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CrossMark

This study was conducted with the aim of presenting and evaluating a smart
manufacturing model using a decision tree (case study: the mineral processing
industry). Given the necessity of responding to environmental and competitive
pressures, the integration of modern technologies—including the Industrial
Internet of Things (I10T), automation, and data mining—within the framework
of smart manufacturing was considered. The required data were collected
through questionnaires and extraction of operational information from mineral
processing units. After initial data cleansing, seven key variables—including
energy consumption, pollution level, technological status of production lines,
presence of an Information Technology (IT) system, green planning, technical
readiness, and production efficiency—were entered into the model. Modeling
was performed using the Classification and Regression Tree (CART) method,
and the factors affecting unit productivity were analyzed. The results showed that
the technological status of production lines and the technical readiness of
employees had the greatest weight in determining production efficiency, while
green planning and the use of IT systems played complementary and influential
roles in enhancing production and reducing pollution. It was also found that
implementing green policies and improving technical knowledge levels can
enhance process efficiency even in units with outdated technology. Comparing
the decision tree model with other machine learning methods demonstrated its
superior interpretability and suitable accuracy for industrial applications.
Overall, the findings indicated that the use of data-driven smart models based on
decision trees can provide an effective decision-support tool for improving
productivity, reducing energy consumption, and achieving sustainability goals in
the mineral processing industry. It is recommended that strategies for technology
upgrading, continuous technical training of employees, and expanding green
management be prioritized in future policymaking.

Keywords: Smart manufacturing, Decision tree, Machine Learning, Mineral
processing industry
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1. Introduction

n recent years, the global manufacturing sector has

undergone profound structural and technological
transformations under the influence of Industry 4.0, which
has reshaped the foundations of production, logistics, and
organizational management. The emergence of cyber-
physical systems, the Internet of Things (loT), Artificial
Intelligence (Al), big data analytics, and digital twins has
established a new paradigm commonly referred to as Smart
Manufacturing (SM), which integrates intelligent sensing,
autonomous decision-making, and self-optimizing processes
to improve productivity, sustainability, and competitiveness
(Edgar & Pistikopoulos, 2018; Gholami et al., 2021; Kusiak,
2018). This paradigm shift is driven by increasing global
competition, environmental pressures, and the rapid
evolution of digital technologies that require manufacturing
systems to be more flexible, responsive, and resource-
efficient (Ayan, 2024; Bayat & Khabiri, 2022; Jamwal et al.,
2021).

The rationale for transitioning toward smart and green
production models is strongly linked to the imperative of
sustainable development and operational efficiency.
Traditional linear production models are no longer
compatible with the dynamic and uncertain conditions of
contemporary markets. Integrating smart production
systems (SPS) with green manufacturing practices has
emerged as a strategic response to these challenges (Agarwal
etal., 2020; Fiorello et al., 2023; Kannan et al., 2023). Smart
production systems are capable of collecting, processing,
and analyzing real-time operational data to optimize
resource utilization, minimize waste, and enable predictive
maintenance (Ahmad & Rahimi, 2022; Boostanpour &
Nokooei Sang Atash, 2024). At the same time, the adoption
of green production principles reduces environmental
footprints, promotes circular resource flows, and enhances
corporate social responsibility performance (Ching et al.,
2022; Tsai, 2018).

One of the central enablers of smart manufacturing is the
integration of data-driven and model-based decision-making
frameworks, which are crucial for achieving operational
agility and adaptive capacity (Amiri Deh Abadi et al., 2023;
Danesh Naroui & Tamjidi, 2024). Smart systems utilize
interconnected sensors, cloud-based platforms, and analytics
engines to facilitate seamless communication across
machines, production lines, and enterprise resource planning
systems (Rane et al., 2023; Soori et al., 2023). This
interconnectedness enables real-time monitoring and
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autonomous adjustments in production parameters, thereby
reducing downtime and improving efficiency. Furthermore,
the deployment of digital twins allows for virtual simulation
of production processes, supporting scenario planning, risk
assessment, and continuous improvement efforts
(Ghayasitabari et al., 2025; Tripathi et al., 2022).

