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The objective of this study was to optimize preventive maintenance strategies for 

converter furnaces by integrating simulation modeling with fuzzy multi-criteria 

decision-making to identify the most reliable and cost-effective configuration. 

This research employed an applied design combining discrete-event simulation 

in AnyLogic with fuzzy TOPSIS analysis. Four operational scenarios (A1–A4) 

were developed to represent different configurations of local and imported 

refractory bricks in converter furnaces. Simulation models captured operational 

cycles, downtime, repair overlaps, and production outputs under stochastic 

failure conditions. The fuzzy TOPSIS method was then applied to rank scenarios 

based on multiple weighted criteria, including reliability, cost efficiency, and 

compliance with the operational constraint of maintaining three active furnaces 

at all times. Data inputs included historical operational records, repair times, and 

expert evaluations expressed as fuzzy triangular numbers. The simulation results 

revealed that hybrid configurations outperformed fully local or fully imported 

setups by reducing repair overlaps and maintaining production continuity. Fuzzy 

TOPSIS analysis ranked A2 as the most effective scenario with the highest 

closeness coefficient (0.953), followed by A4 (0.812) and A3 (0.711), while A1 

performed least effectively (0.691). These inferential findings confirm that 

selective integration of local and imported resources enhances both reliability 

and cost optimization. The study concludes that hybrid preventive maintenance 

strategies, supported by simulation modeling and fuzzy multi-criteria decision-

making, offer superior outcomes in complex industrial environments. 
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1. Introduction 

n contemporary industrial systems, the efficiency, 

reliability, and availability of critical assets are central to 

sustainable production and competitiveness. Preventive 

maintenance and reliability-centered approaches have 

emerged as fundamental strategies for reducing downtime, 

extending asset life, and optimizing costs in complex 

operational environments (West et al., 2024). Over the past 

two decades, industries ranging from power generation to 

shipping, automotive, and construction have embraced 

simulation techniques, artificial intelligence, fuzzy decision 

models, and mathematical optimization to strengthen 

maintenance planning and execution (Amelian, 2025; Gámiz 

& L, 2023; Wu et al., 2024). The rapid integration of 

advanced technologies into maintenance science 

underscores the dual imperatives of mitigating risks 

associated with equipment failures and achieving higher 

levels of operational excellence (Zhao et al., 2025). 

Reliability-based optimization is particularly relevant to 

industries where unplanned downtime can cause 

catastrophic financial losses and safety hazards (Belagoune 

et al., 2025). Research demonstrates that multi-objective 

optimization, when coupled with simulation and artificial 

intelligence, can offer robust solutions for handling 

conflicting priorities such as minimizing maintenance costs 

while maximizing availability (Ghosh & Abawajy, 2025; 

Zhao et al., 2025). These models help decision-makers 

navigate uncertainty in real-world conditions, accounting for 

random machine failures, diverse failure modes, and varying 

repair times (Amelian, 2025). Such developments reflect a 

paradigm shift in industrial maintenance, moving away from 

corrective strategies towards predictive and reliability-

driven frameworks (West et al., 2024). 

The shipping industry provides a vivid illustration of 

these shifts, as reliability-based predictable maintenance 

approaches have been proposed for critical systems such as 

container ship fuel systems (Yasin, 2025). Simulation-based 

training methods are increasingly used to improve 

maintenance performance in complex settings like ships, 

where operators must manage high-risk and safety-critical 

assets (Simion et al., 2025). Similarly, in port operations, 

discrete event simulation has been employed to analyze 

maintenance processes and uncover bottlenecks in cargo 

handling systems (Corrotea et al., 2024). These approaches 

highlight the growing role of simulation as both a diagnostic 

and predictive tool in diverse industrial domains (Amelian, 

2025). 

Reliability and maintenance optimization have also 

gained traction in energy and infrastructure sectors. For 

instance, studies on rotating machinery and energy 

infrastructure emphasize advanced strategies to improve 

performance and reduce unexpected breakdowns (Erhueh et 

al., 2024). Preventive maintenance models have been 

applied to photovoltaic power systems (Chen et al., 2024), 

wind turbines (Kaewbumrung et al., 2024), and ship 

propulsion systems (Garbatov & Georgiev, 2024), 

underscoring the versatility of such approaches across 

different engineering fields. Moreover, computational fluid 

dynamics and Markovian modeling approaches are 

increasingly integrated into reliability analysis to capture 

system degradation and predict maintenance needs with 

greater accuracy (Garbatov & Georgiev, 2024; 

Kaewbumrung et al., 2024). 

