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The objective of this study was to optimize preventive maintenance strategies for
converter furnaces by integrating simulation modeling with fuzzy multi-criteria
decision-making to identify the most reliable and cost-effective configuration.
This research employed an applied design combining discrete-event simulation
in AnyLogic with fuzzy TOPSIS analysis. Four operational scenarios (A1-A4)
were developed to represent different configurations of local and imported
refractory bricks in converter furnaces. Simulation models captured operational
cycles, downtime, repair overlaps, and production outputs under stochastic
failure conditions. The fuzzy TOPSIS method was then applied to rank scenarios
based on multiple weighted criteria, including reliability, cost efficiency, and
compliance with the operational constraint of maintaining three active furnaces
at all times. Data inputs included historical operational records, repair times, and
expert evaluations expressed as fuzzy triangular numbers. The simulation results
revealed that hybrid configurations outperformed fully local or fully imported
setups by reducing repair overlaps and maintaining production continuity. Fuzzy
TOPSIS analysis ranked A2 as the most effective scenario with the highest
closeness coefficient (0.953), followed by A4 (0.812) and A3 (0.711), while Al
performed least effectively (0.691). These inferential findings confirm that
selective integration of local and imported resources enhances both reliability
and cost optimization. The study concludes that hybrid preventive maintenance
strategies, supported by simulation modeling and fuzzy multi-criteria decision-
making, offer superior outcomes in complex industrial environments.
Keywords: Preventive maintenance; Reliability analysis; Simulation modeling;
Fuzzy TOPSIS; Multi-criteria decision-making; Converter furnaces; Industrial
optimization
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1. Introduction

n contemporary industrial systems, the efficiency,

reliability, and availability of critical assets are central to
sustainable production and competitiveness. Preventive
maintenance and reliability-centered approaches have
emerged as fundamental strategies for reducing downtime,
extending asset life, and optimizing costs in complex
operational environments (West et al., 2024). Over the past
two decades, industries ranging from power generation to
shipping, automotive, and construction have embraced
simulation techniques, artificial intelligence, fuzzy decision
models, and mathematical optimization to strengthen
maintenance planning and execution (Amelian, 2025; Gamiz
& L, 2023; Wu et al., 2024). The rapid integration of
advanced technologies into  maintenance science
underscores the dual imperatives of mitigating risks
associated with equipment failures and achieving higher
levels of operational excellence (Zhao et al., 2025).

Reliability-based optimization is particularly relevant to
industries where unplanned downtime can cause
catastrophic financial losses and safety hazards (Belagoune
et al., 2025). Research demonstrates that multi-objective
optimization, when coupled with simulation and artificial
intelligence, can offer robust solutions for handling
conflicting priorities such as minimizing maintenance costs
while maximizing availability (Ghosh & Abawajy, 2025;
Zhao et al., 2025). These models help decision-makers
navigate uncertainty in real-world conditions, accounting for
random machine failures, diverse failure modes, and varying
repair times (Amelian, 2025). Such developments reflect a
paradigm shift in industrial maintenance, moving away from
corrective strategies towards predictive and reliability-
driven frameworks (West et al., 2024).

The shipping industry provides a vivid illustration of
these shifts, as reliability-based predictable maintenance
approaches have been proposed for critical systems such as
container ship fuel systems (Yasin, 2025). Simulation-based
training methods are increasingly used to improve
maintenance performance in complex settings like ships,
where operators must manage high-risk and safety-critical
assets (Simion et al., 2025). Similarly, in port operations,
discrete event simulation has been employed to analyze
maintenance processes and uncover bottlenecks in cargo
handling systems (Corrotea et al., 2024). These approaches
highlight the growing role of simulation as both a diagnostic
and predictive tool in diverse industrial domains (Amelian,
2025).
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Reliability and maintenance optimization have also
gained traction in energy and infrastructure sectors. For
instance, studies on rotating machinery and energy
infrastructure emphasize advanced strategies to improve
performance and reduce unexpected breakdowns (Erhueh et
al., 2024). Preventive maintenance models have been
applied to photovoltaic power systems (Chen et al., 2024),
wind turbines (Kaewbumrung et al., 2024), and ship
propulsion systems (Garbatov & Georgiev, 2024),
underscoring the versatility of such approaches across
different engineering fields. Moreover, computational fluid
dynamics and Markovian modeling approaches are
increasingly integrated into reliability analysis to capture
system degradation and predict maintenance needs with
greater accuracy (Garbatov & Georgiev, 2024,
Kaewbumrung et al., 2024).