The sustainability dimension of smart manufacturing is
equally significant. Scholars have emphasized that
integrating energy-efficient technologies and renewable
energy sources within production systems not only reduces
operational costs but also aligns industrial activities with
global climate and sustainability goals (Jodeiri et al., 2022;
Machado et al., 2020; Tamimi & Farhang, 2025). For
instance, smart energy management frameworks can
dynamically adjust energy loads, integrate on-site renewable
generation, and reduce peak demand, thereby contributing to
both environmental and economic performance (Edgar &
Pistikopoulos, 2018; Gotz & Jankowska, 2017). Moreover,
studies have shown that leveraging digital transformation to
enhance green production capabilities accelerates firms’
ability to comply with environmental regulations and
respond to stakeholder expectations regarding ecological
responsibility (Fasankari & Asarian, 2023; Janahi et al.,
2022).

In  addition to  technological advancements,
organizational and managerial factors play a pivotal role in
the success of smart manufacturing initiatives. Effective
governance mechanisms, cross-functional integration, and
human resource development are critical for ensuring the
interoperability and scalability of smart production systems
(Ayan, 2024; Rifat & Anjom, 2024; Taghavi et al., 2023).
Building digital competencies and fostering a data-driven
organizational culture enable employees to effectively
operate and maintain intelligent systems, interpret analytics
outputs, and make informed decisions in real time (Bayat &
Khabiri, 2022; Brklja¢ & Sudarevi¢, 2018). Moreover, the
establishment of inter-organizational networks and cluster-
based collaboration enhances knowledge sharing and
accelerates the diffusion of smart and sustainable practices
across industrial ecosystems (G6tz & Jankowska, 2017; Yap
& Al-Mutairi, 2024).

However, despite its transformative potential, the
implementation of smart manufacturing faces numerous
challenges that need to be systematically addressed. These
include technological integration complexities,
cybersecurity vulnerabilities, high capital investment
requirements, and resistance to organizational change
(Gholami et al., 2021; Jamwal et al., 2021; Soori et al.,
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2023). Research indicates that without a coherent strategic
framework and top management commitment, many digital
transformation projects fail to achieve their intended
outcomes (Fiorello et al., 2023; Kannan et al., 2023).
Moreover, the lack of standardized interoperability protocols
and insufficient workforce training often leads to fragmented
systems and underutilization of advanced technologies
(Ahmad & Rahimi, 2022; Boostanpour & Nokooei Sang
Atash, 2024). Consequently, there is a critical need for
structured methodologies that align technological innovation
with managerial processes, workforce development, and
sustainability imperatives (Amiri Deh Abadi et al., 2023;
Ghayasitabari et al., 2025).

Recent studies have proposed integrated decision-support
models to guide the deployment of smart manufacturing
systems. These models combine data-driven techniques such
as machine learning, multi-criteria decision-making, and
decision trees to analyze operational data, predict
performance outcomes, and optimize resource allocation
(Agarwal et al., 2020; Tamimi & Farhang, 2025; Tripathi et
al., 2022). For example, decision tree models can classify
production units based on key performance indicators,
identify high-impact variables affecting efficiency, and
support scenario-based planning (Danesh Naroui & Tamjidi,
2024; Soori et al., 2023). Such models offer managers
practical tools to prioritize technological investments, design
targeted interventions, and monitor the impact of green
initiatives on productivity (Ching et al., 2022; Fiorello et al.,
2023).

Furthermore, the integration of advanced connectivity
technologies such as 5G has the potential to significantly
enhance the real-time responsiveness and adaptability of
smart production systems (Ayan, 2024; Fasankari &
Asarian, 2023). High-speed, low-latency networks enable
seamless  communication  between  thousands  of
interconnected devices, which is crucial for synchronizing
complex production processes and ensuring data integrity.
This digital backbone supports the implementation of
predictive maintenance, autonomous quality control, and
dynamic  scheduling systems that can respond
instantaneously to fluctuations in demand and supply (Edgar
& Pistikopoulos, 2018; Jamwal et al., 2021). In parallel, the
convergence of blockchain and IoT technologies is opening
new opportunities for enhancing transparency, traceability,
and trust across supply chains (Janahi et al., 2022; Rane et
al., 2023).

From a strategic perspective, aligning smart
manufacturing with green production goals contributes to
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building resilient and future-ready industrial systems. Firms
that successfully combine technological innovation,
environmental responsibility, and organizational agility are
better positioned to achieve long-term competitiveness and
stakeholder value creation (Fiorello et al., 2023; Gholami et
al., 2021; Kannan et al., 2023). The shift toward data-centric
and sustainability-oriented manufacturing also reflects
broader socio-economic trends that prioritize circular
economy models, eco-innovation, and knowledge-based
value chains (Brklja¢ & Sudarevi¢, 2018; Jodeiri et al., 2022;
Machado et al., 2020). As global industries increasingly
operate within complex networks of stakeholders,
regulations, and technological infrastructures, the capacity
to integrate these diverse dimensions into coherent smart
production strategies becomes a decisive competitive
advantage (Rifat & Anjom, 2024; Yap & Al-Mutairi, 2024).