Another prominent strand in this evolving body of 

knowledge is the adoption of fuzzy and multi-criteria 

decision-making techniques. These methods address the 

inherent uncertainty and subjectivity of maintenance 

decisions (Amaitik et al., 2024; Dharma lingam et al., 2024). 

For example, Fuzzy TOPSIS has been applied to rank repair 

options, evaluate supplier selection in megaprojects, and 

optimize vehicle choices in transport industries (Dharma 

lingam et al., 2024; Liang et al., 2023). In road infrastructure, 

fuzzy best-worst methods integrated with VIKOR (Hasan & 

Jaber, 2024) and mathematical models like ROC-TOPSIS 

(Sur & Machfiroh, 2024) have been successfully applied to 

prioritize maintenance tasks. Such frameworks allow 

stakeholders to weigh cost, reliability, safety, and resource 

availability, thereby ensuring more balanced and justifiable 

decisions (Hasan & Jaber, 2024; Sur & Machfiroh, 2024). 

The construction and heavy industry sectors also 

demonstrate increasing reliance on reliability and artificial 

intelligence. For instance, optimization of concreting 

equipment in India has been achieved through AI and 

reliability-based frameworks (Ghosh & Abawajy, 2025), 

while corrosion-affected reinforced concrete structures have 

been analyzed through residual life forecasting models 

(Kopiika et al., 2025). Similarly, fuzzy synthesis approaches 

have been developed to support hierarchical decision 

analysis in selecting optimal repair techniques (Amaitik et 

al., 2024). These examples illustrate how reliability-driven 

decision-making is extending from discrete manufacturing 

and energy systems to large-scale civil and construction 

projects. 

The adoption of machine learning and simulation 

frameworks has further accelerated predictive and 

I 
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preventive maintenance capabilities. Applications in the 

automotive sector show how integrated fuzzy TOPSIS and 

process mining improve predictive maintenance 

performance (Micosky et al., 2024). Machine learning has 

also been combined with human factor analysis in high-risk 

sectors such as nuclear power (Khamaj et al., 2024), as well 

as in electrical and mechanical equipment optimization in 

PVC manufacturing (Kiki & Wang, 2025). These studies 

emphasize the growing recognition that human error, system 

reliability, and machine availability must be considered 

simultaneously for effective maintenance planning 

(Bafandegan Emroozi et al., 2024; David et al., 2024). 

Despite technological advances, integrating preventive 

maintenance strategies into complex systems remains 

challenging. Multi-state systems with performance sharing 

(Wu et al., 2024), repairable k-out-of-n retrial systems (Li et 

al., 2024), and consecutive k-out-of-n systems operating 

under shock environments (Dong & Bai, 2024) require 

mathematical models capable of handling interdependencies 

and random shocks. Minimal repair and constrained multi-

attempt strategies also highlight the need for preventive 

maintenance policies tailored to specific system 

architectures (Cha & Finkelstein, 2024). Hidden Markov 

models provide an additional statistical framework to model 

system degradation and optimize reliability (Gámiz & L, 

2023). Together, these models represent the state-of-the-art 

in capturing the stochastic nature of industrial failures. 

At the organizational level, the transition from corrective 

to preventive maintenance strategies entails substantial 

cultural and operational changes (West et al., 2024). 

Companies are increasingly integrating discrete event 

simulation and design of experiments to assess stochastic job 

shop scheduling with random machine failures (Amelian, 

2025), and employing hybrid methods combining human 

error optimization with integrated production planning 

(Bafandegan Emroozi et al., 2024). Maintenance scheduling 

has been further refined using novel optimization 

algorithms, such as the discrete mayfly algorithm with Lévy 

flight and chaotic local search for preventive scheduling in 

power generation systems (Belagoune et al., 2025). These 

examples demonstrate how optimization algorithms, 

simulation, and fuzzy decision-making converge to provide 

more accurate and resilient maintenance strategies. 

In addition, statistical and mathematical modeling plays a 

central role in advancing maintenance optimization. 

Research on the statistical modeling of preventive 

maintenance effectiveness for repairable systems (Ye et al., 

2024), combined with comparative ranking preferences 

through fuzzy TOPSIS (Dharma lingam et al., 2024), 

exemplifies the analytical rigor applied to maintenance 

science. Mathematical simulation of preventive and 

corrective maintenance using particle swarm optimization 

(Singla et al., 2025) and genetic algorithms (Singla et al., 

2024) further illustrates the wide array of computational 

methods employed. These methodologies are essential for 

industries managing complex degraded systems, where 

optimal solutions are necessary to maintain both 

productivity and safety. 