Another prominent strand in this evolving body of
knowledge is the adoption of fuzzy and multi-criteria
decision-making techniques. These methods address the
inherent uncertainty and subjectivity of maintenance
decisions (Amaitik et al., 2024; Dharma lingam et al., 2024).
For example, Fuzzy TOPSIS has been applied to rank repair
options, evaluate supplier selection in megaprojects, and
optimize vehicle choices in transport industries (Dharma
lingametal., 2024; Liang et al., 2023). In road infrastructure,
fuzzy best-worst methods integrated with VIKOR (Hasan &
Jaber, 2024) and mathematical models like ROC-TOPSIS
(Sur & Machfiroh, 2024) have been successfully applied to
prioritize maintenance tasks. Such frameworks allow
stakeholders to weigh cost, reliability, safety, and resource
availability, thereby ensuring more balanced and justifiable
decisions (Hasan & Jaber, 2024; Sur & Machfiroh, 2024).

The construction and heavy industry sectors also
demonstrate increasing reliance on reliability and artificial
intelligence. For instance, optimization of concreting
equipment in India has been achieved through Al and
reliability-based frameworks (Ghosh & Abawajy, 2025),
while corrosion-affected reinforced concrete structures have
been analyzed through residual life forecasting models
(Kopiika et al., 2025). Similarly, fuzzy synthesis approaches
have been developed to support hierarchical decision
analysis in selecting optimal repair techniques (Amaitik et
al., 2024). These examples illustrate how reliability-driven
decision-making is extending from discrete manufacturing
and energy systems to large-scale civil and construction
projects.

The adoption of machine learning and simulation
frameworks has further accelerated predictive and
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preventive maintenance capabilities. Applications in the
automotive sector show how integrated fuzzy TOPSIS and
process mining improve predictive  maintenance
performance (Micosky et al., 2024). Machine learning has
also been combined with human factor analysis in high-risk
sectors such as nuclear power (Khamaj et al., 2024), as well
as in electrical and mechanical equipment optimization in
PVC manufacturing (Kiki & Wang, 2025). These studies
emphasize the growing recognition that human error, system
reliability, and machine availability must be considered
simultaneously for effective maintenance planning
(Bafandegan Emroozi et al., 2024; David et al., 2024).

Despite technological advances, integrating preventive
maintenance strategies into complex systems remains
challenging. Multi-state systems with performance sharing
(Wu et al., 2024), repairable k-out-of-n retrial systems (Li et
al., 2024), and consecutive k-out-of-n systems operating
under shock environments (Dong & Bai, 2024) require
mathematical models capable of handling interdependencies
and random shocks. Minimal repair and constrained multi-
attempt strategies also highlight the need for preventive
maintenance policies tailored to specific system
architectures (Cha & Finkelstein, 2024). Hidden Markov
models provide an additional statistical framework to model
system degradation and optimize reliability (Gamiz & L,
2023). Together, these models represent the state-of-the-art
in capturing the stochastic nature of industrial failures.

At the organizational level, the transition from corrective
to preventive maintenance strategies entails substantial
cultural and operational changes (West et al., 2024).
Companies are increasingly integrating discrete event
simulation and design of experiments to assess stochastic job
shop scheduling with random machine failures (Amelian,
2025), and employing hybrid methods combining human
error optimization with integrated production planning
(Bafandegan Emroozi et al., 2024). Maintenance scheduling
has been further refined using novel optimization
algorithms, such as the discrete mayfly algorithm with Lévy
flight and chaotic local search for preventive scheduling in
power generation systems (Belagoune et al., 2025). These
examples demonstrate how optimization algorithms,
simulation, and fuzzy decision-making converge to provide
more accurate and resilient maintenance strategies.

In addition, statistical and mathematical modeling plays a
central role in advancing maintenance optimization.
Research on the statistical modeling of preventive
maintenance effectiveness for repairable systems (Ye et al.,
2024), combined with comparative ranking preferences
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through fuzzy TOPSIS (Dharma lingam et al., 2024),
exemplifies the analytical rigor applied to maintenance
science. Mathematical simulation of preventive and
corrective maintenance using particle swarm optimization
(Singla et al., 2025) and genetic algorithms (Singla et al.,
2024) further illustrates the wide array of computational
methods employed. These methodologies are essential for
industries managing complex degraded systems, where
optimal solutions are necessary to maintain both
productivity and safety.

