new 

frameworks encouraging systemic reverse logistics 

deployment in energy and manufacturing (Ghazifard & 

Rasouli, 2021; Tavakoli et al., 2023). Policies that 

incentivize investment in infrastructure, combined with 

strict compliance monitoring, can reduce uncertainty and 

foster sustainable industrial waste networks (Alimi et al., 

2022). 

Despite the strategic benefits, implementing reverse 

logistics remains challenging, particularly in emerging 

economies where infrastructural, cultural, and managerial 

barriers persist (Gharaakhani, 2022; Vaez & Shahbazi 

Chagani, 2022). Insufficient investment in physical 

infrastructure such as specialized collection centers and 

recycling facilities limits system scalability (Islampanah et 

al., 2023; Taheri et al., 2022). Managerial barriers—such as 

T 

https://journals.kmanpub.com/index.php/jppr/index


 Ramezani et al.                                                                                                   Journal of Resource Management and Decision Engineering 3:1 (2024) 58-71 

 

 60 

limited top management commitment and inadequate 

employee training—further weaken execution (Alimi et al., 

2022; Kouchaki Tajani et al., 2022). Cultural resistance to 

sustainability and risk-averse organizational structures also 

impede innovation in reverse supply networks (Khosravi et 

al., 2019; Miraghaei, 2020). 

Moreover, the technological dimension plays a pivotal 

role. Digitalization and Industry 4.0 technologies enable 

smart tracking of waste streams, predictive analytics, and 

automation, but require upfront investment and 

organizational readiness (Mohghar et al., 2024; Mugoni et 

al., 2023). Advanced decision-support systems and 

metaheuristic optimization models have been proposed to 

address network complexity under uncertainty (Aghaeipour 

& Pirdasht, 2022; Meilenda & Syarif, 2024). These models 

help organizations determine optimal facility locations, 

design resilient networks, and minimize environmental 

impacts while maintaining cost efficiency (Neha et al., 2023; 

Yu et al., 2020a). 

In recent years, multi-method approaches have been 

emphasized for modeling reverse logistics under 

sustainability constraints. Grounded theory has been used to 

conceptualize complex socio-technical factors shaping 

waste management systems (Jafari et al., 2020; Miraghaei, 

2020). Additionally, Interpretive Structural Modeling (ISM) 

combined with MICMAC analysis has proven effective in 

structuring causal and hierarchical relationships among 

barriers and enablers (Gharaakhani, 2022; Vaez & Shahbazi 

Chagani, 2022). However, many prior studies focus on 

sector-specific or partial frameworks without fully 

integrating institutional, technological, managerial, and 

environmental dimensions into a cohesive model (Alimi et 

al., 2022; Islampanah et al., 2023). 

The energy sector, particularly gas refining, remains 

underexplored despite its strategic environmental 

significance and waste complexity (Taheri et al., 2022). 

While research has addressed end-of-life vehicle recovery 

(Aghaeipour & Pirdasht, 2022), packaging waste (Guarnieri 

et al., 2020), and e-waste in electronics (Singh et al., 2025), 

comprehensive frameworks tailored for hazardous industrial 

waste in refineries are limited. Studies call for context-

specific models that consider regulatory dynamics, 

infrastructure gaps, cultural change, managerial 

empowerment, and technological enablers (Islampanah et 

al., 2023; Khosravi et al., 2019; Mohghar et al., 2024). 

Evidence consistently shows that reverse logistics 

implementation is not merely a technical challenge but an 

organizational transformation requiring strong governance 

and leadership (Alimi et al., 2022; Lal bar & Hassani, 2022). 

Managerial capability, political and institutional alignment, 

and knowledge management dynamics shape the 

adaptability and sustainability of supply chains (Alimi et al., 

2022; Lal bar & Hassani, 2022). Effective knowledge 

sharing improves coordination across the reverse chain, 

mitigates uncertainty, and supports resilience in volatile 

markets (Alimi et al., 2022). Furthermore, top management 

support and strategic planning enable integration of reverse 

logistics with core business strategies, shifting it from a cost-

driven to a value-generating function (Mohghar et al., 2024; 

Vaez & Shahbazi Chagani, 2022). 