Emerging trends indicate that integrating human factors, 

artificial intelligence, and sustainability considerations will 

define the future of maintenance optimization. Human factor 

engineering in nuclear and industrial contexts highlights the 

risks of neglecting the human dimension in preventive 

maintenance systems (Khamaj et al., 2024). At the same 

time, simulation-driven training (Simion et al., 2025) and 

reliability-based approaches for energy and infrastructure 

systems (Erhueh et al., 2024; Garbatov & Georgiev, 2024) 

reveal the benefits of preparing human operators to interact 

effectively with complex technical systems. Multi-objective 

optimization of composite structures (Zhao et al., 2025) and 

innovative maintenance policies in logistics and shipping 

(Corrotea et al., 2024; Yasin, 2025) demonstrate how 

technical and human-centered strategies are converging. 

Taken together, this growing body of literature illustrates 

a clear trajectory towards more intelligent, simulation-

driven, and reliability-focused maintenance systems. 

Advances in fuzzy logic, artificial intelligence, and 

statistical modeling complement simulation and 

optimization techniques, creating powerful tools for 

reducing risk and enhancing system resilience (Amaitik et 

al., 2024; Li et al., 2024; Micosky et al., 2024). The 

integration of these approaches allows industries to 

anticipate failures more effectively, optimize maintenance 

schedules, and align operational strategies with long-term 

reliability goals (Wu et al., 2024; Ye et al., 2024). 

The present study builds upon this foundation by 

combining simulation modeling and fuzzy multi-criteria 

decision-making methods to evaluate and optimize 

preventive maintenance strategies in a high-stakes industrial 

setting.   

2. Methods and Materials 

This study employed an applied research design based on 

simulation and multi-criteria decision-making. The research 

was centered on the converter furnaces of the Sarcheshmeh 

https://journals.kmanpub.com/index.php/jppr/index


 Abdi et al.                                                                                                       Journal of Resource Management and Decision Engineering 5:1 (2026) 1-14 

 

 4 

Copper Complex Smelting Plant, where the operational and 

maintenance performance of refractory bricks—both 

imported and locally manufactured—were assessed. The 

“participants” in this study were not human subjects but 

rather the physical and operational units of the production 

system, including four Pierce–Smith converter furnaces. 

Each furnace was considered a case with specific operating 

cycles, maintenance requirements, and potential failure 

modes. 

The design of the study involved two integrated stages: 

 Simulation Stage: The production and 

maintenance cycles of converter furnaces were 

modeled using AnyLogic, an agent-based 

simulation software. This allowed for replication of 

furnace operations, prediction of breakdowns, and 

assessment of different maintenance strategies 

under varying conditions of brick quality. 

 Optimization Stage: To identify the best 

configuration for furnace operation when 

substituting imported refractory bricks with local 

ones, the Fuzzy TOPSIS method (Technique for 

Order Preference by Similarity to Ideal Solution) 

was applied. Multiple furnace configurations (all 

imported, all local, or hybrid combinations) and 

multiple failure scenarios were tested. 

The research relied on three types of data: 

 Operational Data: Production cycle lengths, 

repair times, number of operating cycles before 

failure, and types of maintenance (minor, semi-

major, and major repairs). These were collected 

from operational records of the smelting complex. 

 Economic Data: Costs of refractory bricks 

(domestic vs. imported), associated tariffs, and 

ancillary costs (e.g., drilling costs for local bricks). 

Currency exchange rates (Euro to Iranian Rial) 

were also included as an economic factor. 

 Failure Modes: Based on empirical evidence, three 

distinct failure types (Type 1, Type 2, and Type 3) 

were defined, each with different repair times and 

cost implications. 

Simulation Tool: 

AnyLogic was selected as the primary simulation 

software because it supports agent-based, system dynamics, 

and discrete-event simulation, making it well-suited for 

modeling both the production process and its interaction 

with maintenance schedules. The simulation included: 

 Input variables: furnace charge tonnage, 

concentrate grade, recovery rate, cycle length, and 

repair duration. 

 Output variables: production of matte, blister 

copper, and refined anodes; downtime; and 

maintenance costs. 

Decision-Making Tool: 

The Fuzzy TOPSIS method was used to prioritize furnace 

operation scenarios. It was chosen because it integrates both 

quantitative and qualitative factors under uncertainty. 

 Criteria included productivity, cost savings, 

reliability, and compliance with operational 

constraints. 

 Fuzzy triangular numbers were used to represent 

expert judgments on performance levels. 

 Linguistic variables such as “very low,” “low,” 

“moderate,” “high,” and “very high” were mapped 

onto fuzzy scales. 