Emerging trends indicate that integrating human factors,
artificial intelligence, and sustainability considerations will
define the future of maintenance optimization. Human factor
engineering in nuclear and industrial contexts highlights the
risks of neglecting the human dimension in preventive
maintenance systems (Khamaj et al., 2024). At the same
time, simulation-driven training (Simion et al., 2025) and
reliability-based approaches for energy and infrastructure
systems (Erhueh et al., 2024; Garbatov & Georgiev, 2024)
reveal the benefits of preparing human operators to interact
effectively with complex technical systems. Multi-objective
optimization of composite structures (Zhao et al., 2025) and
innovative maintenance policies in logistics and shipping
(Corrotea et al., 2024; Yasin, 2025) demonstrate how
technical and human-centered strategies are converging.

Taken together, this growing body of literature illustrates
a clear trajectory towards more intelligent, simulation-
driven, and reliability-focused maintenance systems.
Advances in fuzzy logic, artificial intelligence, and
statistical modeling  complement  simulation  and
optimization techniques, creating powerful tools for
reducing risk and enhancing system resilience (Amaitik et
al.,, 2024; Li et al.,, 2024; Micosky et al., 2024). The
integration of these approaches allows industries to
anticipate failures more effectively, optimize maintenance
schedules, and align operational strategies with long-term
reliability goals (Wu et al., 2024; Ye et al., 2024).

The present study builds upon this foundation by
combining simulation modeling and fuzzy multi-criteria
decision-making methods to evaluate and optimize
preventive maintenance strategies in a high-stakes industrial
setting.

2. Methods and Materials

This study employed an applied research design based on
simulation and multi-criteria decision-making. The research
was centered on the converter furnaces of the Sarcheshmeh
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Copper Complex Smelting Plant, where the operational and
maintenance performance of refractory bricks—both
imported and locally manufactured—were assessed. The
“participants” in this study were not human subjects but
rather the physical and operational units of the production
system, including four Pierce-Smith converter furnaces.
Each furnace was considered a case with specific operating
cycles, maintenance requirements, and potential failure
modes.

The design of the study involved two integrated stages:

e Simulation Stage: The production and
maintenance cycles of converter furnaces were
modeled using AnyLogic, an agent-based
simulation software. This allowed for replication of
furnace operations, prediction of breakdowns, and
assessment of different maintenance strategies
under varying conditions of brick quality.

e Optimization Stage: To identify the best
configuration for furnace operation when
substituting imported refractory bricks with local
ones, the Fuzzy TOPSIS method (Technique for
Order Preference by Similarity to Ideal Solution)
was applied. Multiple furnace configurations (all
imported, all local, or hybrid combinations) and
multiple failure scenarios were tested.

The research relied on three types of data:

e Operational Data: Production cycle lengths,
repair times, number of operating cycles before
failure, and types of maintenance (minor, semi-
major, and major repairs). These were collected
from operational records of the smelting complex.

e Economic Data: Costs of refractory bricks
(domestic vs. imported), associated tariffs, and
ancillary costs (e.g., drilling costs for local bricks).
Currency exchange rates (Euro to Iranian Rial)
were also included as an economic factor.

e Failure Modes: Based on empirical evidence, three
distinct failure types (Type 1, Type 2, and Type 3)
were defined, each with different repair times and
cost implications.

Simulation Tool:

AnyLogic was selected as the primary simulation
software because it supports agent-based, system dynamics,
and discrete-event simulation, making it well-suited for
modeling both the production process and its interaction
with maintenance schedules. The simulation included:
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e Input variables: furnace charge tonnage,
concentrate grade, recovery rate, cycle length, and
repair duration.

e Output variables: production of matte, blister
copper, and refined anodes; downtime; and
maintenance costs.

Decision-Making Tool:

The Fuzzy TOPSIS method was used to prioritize furnace
operation scenarios. It was chosen because it integrates both
quantitative and qualitative factors under uncertainty.

e Criteria included productivity, cost savings,
reliability, and compliance with operational
constraints.

e  Fuzzy triangular numbers were used to represent
expert judgments on performance levels.

e Linguistic variables such as “very low,” “low,”
“moderate,” “high,” and “very high” were mapped
onto fuzzy scales.

Distance between two fuzzy numbers:

e d(& b) = V[(1/3) * ((al - b1)2 + (a2 - b2)2 + (a3 -
b3)7)]

Fuzzy TOPSIS closeness coefficient:

e CC=Di/(Di+Dp)

e where Di* is the distance of alternative i from the
fuzzy positive ideal solution, and D™ is the distance
from the fuzzy negative ideal solution.