In summary, the transition toward smart manufacturing
represents not only a technological evolution but also a
paradigm shift in managerial thinking and industrial
organization. It demands the integration of advanced digital
technologies, green production practices, and human-centric
management approaches to create manufacturing systems
that are intelligent, sustainable, and resilient (Ghayasitabari
et al., 2025; Tamimi & Farhang, 2025; Tsai, 2018). The
present study contributes to this growing body of knowledge
by proposing and evaluating a data-driven smart
manufacturing model based on decision tree algorithms,
aiming to enhance production efficiency, reduce
environmental impacts, and support strategic decision-
making in the mineral processing industry.

2. Methods and Materials

The present study was conducted with an applied
approach using Data Mining and smart modeling methods.
The required data were collected through the review of
internal documents, operational reports, and questionnaires
completed by managers and experts from mineral processing
units. The dataset consisted of various operational stations
(daily or monthly production samples) and seven key
variables:  energy  consumption,  pollution  level,
technological status of production lines, presence of an
Information Technology (IT) system, green planning,
technical readiness, and production efficiency.

After data collection, validation, initial cleaning (removal
of incomplete or invalid data), and standardization of data
formats were performed. Qualitative variables (such as
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technology status, 1T, and green planning) were categorized
and converted into numerical form.

In the first stage, the frequency distribution of qualitative
variables and statistical indicators of quantitative variables
(mean, median, standard deviation, etc.) were calculated to
gain a preliminary understanding of the production lines.
Then, using the Classification and Regression Trees (CART)
algorithm, a decision tree model was implemented to predict
production efficiency based on other variables. After
training the model, feature importance, key model rules
(from the top paths of the decision tree), scenario analyses,
and grouping of terminal leaves were extracted.
Furthermore, the model results were compared with other
Machine Learning models (linear regression, random forest,
etc.).

Specific Formulas Related to the Variables of the
Study

Energy Efficiency (EE)

Formula for the ratio of useful output to total energy
consumption of production lines:

EE = useful output / total energy consumption

Technical Readiness Index (TRI)

A composite index based on scoring sub-indices
(maintenance, training, modernization):

TRI=(S1+S2+S3)/3

where S1 = maintenance score, S2 = technical training
score, and S3 = equipment modernization score (each from
0 to 100).

Table 1

Comprehensive Statistical Information of the Variables
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Tech Status Score (TSS)

Weighted sum of technological status:

TSS =X (wi x Ti)

where wi represents the weight of each technological
component, and Ti represents its score.

Intelligent Production Efficiency (IPE)

An integrated formula derived from the key effects of
variables:

IPEi = ouXii + 02Xoi + ... + Xy + C

e ox: model adjustment coefficients (extracted from
regression or machine learning analyses)

* C: constant

* subscript i: each unit/factory or production line

Smart  Decision-Making Function Based on
Thresholds (Simple Decision Tree)

If we wish to represent the logic of the model in the form
of a decision-support formula:

If (Tech Status Score > thresholdi) AND (TRI >
threshold2) THEN production level = high

Otherwise: production level = normal or requires
improvement.

3. Findings and Results

In this section, the descriptive findings of the research
variables are reported.

Variable Type Number of Mean  Standard Minimum  Maximum Median  Frequency of each state
categories/groups deviation (count/%)

Energy Numerical 320 41 210 436 318

consumption

Pollution level Numerical - 65 19 21 139 67

Technical Numerical - 6.5 21 2 10 7

readiness

Production Numerical - 72 9 48 93 73

efficiency

Technology Categorical 3 - - Old: 175 (35%) / Semi-

status
IT system Binary 2

Green planning  Binary 2

modern: 165 (33%) / Modern:
160 (32%)

Present: 257 (51%) / Not
present: 243 (49%)

Present: 239 (48%) / Not
present: 261 (52%)

Description of Numerical Variables:

» Energy consumption (kWh/ton): The average energy
consumption is 320 kilowatt-hours per ton of mineral
material. The standard deviation of 41 indicates relatively

high data dispersion and significant differences in energy
consumption between units. The minimum and maximum
energy consumption are 210 and 436 kilowatt-hours,
respectively, showing a wide range of variation.
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« Pollution level (mg/m3): The average pollution level is
65 milligrams per cubic meter. The standard deviation of 19
also indicates considerable dispersion in pollution levels.
The range (21 to 139 milligrams per cubic meter) shows a
significant difference in pollution levels across units.