Distance between two fuzzy numbers: 

 d(ã, b̃) = √[(1/3) * ((a1 - b1)² + (a2 - b2)² + (a3 - 

b3)²)] 

Fuzzy TOPSIS closeness coefficient: 

 CCᵢ = Dᵢ⁻ / (Dᵢ⁺ + Dᵢ⁻) 

 where Dᵢ⁺ is the distance of alternative i from the 

fuzzy positive ideal solution, and Dᵢ⁻ is the distance 

from the fuzzy negative ideal solution. 

The analysis was carried out in two steps: 

Step 1 – Simulation Analysis: 

The AnyLogic model simulated multiple operational 

scenarios, including: 

 Four furnaces with imported bricks. 

 Four furnaces with local bricks. 

 Mixed configurations (e.g., two local + two 

imported, three local + one imported, etc.). 

 The simulation outputs provided quantitative 

indicators such as number of operational cycles 

achieved, repair frequencies, downtime overlaps, 

and total production. 

Step 2 – Fuzzy TOPSIS Ranking: 

Using the simulation results as input, the Fuzzy TOPSIS 

method ranked each operational configuration. The steps 

included: 

1. Constructing the decision matrix with simulation-

derived performance measures. 

2. Normalizing the decision matrix under fuzzy 

conditions. 

https://journals.kmanpub.com/index.php/jppr/index
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3. Weighting criteria based on expert judgment (e.g., 

production continuity, repair costs, compliance 

with “three furnaces active at all times”). 

4. Determining fuzzy positive ideal solution (FPIS) 

and fuzzy negative ideal solution (FNIS). 

5. Computing distances of each alternative from FPIS 

and FNIS using equation (1). 

6. Calculating closeness coefficient for each 

alternative using equation (2). 

7. Ranking alternatives: the closer the coefficient to 1, 

the more optimal the scenario. 

The results from simulation and fuzzy multi-criteria 

decision-making were integrated to recommend the optimal 

operational strategy. Interestingly, while pure local or pure 

imported brick scenarios did not satisfy all operational 

constraints, the analysis suggested that a hybrid 

configuration—where specific sections of each furnace were 

lined with local bricks and others with imported bricks—

produced the most efficient and reliable outcome. 

3. Findings and Results 

The simulation of four furnaces lined entirely with local 

refractory bricks demonstrated that the operational cycles 

often overlapped in their repair stages. The downtime 

reached up to 18 days for two furnaces simultaneously, 

leading to a significant drop in production. 

Figure 1 

Results of the simulation of four furnaces lined with local refractory bricks based on the defined input parameters. 

 

Hybrid scenarios, combining local and imported bricks, 

produced improved outcomes. Downtime overlaps were 

reduced, production remained stable, and cost efficiency was 

improved compared to fully imported setups. 

  

https://journals.kmanpub.com/index.php/jppr/index
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Figure 2 

Results of the simulation of four furnaces with hybrid refractory brick configurations based on the defined input parameters. 

 

Table 1 

Generalized Tasks of Furnace Operation and Maintenance 

Row Task Description Function 

1 Equipment classified according to part categories Equipment classification 

2 Functions of parts classified in stage 1 Function classification 

3 Time intervals defined with performance changes Scheduling 

4 Shorter life cycle reduces available work time Scheduling evaluation 

5 Functions of similar equipment recorded by interval Performance registration 

 

Table 1 outlines the systematic categorization of 

equipment and functions in the furnace operation cycle. It 

highlights that proper classification and scheduling directly 

affect the overall reliability of the smelting process. 

Table 2 

Fuzzy Definitions of Operational States 

Row Characteristic State Fuzzy Equivalent 

1 Very low Failure type 3 0.9 

2 Low Failure type 2 0.6 

3 Moderately low Failure type 1 0.2 

4 Suitable Discharge/loading 0.3 

5 Moderately high Copper blowing 0.5 

6 High Operational cycle 0.65 

7 Very high Blister copper output 0.99 

 

https://journals.kmanpub.com/index.php/jppr/index
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Table 2 assigns fuzzy numerical values to each 

operational state, showing how failure modes and 

production outcomes can be expressed in fuzzy scales for 

decision-making under uncertainty. 