The analysis was carried out in two steps:

Step 1 — Simulation Analysis:

The AnyLogic model simulated multiple operational
scenarios, including:

e  Four furnaces with imported bricks.

e Four furnaces with local bricks.

e Mixed configurations (e.g., two local + two
imported, three local + one imported, etc.).

e The simulation outputs provided quantitative
indicators such as number of operational cycles
achieved, repair frequencies, downtime overlaps,
and total production.

Step 2 — Fuzzy TOPSIS Ranking:

Using the simulation results as input, the Fuzzy TOPSIS
method ranked each operational configuration. The steps
included:

1. Constructing the decision matrix with simulation-
derived performance measures.

2. Normalizing the decision matrix under fuzzy
conditions.
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3. Weighting criteria based on expert judgment (e.g.,
production continuity, repair costs, compliance
with “three furnaces active at all times”).

4. Determining fuzzy positive ideal solution (FPIS)
and fuzzy negative ideal solution (FNIS).

5. Computing distances of each alternative from FPIS
and FNIS using equation (1).

6. Calculating closeness coefficient for each
alternative using equation (2).

7. Ranking alternatives: the closer the coefficient to 1,
the more optimal the scenario.

The results from simulation and fuzzy multi-criteria
decision-making were integrated to recommend the optimal
operational strategy. Interestingly, while pure local or pure

Figure 1
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imported brick scenarios did not satisfy all operational
constraints, the analysis suggested that a hybrid
configuration—where specific sections of each furnace were
lined with local bricks and others with imported bricks—
produced the most efficient and reliable outcome.

3. Findings and Results

The simulation of four furnaces lined entirely with local
refractory bricks demonstrated that the operational cycles
often overlapped in their repair stages. The downtime
reached up to 18 days for two furnaces simultaneously,
leading to a significant drop in production.

Results of the simulation of four furnaces lined with local refractory bricks based on the defined input parameters.

A. MeliMesFactory : Simulation - Anylogic Professional

Statistics

= (=] X
Day 801: 00:00:00
o
13 Number of dayswith two furmaces operating
730 Number of dayswith thee flmaces operating
53 Numberof days with four fumaces operating

Hybrid scenarios, combining local and imported bricks,
produced improved outcomes. Downtime overlaps were

reduced, production remained stable, and cost efficiency was
improved compared to fully imported setups.
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Figure 2
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Results of the simulation of four furnaces with hybrid refractory brick configurations based on the defined input parameters.

A. MeliMesFactory : Simulation - AnyLogic Professional = o X
b
{9
: ) Statistics g Day 801: 00:00:00
14 14 A A A A 1 '
/ /| / | / /| /
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[ / { | fand J £ ! | ! | £
| N /1| w J ‘
| | / /14 /
/ / / 1V / / - .
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1/ | [ /
| / / / | f /[ /
} / / V / ¥ f )i | / . -
" ’ @ tmbue o i e
@ 100t deeceS ANk 0] reo X2 PONCOSMENCOMENany 1] cyow 00t e CO S wonz) cyoe @ rost porcosmenCoenonsesd)
i H
@ pues swecmos
|
saty prochact hinime
© ELSOUIS '
2@l 0 Number of days with two fmaces operating
@ pymic St 609 Number of dayswith three flimaces operating
192 Number of days with four fumaces operating

Table 1

Generalized Tasks of Furnace Operation and Maintenance

Row Task Description Function

1 Equipment classified according to part categories Equipment classification
2 Functions of parts classified in stage 1 Function classification

3 Time intervals defined with performance changes Scheduling

4 Shorter life cycle reduces available work time Scheduling evaluation

5 Functions of similar equipment recorded by interval Performance registration

Table 1 outlines the systematic categorization of
equipment and functions in the furnace operation cycle. It

Table 2

Fuzzy Definitions of Operational States

highlights that proper classification and scheduling directly
affect the overall reliability of the smelting process.

Row Characteristic State Fuzzy Equivalent
1 Very low Failure type 3 0.9

2 Low Failure type 2 0.6

3 Moderately low Failure type 1 0.2

4 Suitable Discharge/loading 0.3

5 Moderately high Copper blowing 0.5

6 High Operational cycle 0.65

7 Very high Blister copper output 0.99
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Table 2 assigns fuzzy numerical values to each
operational

Table 3

Weighted Parameters for Fuzzy TOPSIS Evaluation

state,

showing how failure modes and

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-14

production outcomes can be expressed in fuzzy scales for
decision-making under uncertainty.