Organizational culture is equally critical. Cultures 

fostering environmental responsibility and innovation 

accelerate adoption of sustainable practices (Khosravi et al., 

2019; Miraghaei, 2020). Conversely, rigid, compliance-only 

mindsets hinder adaptation and fail to harness reverse 

logistics as a competitive advantage. Structural agility—

through decentralized decision-making and flexible process 

design—can bridge the gap between regulatory compliance 

and strategic opportunity (Kouchaki Tajani et al., 2022; 

Mugoni et al., 2023). 

Advanced modeling and optimization techniques 

continue to reshape reverse supply chain design. 

Metaheuristic algorithms allow solving high-dimensional, 

multi-criteria problems typical of industrial waste flows 

(Aghaeipour & Pirdasht, 2022; Neha et al., 2023). Intelligent 

networks leveraging vehicle-to-vehicle communication and 

real-time data analytics improve cost-efficiency and 

environmental outcomes (Hsin et al., 2023; Islampanah et 

al., 2023). System dynamics approaches clarify knowledge 

behavior and feedback loops influencing sustainable 

transport and logistics (Alimi et al., 2022). Combining these 

with qualitative tools such as ISM can produce 

comprehensive, actionable frameworks for decision-makers. 

In light of these developments, designing a context-aware 

reverse logistics supply chain model for industrial waste in 

the gas refining sector is both timely and necessary. Prior 

studies provide valuable methodological tools but often lack 

holistic integration of multi-level factors—from regulatory 

and infrastructural enablers to cultural and technological 

readiness. There is a need to synthesize grounded qualitative 

insights from industry experts with rigorous structural 

modeling to identify causal pathways and strategic leverage 

points (Gharaakhani, 2022; Mohghar et al., 2024; Vaez & 

Shahbazi Chagani, 2022). This integration can overcome the 

fragmentation seen in prior research and deliver practical 

guidance for policymakers and managers striving for 
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sustainability and competitiveness (Meilenda & Syarif, 

2024; Mugoni et al., 2023; Singh et al., 2025). 

This study addresses that gap by employing a mixed 

qualitative–quantitative approach. It first applies grounded 

theory to capture deep contextual knowledge about barriers, 

drivers, and strategic actions from industry and academic 

experts.  

2. Methods and Materials 

This study aimed to design and present a reverse logistics 

supply chain model for industrial waste in the national gas 

refining industry by employing a mixed-method approach 

conducted in two qualitative and quantitative phases. In 

terms of purpose, the present research is fundamental, and 

from a methodological perspective, it is exploratory, using a 

qualitative approach that integrates grounded theory and 

Interpretive Structural Modeling (ISM). The statistical 

population consisted of academic experts and industrial 

managers active in the field of reverse logistics and waste 

management in the gas refining industry, selected 

purposefully through the snowball sampling technique. 

In the first phase, which applied grounded theory, 

interviews were conducted with 17 experts, including 

university faculty members and senior managers in the gas 

refining industry. Semi-structured interviews were carried 

out and continued until theoretical saturation was reached, 

which occurred after the eleventh interview but was 

extended to 17 interviews to enhance validity. In the second 

phase, which used the ISM method, 10 experts with 

sufficient experience and expertise in reverse logistics and 

supply chain management participated. Data in this phase 

were collected through a structured questionnaire. Data 

analysis in the qualitative phase was performed through 

open, axial, and selective coding, leading to the extraction of 

25 final factors grouped into six core categories. In the 

quantitative phase, ISM was applied to determine the 

hierarchical structure and causal relationships among the 

factors and to design the final model. 

Multiple strategies were used to ensure validity. In the 

qualitative phase, member checking was applied, whereby 

participants reviewed and confirmed the interviews and 

extracted codes. Additionally, the involvement of academic 

and industrial experts and the combined use of grounded 

theory and ISM enhanced construct validity. In the 

quantitative phase, the expert panel approved the research 

instrument (ISM questionnaire) in terms of content validity. 

Reliability was ensured by calculating inter-coder 

agreement through the involvement of two independent 

researchers during the coding process, achieving an 

acceptable agreement level (above 80%). Internal 

consistency was further strengthened by rechecking the 

codes at different time intervals and by providing a detailed 

description of the research process to enable replication. To 

enhance the trustworthiness of the ISM phase, inconsistency 

rates in pairwise comparisons were calculated, and values 

below 0.1 were considered acceptable thresholds. Iterative 

reviews by experts were performed throughout the ISM 

analysis stages, and the final hierarchical structure was 

validated and approved by all experts. 