Table 3 

Weighted Parameters for Fuzzy TOPSIS Evaluation 

Row Parameter Weight Row Parameter Weight 

1 3 ladles of matte +0.5 10 Cost savings +0.8 

2 Blowing stage S1 +0.9 11 Blister production +0.99 

3 Local bricks +0.35 12 Imported bricks +0.27 

4 Slag removal 1 –0.27 13 Imported repairs –0.7 

5 Blowing stage S2 +0.35 14 Local repairs –0.27 

6 Slag removal 2 –0.27 15 Failure type 1 –0.21 

7 Copper blowing +0.5 16 Failure type 2 –0.35 

8 Discharge blister +0.65 17 Failure type 3 –0.35 

9 Furnace cleaning –0.2 18   

 

To enable direct comparison, four configurations (A1–

A4) were analyzed. The decision matrix was constructed and 

normalized according to Fuzzy TOPSIS methodology. Table 

3 lists the weighted parameters used in the analysis. 

Table 4 

Main Evaluation Criteria for Furnace Performance (A1–A4) 

Furnace A1: Very Low → Very High A2: Very Low → Very High A3: Very Low → Very High A4: Very Low → Very High 

1 0.5, 0.1, 0.2, 0.35, 0.21, 0, 0.26 0.2, 0.3, 0, 0.35, 0.1, 0.21, 0 0.9, 0.5, 0.2, 0.19, 0, 0.21, 0 0.5, 0.1, 0.1, 0, 0.21, 0.21, 0 

2 0.2, 0.5, 0.1, 0.35, 0.21, 0, 0.26 0.9, 0.1, 0, 0.19, 0.21, 0, 0 0.5, 0.3, 0, 0.35, 0.1, 0.21, 0 0.5, 0.5, 0, 0.19, 0, 0.21, 0 

3 0.5, 0.3, 0, 0.19, 0.1, 0.21, 0.26 0.2, 0.5, 0.1, 0.35, 0.21, 0.21, 0.26 0.2, 0.1, 0, 0.35, 0.21, 0, 0.26 0.2, 0.1, 0.1, 0.35, 0.21, 0.21, 0 

4 0.9, 0.1, 0, 0, 0, 0, 0 0.5, 0.1, 0.2, 0, 0, 0, 0.26 0.2, 0.1, 0.1, 0, 0.21, 0.21, 0 0.9, 0.3, 0.2, 0.35, 0.1, 0.21, 0 

 

Table 4 demonstrates the fuzzy evaluation results across 

four main scenarios (A1–A4), showing varying performance 

of each furnace. It illustrates how localized and imported 

brick mixes affect output quality and stability. 

Table 5 

Integrated Prediction Matrix 

Alt. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

A1 0.9280 1.3040 1.7480 0.6040 0.9280 1.3100 0.1540 0.4100 0.9460 0.6980 0.8940 1.1580 

A2 0.9080 1.3240 1.8280 0.3240 0.5040 0.8840 0.6040 0.9280 1.3700 0.4080 0.6680 1.0860 

A3 0.9760 1.2880 1.6660 1.2020 1.7020 2.2480 1.1820 1.5620 1.9080 1.2020 1.6220 2.0080 

A4 0.0000 0.0200 0.2400 0.5080 0.6600 0.8800 0.5240 0.7520 0.9980 0.3500 0.6700 1.2300 

 

Table 5 provides the raw decision matrix used in the 

fuzzy TOPSIS process. Scenario A3 stands out with 

consistently higher scores across parameters, indicating 

stronger operational robustness. 

Table 6 

Normalized Matrix 

Alt. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

A1 0.5077 0.9849 1.7910 0.2687 0.5452 1.0899 0.3176 0.6824 1.4414 0.3989 0.7186 1.2753 

A2 0.4967 1.0000 1.8730 0.1441 0.2961 0.7354 0.2473 0.6062 1.4796 0.3326 0.6511 1.3062 

A3 0.5339 0.9728 1.7070 0.5347 1.0000 1.8702 0.4448 1.0000 2.0272 0.5189 1.0000 1.7489 

A4 0.0000 0.0151 0.2459 0.2260 0.3878 0.7321 0.3903 0.9510 2.2480 0.4674 0.9566 1.9273 

 

https://journals.kmanpub.com/index.php/jppr/index
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Table 6 shows the normalized scores, allowing for cross-

comparison. Here, A3 and A4 improve relative to others, 

demonstrating stability when criteria are rescaled. 

Table 7 

Positive and Negative Criteria Sets 

Alt. X1 X2 X3 X4 

A1 0.1771 0.1351 0.0000 0.0766 

A2 0.1786 0.0776 0.0000 0.0716 

A3 0.1783 0.2561 0.0000 0.1076 

A4 0.0087 0.1051 0.0000 0.1101 

 

Table 7 lists the positive and negative values for each 

alternative. Scenario A2 shows strong X1 performance, 

while A3 dominates in X2, indicating trade-offs. 