Row Parameter Weight Row Parameter Weight
1 3 ladles of matte +0.5 10 Cost savings +0.8

2 Blowing stage S1 +0.9 11 Blister production +0.99
3 Local bricks +0.35 12 Imported bricks +0.27
4 Slag removal 1 -0.27 13 Imported repairs -0.7

5 Blowing stage S2 +0.35 14 Local repairs -0.27
6 Slag removal 2 -0.27 15 Failure type 1 -0.21
7 Copper blowing +0.5 16 Failure type 2 -0.35
8 Discharge blister +0.65 17 Failure type 3 -0.35
9 Furnace cleaning -0.2 18

To enable direct comparison, four configurations (Al—
A4) were analyzed. The decision matrix was constructed and

Table 4

Main Evaluation Criteria for Furnace Performance (A1-A4)

normalized according to Fuzzy TOPSIS methodology. Table
3 lists the weighted parameters used in the analysis.

Furnace  Al: Very Low — Very High A2: Very Low — Very High A3: Very Low — Very High A4: Very Low — Very High

1 0.5,0.1,0.2,0.35,0.21, 0, 0.26 0.2,0.3,0,0.35,0.1,0.21, 0 0.9,05,0.2,0.19,0,0.21,0 0.5,0.1,0.1,0,0.21,0.21,0

2 0.2,0.5,0.1,0.35,0.21,0,0.26 0.9,0.1,0,0.19,0.21,0,0 0.5,0.3,0,0.35,0.1,0.21,0 0.5,05,0,0.19,0,0.21,0

3 0.5,0.3,0,0.19,0.1,0.21,0.26 0.2,05,0.1,0.35,0.21, 0.21, 0.26 0.2,0.1,0,0.35,0.21, 0, 0.26 0.2,0.1,0.1,0.35,0.21,0.21,0
4 0.9,01,0,0,0,0,0 0.5,0.1,0.2,0,0,0,0.26 0.2,0.1,0.1,0,0.21,0.21, 0 0.9,0.3,0.2,0.35,0.1,0.21,0

Table 4 demonstrates the fuzzy evaluation results across
four main scenarios (A1-A4), showing varying performance

Table 5

Integrated Prediction Matrix

of each furnace. It illustrates how localized and imported
brick mixes affect output quality and stability.

Alt. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Al 0.9280 1.3040 1.7480 0.6040 0.9280 1.3100 0.1540 0.4100 0.9460 0.6980 0.8940 1.1580
A2 0.9080 1.3240 1.8280 0.3240 0.5040 0.8840 0.6040 0.9280 1.3700 0.4080 0.6680 1.0860
A3 0.9760 1.2880 1.6660 1.2020 1.7020 2.2480 1.1820 1.5620 1.9080 1.2020 1.6220 2.0080
A4 0.0000 0.0200 0.2400 0.5080 0.6600 0.8800 0.5240 0.7520 0.9980 0.3500 0.6700 1.2300

Table 5 provides the raw decision matrix used in the
fuzzy TOPSIS process. Scenario A3 stands out with

Table 6

Normalized Matrix

consistently higher scores across parameters, indicating

stronger operational robustness.

Alt. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Al 0.5077 0.9849 1.7910 0.2687 0.5452 1.0899 0.3176 0.6824 14414 0.3989 0.7186 1.2753
A2 0.4967 1.0000 1.8730 0.1441 0.2961 0.7354 0.2473 0.6062 1.4796 0.3326 0.6511 1.3062
A3 0.5339 0.9728 1.7070 0.5347 1.0000 1.8702 0.4448 1.0000 2.0272 0.5189 1.0000 1.7489
A4 0.0000 0.0151 0.2459 0.2260 0.3878 0.7321 0.3903 0.9510 2.2480 0.4674 0.9566 1.9273
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Table 6 shows the normalized scores, allowing for cross-
comparison. Here, A3 and A4 improve relative to others,
demonstrating stability when criteria are rescaled.

Table 7

Positive and Negative Criteria Sets

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-14

Alt. X1 X2 X3 X4
Al 0.1771 0.1351 0.0000 0.0766
A2 0.1786 0.0776 0.0000 0.0716
A3 0.1783 0.2561 0.0000 0.1076
A4 0.0087 0.1051 0.0000 0.1101
Table 7 lists the positive and negative values for each

alternative. Scenario A2 shows strong X1 performance,

while A3 dominates in X2, indicating trade-offs.