Table 1 

Qualitative Coding Reliability Results (Inter-Coder Agreement) 

Coding Stage Number of Codes Agreed Codes Agreement (%) Notes 

Open Coding 87 75 86.2% Minor discrepancies in 12 codes 

Axial Coding 45 40 88.9% Differences in 5 codes 

Selective Coding 25 23 92.0% Differences in 2 codes 

Total 157 138 87.9% Overall average 

Table 2 

ISM Method Reliability – Inconsistency Rate 

Expert Group Number of Comparisons Inconsistent Comparisons Inconsistency Rate Status 

Academic Experts (5) 150 12 0.08 Acceptable 

Industrial Managers (5) 150 14 0.093 Acceptable 

Total 300 26 0.087 Acceptable 
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3. Findings and Results 

For data analysis, the Strauss and Corbin approach was 

used. The researcher applied constant comparative analysis, 

listening to and transcribing interviews verbatim, keeping 

field notes, conceptualizing processes, and gradually 

shaping theoretical insights. Each interview was coded and 

analyzed before conducting the next one. The coding process 

included three stages: open coding, axial coding, and 

selective coding. 

Open coding is an analytical process through which 

concepts are identified, and their properties and dimensions 

are discovered in the data. At this stage, each interview was 

listened to and read several times, key sentences were 

extracted, and text-based codes derived from the 

participants’ statements or the researcher’s interpretations 

from field notes were recorded. 

Axial coding involves connecting concepts to form 

categories. It is called axial because the process revolves 

around a central category. At this stage, the grounded 

theorist selects a key concept identified during open coding, 

places it within the phenomenon under study, and links other 

concepts to it. 

Selective coding is the process of integrating and refining 

categories to build theory. Here, the grounded theorist 

develops a core theoretical framework connecting the 

categories identified during axial coding. After each 

interview was transcribed, the text was entered into 

qualitative data analysis software for open coding, followed 

by subsequent interviews. All conversations were recorded 

and later transcribed verbatim. Data were analyzed by 

reading the texts and extracting both explicit and latent codes 

from the content. Following Strauss and Corbin’s systematic 

approach, causal conditions affecting core categories, the 

influence of these categories on strategies, intervening and 

contextual conditions affecting strategies, and ultimately the 

outcomes and consequences of strategies were identified. 

The next step, axial coding, involved relating categories 

to subcategories, as coding revolved around a central 

category, linking categories by their properties and 

dimensions. Constant comparison of codes was necessary; 

each category was compared to others to ensure clear 

differentiation. The process then focused on the causal 

conditions leading to the main phenomenon, the context in 

which the phenomenon occurred, and the strategies applied 

to manage it, culminating in selective coding and identifying 

the core variable. 

Causal Conditions 

These refer to events or factors that lead to the emergence 

or development of a phenomenon. According to the analysis, 

the categories of standardization, scheduling, organizational 

survival, feedback and learning, and regulations and policies 

were identified as the causal conditions of the research. 

Core Categories 

A core category is one that can integrate other categories 

and appears frequently across the data. The analysis revealed 

that waste management, specialized human resources, 

technology, and communications were selected as the core 

categories. 

Intervening/Facilitating Conditions 

These are general contextual factors influencing the 

strategies. In this research, training of employees and 

managers, infrastructure, top management support, internal 

and external environmental conditions, and supervisory 

bodies were identified as intervening or facilitating 

conditions. 

Contextual Conditions 

This refers to specific circumstances at a particular time 

and place that shape the environment in which the 

phenomenon occurs. Based on the analysis, organizational 

culture, organizational structure, and planning were 

identified as contextual conditions. 

Strategies 

Strategies are actions or interactions resulting from the 

core phenomenon. In this study, process management and 

digitalization, flexibility, and alignment and coherence were 

categorized as key strategies. 

Results and Consequences 

Consequences represent the outcomes resulting from 

implementing the identified strategies. According to the 

analysis, the consequences were grouped into five main 

categories: cost management, community satisfaction, 

reduction of environmental pollution, reduction of raw 

material consumption, and risk management. 
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Table 3 

Interviewee Information 

ID Interview Group Academic/Professional Background 

P1 Industry Expert Technology Management 

P2 Industry Expert Industrial Management 

P3 Industry Expert Industrial Management 

P4 Industry Expert Systems Management 

P5 Industry Expert Industrial Engineering 

P6 Industry Expert Industrial Engineering 

P7 Industry Expert Industrial Engineering 

P8 Industry Expert Industrial Management 

P9 Industry Expert Industrial Management 

P10 Industry Expert Industrial Engineering 

P11 Industry Expert Industrial Engineering 

P12 Industry Expert Industrial Management 

P13 Industry Expert Industrial Engineering 

P14 Academic Expert Industrial Management 

P15 Academic Expert Industrial Engineering 

P16 Academic Expert Industrial Engineering 

P17 Academic Expert Production Management 

 

A detailed list of the components and variables related to 

the main categories, along with experts’ opinions on each 

component, is presented in the subsequent table. 