Table 8 

Ideal Solutions in Fuzzy TOPSIS 

Alt. X1 X2 X3 X4 

A⁺ 0.2484 0.1000 0.1873 0.4812 

A⁻ 0.0000 0.0000 0.0000 0.2328 

 

Table 8 presents the ideal solutions. The fuzzy positive 

ideal solution (FPIS) reflects the best-case performance, 

while the fuzzy negative ideal solution (FNIS) identifies the 

worst-case benchmarks. 

Figure 3 

Estimated evaluation criteria for the four furnaces (Scenario 1). 

 

https://journals.kmanpub.com/index.php/jppr/index
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Figure 4 

Estimated evaluation criteria for the four furnaces (Scenario 2). 

 

Figure 5 

Estimated evaluation criteria for the four furnaces (Scenario 3). 
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Figure 6 

Estimated evaluation criteria for the four furnaces (Scenario 4). 

 

Table 9 

Performance of Four Predicted Furnace Scenarios 

Scenario Closeness Coefficient Rank 

A1 0.6906 4 

A2 0.9530 1 

A3 0.7109 3 

A4 0.8119 2 

 

Table 9 shows the final ranking based on closeness 

coefficients. Scenario A2 achieves the highest coefficient 

(0.953), making it the optimal solution. A4 follows closely 

with 0.812, while A1 performs worst with 0.691. 

Figure 3 illustrates the fuzzy TOPSIS evaluation of 

furnaces in Scenario 1, where the system was configured 

with localized refractory bricks. The chart shows low to 

moderate performance values across most criteria, with 

notable weaknesses in reliability and downtime 

management. The results highlight that relying solely on 

local bricks produces unfavorable outcomes, as maintenance 

overlaps reduce operational continuity and performance 

indicators remain below desirable thresholds. 

In the Figure 4, the evaluation results for Scenario 2 are 

presented, which combined imported and local refractory 

bricks in a hybrid configuration. The scores reflect 

significant improvements compared to Scenario 1, 

particularly in terms of operational reliability and production 

continuity. The higher values across multiple criteria 

indicate that hybrid arrangements mitigate the limitations 

observed in fully local setups, positioning Scenario 2 as one 

of the most efficient alternatives. 

Figure 5 displays the results for Scenario 3, representing 

another hybrid configuration with a different distribution of 

imported and local bricks. The evaluation demonstrates 

intermediate performance: some criteria achieved 

moderately high values, while others lagged behind. 

Although Scenario 3 surpassed the performance of Scenario 

1, its outcomes were less consistent than those of Scenario 

2, suggesting that not all hybrid configurations yield equally 

optimal results. 

The evaluation for Scenario 4 is presented in Figure 6, 

showing relatively balanced performance across the selected 

criteria. Scenario 4 ranked second overall, with strong scores 

in reliability and production-related metrics but slightly 

lower cost-effectiveness compared to Scenario 2. The results 

indicate that Scenario 4 offers a feasible alternative with 

robust operational performance, though not reaching the 

optimal balance demonstrated by Scenario 2. 

https://journals.kmanpub.com/index.php/jppr/index
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4. Discussion and Conclusion 

The findings of this study underscore the critical role of 

simulation modeling and fuzzy multi-criteria decision-

making in optimizing preventive maintenance strategies for 

complex industrial systems. By evaluating four operational 

scenarios (A1–A4), the results revealed that scenario A2 

achieved the highest closeness coefficient (0.953), 

indicating superior performance in balancing cost efficiency, 

operational continuity, and reliability. Scenarios A3 and A4 

followed with moderate scores (0.711 and 0.812 

respectively), while A1 performed least effectively (0.691). 

These results suggest that hybrid or selectively optimized 

maintenance configurations outperform both purely local 

and purely imported strategies, confirming that context-

specific approaches yield the best outcomes when applied in 

uncertain, resource-constrained environments. The 

closeness of A4 to A2 further demonstrates the feasibility of 

hybrid strategies where imported and local resources are 

integrated. 

These outcomes align with contemporary research on 

reliability-based optimization, which consistently 

demonstrates that multi-objective frameworks are more 

effective than single-objective approaches in maintenance 

planning. Studies applying artificial intelligence to optimize 

concreting equipment operations in India, for example, 

highlighted that balancing multiple criteria—such as 

resource costs, system availability, and task scheduling—

produces better outcomes compared to one-dimensional 

optimization (Ghosh & Abawajy, 2025). Similarly, in 

composite repair structures, reliability-based multi-objective 

optimization models using artificial neural networks proved 

effective in handling conflicting performance objectives 

(Zhao et al., 2025). The present study reinforces these 

findings by showing how fuzzy TOPSIS can capture 

uncertainty and provide rankings that reflect the inherent 

trade-offs among competing maintenance priorities. 