Table 8

Ideal Solutions in Fuzzy TOPSIS
Alt. X1 X2 X3 X4
A 0.2484 0.1000 0.1873 0.4812
A 0.0000 0.0000 0.0000 0.2328

Table 8 presents the ideal solutions. The fuzzy positive
ideal solution (FPIS) reflects the best-case performance,

Figure 3

Estimated evaluation criteria for the four furnaces (Scenario 1).

while the fuzzy negative ideal solution (FNIS) identifies the
worst-case benchmarks.

criterion 1

09
0.8
0.7
0.6
0.5
0.4
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Very Low Low
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Figure 4

Estimated evaluation criteria for the four furnaces (Scenario 2).

criterion 2

09
0.8
0.7
0.6
0.5 —
0.4

03 |
0.2 I I i
0.1
. L iu i ii I
Very Low ow Moderately Low Moderate Moderately High ~ High Very High

Figure 5

Estimated evaluation criteria for the four furnaces (Scenario 3).

criterion 3
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Very Low Low  Moderately Low Moderate Moderately High  High Very High
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Figure 6

Estimated evaluation criteria for the four furnaces (Scenario 4).

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-14

criterion 4
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Table 9

Performance of Four Predicted Furnace Scenarios

ol ol

Moderately Low  Moderate Moderately High ~ High

Very High

Scenario Closeness Coefficient Rank
Al 0.6906 4
A2 0.9530 1
A3 0.7109 3
A4 0.8119 2

Table 9 shows the final ranking based on closeness
coefficients. Scenario A2 achieves the highest coefficient
(0.953), making it the optimal solution. A4 follows closely
with 0.812, while Al performs worst with 0.691.

Figure 3 illustrates the fuzzy TOPSIS evaluation of
furnaces in Scenario 1, where the system was configured
with localized refractory bricks. The chart shows low to
moderate performance values across most criteria, with
notable weaknesses in reliability and downtime
management. The results highlight that relying solely on
local bricks produces unfavorable outcomes, as maintenance
overlaps reduce operational continuity and performance
indicators remain below desirable thresholds.

In the Figure 4, the evaluation results for Scenario 2 are
presented, which combined imported and local refractory
bricks in a hybrid configuration. The scores reflect
significant improvements compared to Scenario 1,
particularly in terms of operational reliability and production
continuity. The higher values across multiple criteria
indicate that hybrid arrangements mitigate the limitations

10

observed in fully local setups, positioning Scenario 2 as one
of the most efficient alternatives.

Figure 5 displays the results for Scenario 3, representing
another hybrid configuration with a different distribution of
imported and local bricks. The evaluation demonstrates
intermediate  performance: some criteria  achieved
moderately high values, while others lagged behind.
Although Scenario 3 surpassed the performance of Scenario
1, its outcomes were less consistent than those of Scenario
2, suggesting that not all hybrid configurations yield equally
optimal results.

The evaluation for Scenario 4 is presented in Figure 6,
showing relatively balanced performance across the selected
criteria. Scenario 4 ranked second overall, with strong scores
in reliability and production-related metrics but slightly
lower cost-effectiveness compared to Scenario 2. The results
indicate that Scenario 4 offers a feasible alternative with
robust operational performance, though not reaching the
optimal balance demonstrated by Scenario 2.
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4. Discussion and Conclusion

The findings of this study underscore the critical role of
simulation modeling and fuzzy multi-criteria decision-
making in optimizing preventive maintenance strategies for
complex industrial systems. By evaluating four operational
scenarios (A1-A4), the results revealed that scenario A2
achieved the highest closeness coefficient (0.953),
indicating superior performance in balancing cost efficiency,
operational continuity, and reliability. Scenarios A3 and A4
followed with moderate scores (0.711 and 0.812
respectively), while Al performed least effectively (0.691).
These results suggest that hybrid or selectively optimized
maintenance configurations outperform both purely local
and purely imported strategies, confirming that context-
specific approaches yield the best outcomes when applied in
uncertain,  resource-constrained  environments.  The
closeness of A4 to A2 further demonstrates the feasibility of
hybrid strategies where imported and local resources are
integrated.