Table 4 

List of Research Components 

Main Categories Component Experts’ Opinions by Identifier 

Causal Conditions Standardization p1, p3, p6, p9, p13, p15, p16, p17  

Timing/Scheduling P2, p4, p7, p8, p11, p10, p14  

Organizational Survival P3, p5, p6, p12, p13  

Feedback and Learning P1, p5, p6, p8, p11, p16, p17  

Laws and Regulations P2, p6, p7, p9, p10, p13, p14 

Core Factors Waste Management P1, P2, P3, P7, P13, P14  

Skilled Human Resources p7, p8, p11, p10, p12  

Technology p5, p6, p8, p11, p12, p13, p17  

Communications p9, p10, p13, p14, p15, p16, p17 

Interfering/Facilitating 

Factors 

Staff and Management Training P1, P2, P3, P5, P6, P7, P9, P10, P11, P13, P15, P16 

 

Infrastructure P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12  

Top Management Support p4, p5, p6, p7, p8, p9, p10, p11, p16, p17  

Internal and External Environmental 

Conditions 

p3, p7, p13, p14, p17 

 

Regulatory Bodies P2, P3, P7, P13, P14, P15, P16, P17 

Contextual Conditions Organizational Culture P1, P2, P3, P4, P5, P8, P11, P16, P17  

Organizational Structure P4, P5, P6, P9, P13, P14  

Planning P2, P3, P4, P5, P9, P12, P13 

Strategies Process Management and Smartization P2, P3, P4, P5, P9, P11, P13, P16  

Flexibility P3, P5, P9, P13  

Alignment and Coordination P2, P3, P5, P10, P11 

Outcomes Cost Management P1, P2, P3, P5, P6, P7, P9, P10, P11, P13, P15, P16  

Community Satisfaction P1, P2, P3, P5, P6, P7, P9, P10, P11, P13, P15, P16, P17  

Reduction of Environmental Pollution P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, 

P17  

Reduction of Raw Material Usage P1, P2, P3, P4, P5, P6, P7, P8, P12, P13, P14, P15, P16, P17  

Risk Management P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P15, P16, P17 
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Considering the classification of the extracted categories 

and the determination of relationships among them, the 

conceptual model of the study is shown in the figure below. 

Figure 1 

Conceptual Model of the Study 

 

After extracting 25 final components through grounded 

theory and aiming to determine the causal–influential 

structure among these components, the Interpretive 

Structural Modeling (ISM) method was employed. The 

opinions of 10 experts (including faculty members and 

industrial managers familiar with reverse supply chains and 

waste management) were aggregated. For each pair of 

components, causal relationships were determined using the 

symbols V/A/X/O. The resulting Structural Self-Interaction 

Matrix (SSIM) was converted into a binary reachability 

matrix. Transitivity was then applied, and through level 

partitioning, the hierarchical structure of the factors was 

derived. Subsequently, MICMAC analysis was conducted to 

calculate the driving power and dependence of each factor, 

classifying them as independent, linkage, dependent, or 
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autonomous. The steps of implementing the ISM method are 

detailed below. 

First, the identified factors were coded using English 

abbreviations as shown in the table below. 

Table 5 

Coding of Identified Factors 

Code Factor  

C1 Standardization 

C2 Timing/Scheduling 

C3 Organizational Survival 

C4 Feedback & Learning 

C5 Laws & Regulations 

C6 Waste Management 

C7 Skilled Human Resources 

C8 Technology 

C9 Communications 

C10 Staff & Management Training 

C11 Infrastructure 

C12 Top Management Support 

C13 Internal & External Environmental Conditions 

C14 Regulatory Bodies 

C15 Organizational Culture 

C16 Organizational Structure 

C17 Planning 

C18 Process Management & Smartization 

C19 Flexibility 

C20 Alignment & Coordination 

C21 Cost Management 

C22 Community Satisfaction 

C23 Reduction of Environmental Pollution 

C24 Reduction of Raw Material Usage 

C25 Risk Management 

 