The results also confirm the value of simulation-driven 

approaches in maintenance contexts, particularly where 

failures are stochastic and operational conditions complex. 

The identification of A2 as the best-performing 

configuration parallels evidence from stochastic job shop 

scheduling models that employed discrete event simulation 

to manage random machine failures (Amelian, 2025). 

Likewise, discrete event simulation applied to maintenance 

processes in a port cargo company revealed bottlenecks and 

enabled process improvements, highlighting simulation’s 

capacity to replicate and test alternative operational 

strategies (Corrotea et al., 2024). In the present study, 

simulation not only replicated furnace operations but also 

captured failure overlaps and downtime distributions, 

making it a vital tool for validating hybrid preventive 

maintenance strategies. 

Furthermore, this research confirms the significance of 

preventive maintenance in sustaining industrial 

performance. In line with earlier work on preventive 

maintenance for constrained minimal repair systems (Cha & 

Finkelstein, 2024), the study shows that preventive 

strategies, when carefully calibrated, minimize costly 

system disruptions. Findings from preventive maintenance 

modeling in photovoltaic power systems (Chen et al., 2024) 

and wind turbines (Kaewbumrung et al., 2024) further 

support this conclusion, demonstrating that structured 

preventive schedules enhance equipment longevity and 

reduce sudden outages. By integrating simulation and fuzzy 

TOPSIS, the current research extends this body of work, 

offering a dual-method framework applicable to both energy 

systems and metallurgical operations. 

The fuzzy multi-criteria evaluation, in particular, 

demonstrates robustness in handling ambiguous and 

incomplete data. This resonates with findings from fuzzy 

synthesis approaches for hierarchical decision analysis, 

which have been used to select optimum repair techniques in 

industrial systems (Amaitik et al., 2024). Similarly, extended 

fuzzy TOPSIS has been applied in supplier selection for 

prefabricated megaprojects under hesitant environments, 

underscoring the technique’s versatility in uncertain 

decision contexts (Liang et al., 2023). In the present study, 

the fuzzy TOPSIS method provided nuanced evaluations 

that aligned with expert judgments and simulation outputs, 

validating its effectiveness in ranking maintenance 

alternatives under uncertainty. 

Another important finding of this research is the 

significance of reliability analysis in preventive 

maintenance. The top ranking of scenario A2 reflects the 

need for systematic reliability evaluations, as also noted in 

the context of consecutive k-out-of-n systems operating 

under shock environments (Dong & Bai, 2024). Similarly, 

research on retrial systems with two failure modes 

emphasized that preventive strategies tailored to system 

architecture yield more resilient outcomes (Li et al., 2024). 

The high coefficient of A2 indicates that the configuration 

best supported the reliability of the furnace system, echoing 

lessons from reliability-based predictable maintenance 

applied to container ship fuel systems (Yasin, 2025). This 

convergence across industries shows that reliability remains 
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the cornerstone of effective preventive maintenance 

planning. 

The present findings also reinforce the need to integrate 

human factors and error management into maintenance 

design. Hybrid strategies, as highlighted in this study, are not 

purely technical but also managerial, involving human 

oversight in resource allocation and scheduling. This is 

consistent with research in nuclear reactor maintenance 

where human factor engineering and artificial intelligence 

were combined to analyze operational loops and optimize 

safety (Khamaj et al., 2024). Similarly, integrated 

approaches that account for human error in production and 

maintenance planning improve efficiency, as shown in 

recent holistic frameworks (Bafandegan Emroozi et al., 

2024). By emphasizing hybrid strategies, this study 

illustrates the practical reality of maintenance systems where 

human decision-making interacts with technical 

optimization. 

The evidence from this research also resonates with 

ongoing shifts from corrective to preventive maintenance in 

global practice. Studies analyzing transitions in building 

maintenance strategies emphasized that moving from 

corrective to preventive approaches significantly reduces 

long-term costs and enhances system reliability (West et al., 

2024). Reliability-centered maintenance models applied to 

critical machines in the Sabiz plant further validate the 

importance of structured preventive frameworks (Cahyati et 

al., 2024). In this context, the success of scenario A2 

underscores that preventive maintenance is not only 

theoretically advantageous but also practically feasible, 

particularly when supported by simulation and fuzzy multi-

criteria analysis. 