These outcomes align with contemporary research on
reliability-based  optimization,  which  consistently
demonstrates that multi-objective frameworks are more
effective than single-objective approaches in maintenance
planning. Studies applying artificial intelligence to optimize
concreting equipment operations in India, for example,
highlighted that balancing multiple criteria—such as
resource costs, system availability, and task scheduling—
produces better outcomes compared to one-dimensional
optimization (Ghosh & Abawajy, 2025). Similarly, in
composite repair structures, reliability-based multi-objective
optimization models using artificial neural networks proved
effective in handling conflicting performance objectives
(Zhao et al., 2025). The present study reinforces these
findings by showing how fuzzy TOPSIS can capture
uncertainty and provide rankings that reflect the inherent
trade-offs among competing maintenance priorities.

The results also confirm the value of simulation-driven
approaches in maintenance contexts, particularly where
failures are stochastic and operational conditions complex.
The identification of A2 as the best-performing
configuration parallels evidence from stochastic job shop
scheduling models that employed discrete event simulation
to manage random machine failures (Amelian, 2025).
Likewise, discrete event simulation applied to maintenance
processes in a port cargo company revealed bottlenecks and
enabled process improvements, highlighting simulation’s
capacity to replicate and test alternative operational
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strategies (Corrotea et al., 2024). In the present study,
simulation not only replicated furnace operations but also
captured failure overlaps and downtime distributions,
making it a vital tool for validating hybrid preventive
maintenance strategies.

Furthermore, this research confirms the significance of
preventive  maintenance in  sustaining  industrial
performance. In line with earlier work on preventive
maintenance for constrained minimal repair systems (Cha &
Finkelstein, 2024), the study shows that preventive
strategies, when carefully calibrated, minimize costly
system disruptions. Findings from preventive maintenance
modeling in photovoltaic power systems (Chen et al., 2024)
and wind turbines (Kaewbumrung et al., 2024) further
support this conclusion, demonstrating that structured
preventive schedules enhance equipment longevity and
reduce sudden outages. By integrating simulation and fuzzy
TOPSIS, the current research extends this body of work,
offering a dual-method framework applicable to both energy
systems and metallurgical operations.

The fuzzy multi-criteria evaluation, in particular,
demonstrates robustness in handling ambiguous and
incomplete data. This resonates with findings from fuzzy
synthesis approaches for hierarchical decision analysis,
which have been used to select optimum repair techniques in
industrial systems (Amaitik et al., 2024). Similarly, extended
fuzzy TOPSIS has been applied in supplier selection for
prefabricated megaprojects under hesitant environments,
underscoring the technique’s versatility in uncertain
decision contexts (Liang et al., 2023). In the present study,
the fuzzy TOPSIS method provided nuanced evaluations
that aligned with expert judgments and simulation outputs,
validating its effectiveness in ranking maintenance
alternatives under uncertainty.

Another important finding of this research is the
significance  of reliability analysis in preventive
maintenance. The top ranking of scenario A2 reflects the
need for systematic reliability evaluations, as also noted in
the context of consecutive k-out-of-n systems operating
under shock environments (Dong & Bai, 2024). Similarly,
research on retrial systems with two failure modes
emphasized that preventive strategies tailored to system
architecture yield more resilient outcomes (Li et al., 2024).
The high coefficient of A2 indicates that the configuration
best supported the reliability of the furnace system, echoing
lessons from reliability-based predictable maintenance
applied to container ship fuel systems (Yasin, 2025). This
convergence across industries shows that reliability remains
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the cornerstone of effective preventive maintenance
planning.

The present findings also reinforce the need to integrate
human factors and error management into maintenance
design. Hybrid strategies, as highlighted in this study, are not
purely technical but also managerial, involving human
oversight in resource allocation and scheduling. This is
consistent with research in nuclear reactor maintenance
where human factor engineering and artificial intelligence
were combined to analyze operational loops and optimize
safety (Khamaj et al.,, 2024). Similarly, integrated
approaches that account for human error in production and
maintenance planning improve efficiency, as shown in
recent holistic frameworks (Bafandegan Emroozi et al.,
2024). By emphasizing hybrid strategies, this study
illustrates the practical reality of maintenance systems where
human  decision-making interacts  with  technical
optimization.

The evidence from this research also resonates with
ongoing shifts from corrective to preventive maintenance in
global practice. Studies analyzing transitions in building
maintenance strategies emphasized that moving from
corrective to preventive approaches significantly reduces
long-term costs and enhances system reliability (West et al.,
2024). Reliability-centered maintenance models applied to
critical machines in the Sabiz plant further validate the
importance of structured preventive frameworks (Cahyati et
al., 2024). In this context, the success of scenario A2
underscores that preventive maintenance is not only
theoretically advantageous but also practically feasible,
particularly when supported by simulation and fuzzy multi-
criteria analysis.