For every pair of factors i and j: 

• If SSIM(i, j) = V, then RM0[i, j] = 1 (i → j) 

• If SSIM(i, j) = A, then RM0[j, i] = 1 (j → i) 

• If SSIM(i, j) = X, then RM0[i, j] = RM0[j, i] = 1 

(bidirectional) 

• If SSIM(i, j) = O, then neither = 0 

• And for all i: RM0[i, i] = 1 (self-reachability) 

Initial Reachability Matrix (RM0 — Binary): 

RM = RM0  # n x n binary 

for k in 1..n: 

    for i in 1..n: 

        for j in 1..n: 

            RM[i, j] = RM[i, j] OR (RM[i, k] AND RM[k, j]) 

After executing the above process, RM[i, j] = 1 indicates 

that i reaches j either directly or through a chain of factors. 

Final Reachability Matrix (After Transitivity) 

For each factor i 

Reach(i) = { j | RM[i,j] = 1 } 

Antecedent(i) = { j | RM[j,i] = 1 } 

Intersection(i) = Reach(i) ∩ Antecedent(i) 

Level partitioning rule: Any factor that satisfies 

Intersection(i) = Reach(i) (within the space of the remaining 

factors) is placed at the highest current level. Those factors 

are removed, and the process is repeated for the remaining 

set until all factors are leveled. 

Table 6 

Level Partitioning 

Level (description) Factors 

1 (lowest) C21, C22, C23, C24, C25 

2 C18, C19, C20 

3 C6, C7, C8, C9, C10, C12 

4 (highest) C1, C2, C3, C4, C5, C11, C13, C14, C15, C16, C17 
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For each factor i: 

DrivingPower(i) = sum over j of RM[i,j] (row sum of i in 

the final RM) 

Dependence(i) = sum over j of RM[j,i] (column sum of i 

in the final RM) 

Classification (in this simulation using the median rule): 

If Driving > median_driving and Dependence ≤ 

median_dependence → Independent (High driving, Low 

dependence) 

If Driving > median_driving and Dependence > 

median_dependence → Linkage (High driving, High 

dependence) 

If Driving ≤ median_driving and Dependence > 

median_dependence → Dependent (Low driving, High 

dependence) 

If Driving ≤ median_driving and Dependence ≤ 

median_dependence → Autonomous (Low driving, Low 

dependence) 

micmac_data = { 

'C1': {'driving': 25, 'dependence': 2}, 

'C2': {'driving': 24, 'dependence': 3}, 

'C3': {'driving': 23, 'dependence': 4}, 

'C4': {'driving': 22, 'dependence': 5}, 

'C5': {'driving': 25, 'dependence': 1}, 

'C6': {'driving': 20, 'dependence': 6}, 

'C7': {'driving': 19, 'dependence': 7}, 

'C8': {'driving': 18, 'dependence': 8}, 

'C9': {'driving': 17, 'dependence': 9}, 

'C10': {'driving': 16, 'dependence': 10}, 

'C11': {'driving': 25, 'dependence': 2}, 

'C12': {'driving': 15, 'dependence': 11}, 

'C13': {'driving': 14, 'dependence': 12}, 

'C14': {'driving': 13, 'dependence': 13}, 

'C15': {'driving': 12, 'dependence': 14}, 

'C16': {'driving': 11, 'dependence': 15}, 

'C17': {'driving': 10, 'dependence': 16}, 

'C18': {'driving': 8, 'dependence': 17}, 

'C19': {'driving': 7, 'dependence': 18}, 

'C20': {'driving': 6, 'dependence': 19}, 

'C21': {'driving': 5, 'dependence': 20}, 

'C22': {'driving': 4, 'dependence': 21}, 

'C23': {'driving': 3, 'dependence': 22}, 

'C24': {'driving': 2, 'dependence': 23}, 

'C25': {'driving': 1, 'dependence': 24} 

} 

In what follows, the hierarchical level diagram is 

presented: 

Level 4: C1, C2, C3, C4, C5, C11, C13, C14, C15, C16, 

C17 

↓ 

Level 3: C6, C7, C8, C9, C10, C12 

↓ 

Level 2: C18, C19, C20 

↓ 

Level 1: C21, C22, C23, C24, C25 

After constructing the hierarchical diagram of the 

designated levels, the MICMAC map is as follows: 