Moreover, the ranking of alternatives in this study 

demonstrates the impact of optimization algorithms on 

preventive maintenance planning. The use of fuzzy TOPSIS 

parallels approaches where genetic algorithms (Singla et al., 

2024), particle swarm optimization (Singla et al., 2025), and 

discrete mayfly algorithms (Belagoune et al., 2025) were 

employed to improve preventive scheduling. These studies 

collectively demonstrate that optimization methods enhance 

the accuracy and adaptability of maintenance strategies. The 

present research contributes by showing that fuzzy TOPSIS, 

when combined with simulation, can produce rankings that 

align with both theoretical expectations and practical 

constraints. 

From a broader perspective, the study validates the 

integration of advanced mathematical and statistical 

modeling in preventive maintenance. Statistical modeling of 

preventive maintenance effectiveness for repairable systems 

(Ye et al., 2024), hidden Markov models for system 

degradation (Gámiz & L, 2023), and ROC-TOPSIS for road 

repair prioritization (Sur & Machfiroh, 2024) all exemplify 

the analytical sophistication needed to support maintenance 

decisions. By applying fuzzy TOPSIS to furnace systems, 

the present study shows how advanced modeling 

frameworks can guide real-world maintenance strategies and 

ensure alignment with organizational goals. 

The findings also highlight the growing role of artificial 

intelligence and machine learning in maintenance 

optimization. The success of A2 resonates with machine 

learning frameworks applied to PVC manufacturing 

equipment (Kiki & Wang, 2025) and integrated AI-fuzzy 

approaches used in predictive automotive maintenance 

(Micosky et al., 2024). Likewise, studies on AI-based 

optimization in nuclear (Khamaj et al., 2024) and concreting 

(Ghosh & Abawajy, 2025) industries show similar 

improvements. This reflects a broader trend where AI 

enhances the adaptability and intelligence of preventive 

maintenance systems. The use of fuzzy TOPSIS in this study 

contributes to this trend by incorporating expert-driven 

fuzzy evaluations into quantitative decision frameworks. 

Finally, this research contributes to the growing emphasis 

on sustainability and resilience in industrial systems. 

Preventive maintenance strategies, when optimized through 

simulation and fuzzy models, reduce waste, conserve 

resources, and ensure more sustainable operations. Lessons 

from energy infrastructure optimization (Erhueh et al., 

2024), corrosion forecasting in reinforced concrete (Kopiika 

et al., 2025), and preventive replacement models in 

photovoltaic systems (Chen et al., 2024) reinforce the 

sustainability dimension of preventive maintenance. By 

identifying A2 as the optimal configuration, this study shows 

that maintenance strategies can align with both economic 

and environmental goals. 

While the present study provides strong evidence for the 

effectiveness of simulation and fuzzy TOPSIS in preventive 

maintenance optimization, it has certain limitations. First, 

the findings are based on a case study of converter furnaces 

in a specific industrial context, which may limit 

generalizability. Second, the fuzzy evaluations rely on 

expert judgments, which can introduce subjectivity despite 

the robustness of fuzzy methods. Third, the study does not 

account for long-term degradation effects or changes in 

operational conditions that may alter system reliability over 

extended time horizons. Finally, the computational models 

https://journals.kmanpub.com/index.php/jppr/index
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applied here may need adaptation when scaled to larger or 

more heterogeneous industrial systems. 

Future research should extend this approach to multiple 

industries, particularly in energy, transport, and 

infrastructure, where preventive maintenance is critical. 

Comparative studies applying alternative optimization 

algorithms, such as genetic programming, reinforcement 

learning, and advanced hybrid fuzzy methods, would 

provide valuable benchmarks. Incorporating human factors 

more deeply into simulation frameworks, including operator 

behavior, training, and decision-making, could enrich the 

analysis. Additionally, long-term simulations that integrate 

system degradation models, hidden Markov processes, or 

stochastic deterioration mechanisms should be explored. 

Finally, research could examine the integration of 

sustainability metrics into preventive maintenance 

optimization to align with global environmental goals. 

For practitioners, the findings underscore the importance 

of adopting hybrid preventive maintenance strategies that 

balance cost and reliability. Simulation tools should be 

widely applied to test operational scenarios before 

implementation, allowing organizations to anticipate 

failures and optimize resources. Decision-makers should 

integrate fuzzy multi-criteria approaches to ensure that 

subjective judgments are systematically captured and 

weighted. Finally, organizations should embrace preventive 

over corrective maintenance, supported by optimization 

models, as a pathway to improving reliability, efficiency, 

and sustainability in industrial systems. 
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