Moreover, the ranking of alternatives in this study
demonstrates the impact of optimization algorithms on
preventive maintenance planning. The use of fuzzy TOPSIS
parallels approaches where genetic algorithms (Singla et al.,
2024), particle swarm optimization (Singla et al., 2025), and
discrete mayfly algorithms (Belagoune et al., 2025) were
employed to improve preventive scheduling. These studies
collectively demonstrate that optimization methods enhance
the accuracy and adaptability of maintenance strategies. The
present research contributes by showing that fuzzy TOPSIS,
when combined with simulation, can produce rankings that
align with both theoretical expectations and practical
constraints.

From a broader perspective, the study validates the
integration of advanced mathematical and statistical
modeling in preventive maintenance. Statistical modeling of

12

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-14

preventive maintenance effectiveness for repairable systems
(Ye et al., 2024), hidden Markov models for system
degradation (Gamiz & L, 2023), and ROC-TOPSIS for road
repair prioritization (Sur & Machfiroh, 2024) all exemplify
the analytical sophistication needed to support maintenance
decisions. By applying fuzzy TOPSIS to furnace systems,
the present study shows how advanced modeling
frameworks can guide real-world maintenance strategies and
ensure alignment with organizational goals.

The findings also highlight the growing role of artificial
intelligence and machine learning in maintenance
optimization. The success of A2 resonates with machine
learning frameworks applied to PVC manufacturing
equipment (Kiki & Wang, 2025) and integrated Al-fuzzy
approaches used in predictive automotive maintenance
(Micosky et al., 2024). Likewise, studies on Al-based
optimization in nuclear (Khamaj et al., 2024) and concreting
(Ghosh & Abawajy, 2025) industries show similar
improvements. This reflects a broader trend where Al
enhances the adaptability and intelligence of preventive
maintenance systems. The use of fuzzy TOPSIS in this study
contributes to this trend by incorporating expert-driven
fuzzy evaluations into quantitative decision frameworks.

Finally, this research contributes to the growing emphasis
on sustainability and resilience in industrial systems.
Preventive maintenance strategies, when optimized through
simulation and fuzzy models, reduce waste, conserve
resources, and ensure more sustainable operations. Lessons
from energy infrastructure optimization (Erhueh et al.,
2024), corrosion forecasting in reinforced concrete (Kopiika
et al.,, 2025), and preventive replacement models in
photovoltaic systems (Chen et al., 2024) reinforce the
sustainability dimension of preventive maintenance. By
identifying A2 as the optimal configuration, this study shows
that maintenance strategies can align with both economic
and environmental goals.

While the present study provides strong evidence for the
effectiveness of simulation and fuzzy TOPSIS in preventive
maintenance optimization, it has certain limitations. First,
the findings are based on a case study of converter furnaces
in a specific industrial context, which may limit
generalizability. Second, the fuzzy evaluations rely on
expert judgments, which can introduce subjectivity despite
the robustness of fuzzy methods. Third, the study does not
account for long-term degradation effects or changes in
operational conditions that may alter system reliability over
extended time horizons. Finally, the computational models
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applied here may need adaptation when scaled to larger or
more heterogeneous industrial systems.

Future research should extend this approach to multiple
industries, particularly in energy, transport, and
infrastructure, where preventive maintenance is critical.
Comparative studies applying alternative optimization
algorithms, such as genetic programming, reinforcement
learning, and advanced hybrid fuzzy methods, would
provide valuable benchmarks. Incorporating human factors
more deeply into simulation frameworks, including operator
behavior, training, and decision-making, could enrich the
analysis. Additionally, long-term simulations that integrate
system degradation models, hidden Markov processes, or
stochastic deterioration mechanisms should be explored.
Finally, research could examine the integration of
sustainability —metrics into preventive maintenance
optimization to align with global environmental goals.

For practitioners, the findings underscore the importance
of adopting hybrid preventive maintenance strategies that
balance cost and reliability. Simulation tools should be
widely applied to test operational scenarios before
implementation, allowing organizations to anticipate
failures and optimize resources. Decision-makers should
integrate fuzzy multi-criteria approaches to ensure that
subjective judgments are systematically captured and
weighted. Finally, organizations should embrace preventive
over corrective maintenance, supported by optimization
models, as a pathway to improving reliability, efficiency,
and sustainability in industrial systems.
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