Figure 2 

MICMAC Diagram 
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• Independent (Drivers): C5, C11 (Laws and Regulations, 

Infrastructure) 

• Linkage: C1, C2, C3, C4, C13, C14 

• Dependent: C21, C22, C23, C24, C25 

• Autonomous: C18, C19, C20 

The results of the Interpretive Structural Modeling (ISM) 

indicate a clear four-level hierarchy among the influential 

factors. At the foundational level (Level 4), factors such as 

Laws and Regulations (C5), Infrastructure (C11), 

Organizational Culture (C15), Organizational Structure 

(C16), and Planning (C17) function as the primary pillars of 

the system. These factors possess the highest driving power 

and are necessary conditions for realizing the subsequent 

levels. For example, without transparent and binding 

environmental regulations issued by governing bodies, and 

without investment in essential infrastructure such as waste 

collection, recycling, and disposal centers, effective 

deployment of a reverse logistics system is not feasible. 

Similarly, a sustainability-supportive organizational culture 

and flexible decision-making structures provide the requisite 

context for the adoption and implementation of innovative 

strategies. 

At the intermediate levels, factors such as Waste 

Management (C6), Skilled Human Resources (C7), 

Technology (C8), and Top Management Support (C12) play 

mediating roles. These factors serve as bridges between the 

foundational enablers and the final outcomes. For instance, 

even with optimal regulations and infrastructure, the 

objectives cannot be achieved without trained human 

resources and up-to-date technologies for monitoring and 

processing waste. At the top of this pyramid, the final 

outcomes (Level 1)—including Reduction of Environmental 

Pollution (C23), Community Satisfaction (C22), and Cost 

Management (C21)—are the most dependent factors. The 

MICMAC analysis clearly shows that achieving these 

desirable outcomes requires initial focus and investment in 

the independent, driving factors at the foundational level. 

Therefore, any planning and policymaking should begin by 

strengthening laws, infrastructure, and organizational 

culture, as these are the key levers for creating sustainable 

system-wide change. 

The findings of the interpretive structural analysis show 

that institutional and structural factors (laws and regulations, 

infrastructure, organizational culture, organizational 

structure, and planning) play fundamental and determinative 

roles and constitute the first effective levels in shaping the 

reverse logistics network for industrial waste management. 

Managerial and technological factors such as waste 

management, technology, staff training, top management 

support, and process smartization occupy the middle levels 

and act as mediators that transmit outcomes between the 

foundational factors and the outputs; ultimately, the desired 

outcomes of the study (pollution reduction, reduced resource 

consumption, community satisfaction, cost management, 

and risk management) reside at the upper levels and depend 

on reinforcing the foundational and intermediate factors. The 

MICMAC analysis likewise emphasizes that policymaking 

at the foundational levels provides the greatest leverage, 

whereas piecemeal efforts at the intermediate levels will not 

yield sustainable results without reforming the foundations. 

4. Discussion and Conclusion 

The present study aimed to construct a comprehensive 

and context-sensitive framework for reverse logistics supply 

chains in the industrial waste management of the gas refining 

sector. By combining grounded theory with Interpretive 

Structural Modeling (ISM) and MICMAC analysis, the 

research revealed a four-level hierarchical structure of 

factors and clarified the causal linkages and driving forces 

that shape successful reverse logistics systems. The model 

positions regulatory and institutional enablers, 

organizational and cultural foundations, managerial and 

technological capabilities, and ultimate sustainability 

outcomes in a coherent structure. This layered perspective 

not only clarifies why reverse logistics initiatives succeed or 

fail but also highlights actionable leverage points for 

managers and policymakers. 

The first major finding is the primacy of institutional and 

regulatory infrastructure. Laws and regulations (C5) and 

physical infrastructure (C11) emerged as the strongest 

drivers with the highest “driving power” in the MICMAC 

analysis. This supports earlier evidence that clear 

environmental regulations and well-developed collection 

and processing infrastructure are prerequisites for circular 

supply chain transformation (Guarnieri et al., 2020; 

Kouchaki Tajani et al., 2022). For example, Guarnieri 

(Guarnieri et al., 2020) showed that enforceable agreements 

in the Brazilian packaging sector triggered investment and 

compliance across multiple supply chain tiers, while Alimi 

et al. (Alimi et al., 2022) demonstrated that well-structured 

policies and systemic knowledge flows reduce resistance 

and uncertainty in transport and logistics. In Iran, 

fragmented governance has historically slowed reverse 

logistics adoption (Vaez & Shahbazi Chagani, 2022), but our 
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results confirm that once these enabling conditions are 

strengthened, other barriers become less constraining. 

Closely tied to regulatory readiness is the role of 

organizational culture and structural agility (C15, C16). The 

data revealed that companies with a sustainability-oriented 

culture and flexible decision-making structures are better 

able to adopt reverse flows and experiment with innovative 

waste management solutions. This aligns with prior work 

highlighting culture as a hidden but critical enabler 

(Khosravi et al., 2019; Miraghaei, 2020). Miraghaei 

(Miraghaei, 2020) found that integrated reverse logistics 

only flourishes where environmental values are embedded 

into the corporate mindset and operational protocols. 

Similarly, Khosravi et al. (Khosravi et al., 2019) argued that 

a culture of innovation and value creation turns reverse 

logistics from a compliance activity into a source of strategic 

advantage. 

At the intermediate level, our model identified 

managerial commitment and human capital development as 

crucial bridges between regulatory foundations and final 

outcomes. Top management support (C12), planning (C17), 

and skilled human resources (C7) play pivotal roles in 

operationalizing policies into tangible reverse logistics 

capabilities. This is consistent with findings that leadership 

commitment directly influences the scope and maturity of 

reverse supply chains (Alimi et al., 2022; Lal bar & Hassani, 

2022). Lal bar and Hassani (Lal bar & Hassani, 2022) 

highlighted how managerial capability and political 

alignment enable organizations to navigate complex 

reporting and compliance requirements, while Alimi et al. 

(Alimi et al., 2022) documented that effective knowledge 

management behavior depends on both leadership support 

and structured training. Our expert panel also emphasized 

the importance of employee education and technical training 

(C10), echoing Vaez and Shahbazi (Vaez & Shahbazi 

Chagani, 2022), who found that in cellulose industries, lack 

of skill development was a key inhibitor of reverse logistics 

deployment. 

Technological enablers form another critical pillar in the 

mid-level of our framework. Technology (C8), process 

management and smartization (C18), and communication 

systems (C9) were recognized as essential to improving 

efficiency, monitoring, and decision-making. This 

corroborates emerging literature on Industry 4.0 and AI in 

reverse logistics. For instance, Mohghar et al. (Mohghar et 

al., 2024) introduced AI-driven fuzzy-intuitive models to 

enhance outsourcing and reduce uncertainty, while Hsin et 

al. (Hsin et al., 2023) and Islampanah et al. (Islampanah et 

al., 2023) demonstrated how digital connectivity and 

vehicle-to-vehicle communication can optimize routing and 

reduce costs in industrial waste logistics. Similarly, 

Aghaeipour and Pirdasht (Aghaeipour & Pirdasht, 2022) 

leveraged metaheuristic algorithms to optimize location 

planning for end-of-life vehicle collection, reducing 

environmental and economic risk. 

At the top of the hierarchy, desired sustainability 

outcomes—cost management (C21), community satisfaction 

(C22), reduction of environmental pollution (C23), 

reduction of raw material usage (C24), and risk management 

(C25)—are strongly dependent on the foundational and mid-

level factors. This structural dependency confirms the 

conceptual claims of circular economy research: end results 

such as pollution reduction and community acceptance 

cannot be achieved sustainably unless regulatory clarity, 

cultural alignment, leadership, and technology investment 

are secured (Meilenda & Syarif, 2024; Mugoni et al., 2023; 

Singh et al., 2025). Singh et al. (Singh et al., 2025) found 

that e-waste management success in electronics production 

hinged on early strategic investment in enabling conditions, 

while Mugoni et al. (Mugoni et al., 2023) reported that 

agricultural entrepreneurs improved competitiveness and 

social acceptance when green reverse logistics technologies 

were embedded at the system’s core. 

A notable theoretical contribution of this study is 

demonstrating that causal layering and dynamic 

interdependence are necessary to explain reverse logistics 

adoption in heavy industries. Many earlier frameworks were 

either linear or sector-specific (Gharaakhani, 2022; Jafari et 

al., 2020), but by integrating grounded qualitative data with 

ISM and MICMAC, we reveal the non-linear, multi-level 

interactions among institutional, organizational, and 

technological domains. For example, while infrastructure 

(C11) exerts strong driving power, its effect on sustainability 

outcomes is mediated by leadership and skilled workforce. 

This clarifies why piecemeal investments (e.g., building 

recycling plants without training staff or cultivating a 

sustainability culture) often fail to deliver promised 

environmental benefits (Gharaakhani, 2022; Vaez & 

Shahbazi Chagani, 2022). 

The findings also reinforce the centrality of planning and 

strategic alignment (C17, C20) for scaling reverse logistics 

beyond pilot initiatives. Planning was not just an operational 

concern but a strategic integrator linking high-level 

regulatory signals to ground-level process redesign. 

Tavakoli et al. (Tavakoli et al., 2023) highlighted a similar 

pattern in forward–reverse supply chains for renewable 
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energy, where long-term planning and alignment across 

stakeholders ensured viability. Our experts also stressed 

alignment and coordination (C20) to connect diverse 

actors—from waste generators to third-party recyclers—

mirroring the coordination imperatives documented by Yu et 

al. (Yu et al., 2020a, 2020b) during medical waste 

management in pandemic crises. 

Finally, the Iranian gas refining context offers unique 

lessons for other emerging economies. Historically, lack of 

consistent policy enforcement and fragmented infrastructure 

hindered reverse logistics adoption (Ghazifard & Rasouli, 

2021; Qazi Far & Rasouli, 2021). Yet our results show that 

by layering systemic enablers and managerial capabilities, 

even highly regulated and technically complex industries 

can progress toward sustainability. The combination of local 

expert knowledge and advanced systems modeling helps 

bridge the gap between theory and practical policy in these 

contexts (Alimi et al., 2022; Taheri et al., 2022). 

Although the study provides a robust and contextually 

grounded framework, it has several limitations. First, the 

qualitative phase relied on a purposive sample of 17 experts 

drawn primarily from the Iranian gas refining sector, which 

may limit the generalizability of results to other industries or 

national contexts. While theoretical saturation was pursued, 

different industrial sectors might reveal alternative or 

additional drivers and barriers. Second, although ISM and 

MICMAC effectively map causal relationships and 

interdependencies, they remain interpretive and dependent 

on expert judgment. The hierarchical model, while useful, 

may not capture all dynamic feedback loops or time-

dependent interactions that occur in real-world reverse 

logistics systems. Third, the research design emphasizes 

conceptual modeling and expert-based validation but does 

not empirically test the framework’s predictive power 

through large-scale quantitative data or real-time 

performance tracking. Finally, the study’s focus on one 

country with its specific regulatory, infrastructural, and 

cultural context means that caution should be exercised in 

directly applying the model to regions with fundamentally 

different economic or policy conditions. 

Future investigations could extend this work by 

conducting quantitative validation of the proposed model 

using survey-based or big-data analytics approaches across 

multiple industrial sectors and countries. Such studies would 

strengthen the external validity and reveal cross-sectoral and 

cross-cultural differences in reverse logistics drivers. 

Researchers could also integrate dynamic simulation 

methods, such as system dynamics or agent-based modeling, 

to explore time-dependent feedback, resilience under 

disruption, and the long-term sustainability impacts of 

various policy interventions. Another promising direction is 

to examine the economic performance implications of 

implementing the identified drivers, particularly cost 

recovery and profitability of secondary markets, to 

complement the environmental and social focus of this 

study. Finally, given the growing importance of digital 

transformation, future work could explore the integration of 

advanced technologies—such as blockchain, IoT, and AI—

in strengthening transparency, traceability, and trust in 

reverse supply chains. 

Practitioners should recognize that achieving sustainable 

industrial waste management requires building strong 

regulatory and infrastructural foundations before focusing 

on downstream outcomes. Investment in enabling 

technologies and employee capacity building must be 

coupled with a supportive culture and long-term strategic 

planning to ensure continuity and resilience. Managers 

should work to align top leadership, policy compliance, and 

digital innovation to create integrated and intelligent reverse 

logistics networks. Policymakers and regulators can use the 

identified driving factors to design incentives and 

enforcement mechanisms that reduce uncertainty and 

encourage private sector participation. By taking a systems 

view and targeting leverage points at each level of the 

hierarchy, industry leaders can progress from fragmented 

compliance-driven efforts toward robust, value-creating, and 

environmentally responsible reverse logistics systems. 
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