» Technical readiness (1-10): The average technical
readiness score is 6.5 out of 10, indicating that processing
units are at a moderate level of technical readiness. The
standard deviation of 2.1 shows that the data are also
considerably dispersed.

« Production efficiency (%): The average production
efficiency is 72%. The standard deviation of 9 indicates that
variation in production efficiency among different units is
significant.

Description of Categorical and Binary Variables:

» Technology status: The distribution of technology
status among the three groups—old (35%), semi-modern
(33%), and modern (32%)—is almost equal. This indicates
technological diversity among processing units and suggests
that investing in technological upgrades could improve
productivity.

* I'T system: Slightly more than half of the units (51%)
use Information Technology (IT) systems. This indicates

Table 2

Feature Importance Analysis
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there is still room to expand the use of IT systems in mineral
processing, which could improve efficiency if utilized
optimally.

+ Green planning: Slightly less than half of the units
(48%) employ green planning. This indicates that the
application of environmental principles in processing
operations still requires further expansion.

Decision Rule Extraction

A Decision Tree is not only a modeling tool but also a
powerful analytical-descriptive tool that can be used to
explain the importance of variables, create managerial
knowledge, identify target groups, analyze variable
sensitivity, discover decision rules, and even analyze
errors—all of which are highly applicable for better
decision-making in mining or any organization. In this part,
the steps leading to the construction of the decision tree are
presented.

1. Feature Importance Analysis

In this analysis, the weight and role of each feature in the
Classification and Regression Trees (CART) decision tree
model are presented.

Variable

Importance (%)

Technology status
Technical readiness
Green planning
Energy consumption
IT system

Pollution level

31
24
18
15
9
3

Technology status and technical readiness have the
highest predictive power for production efficiency. Green

Table 3

Sample Rules (from major tree paths)

planning is also influential, whereas IT systems and
pollution have secondary roles.

Rule Decision Rule Description (if-then)

1 If technology status = modern and technical readiness > 7 — production efficiency > 80%

2 If technology status = old and green planning = not present — production efficiency < 65%

3 If IT system = present and technical readiness > 6 — production efficiency between 75% and 80%
4 If green planning = present and energy consumption < 300 — production efficiency = 85%

« Determinant factor: Technology status and technical
readiness have the greatest effect on production efficiency,

but managerial policies (such as IT and green management)
can play compensatory and complementary roles.
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« Flexibility: Units equipped with old technology can
compensate for part of their technological shortcomings if
they have green planning and provide staff training.

« Strategic policy: For managers in the mineral industry,
adhering to data-driven governance, investing in human
resource training, and supporting green approaches are the
fastest pathways to achieving productivity and
sustainability.

Table 4

Journal of Resource Management and Decision Engineering 4:3 (2025) 1-13

» Practical application: These rules are quickly
implementable, and each unit can compare its current status
against these rules and transparently select its improvement
priorities.

3. Sensitivity Analysis

Effect of Increasing or Decreasing Each Main Variable on Production Efficiency

Variable Change Effect on production efficiency (%)
Technology status Old — Modern 1+15

Technical readiness Each 1-unit increase 1 +4

Green planning Not present — Present 1+6

Energy consumption Each 20-unit decrease T43

IT system Not present — Present T+3

Pollution level Each 20-unit decrease 1+2

» Major leverage: Technological upgrading is the most
fundamental and impactful action for boosting production
efficiency; its message to managers is that investing in
equipping production lines and adopting advanced
technologies has the highest impact in the shortest time.

« Key human capital: Increasing employee skills and
technical readiness also has significant stepwise effects and
accelerates  productivity  following  technological
modernization.

« Sustainability and greenness: Green management
policies and reducing energy consumption simultaneously
help preserve the environment and improve performance,
complementing technology and human capital.

Table 5

Grouping of Samples in Key Leaves of the Decision Tree Model

« Digital transformation: Information Technology (IT)
and data-driven approaches act as productivity enhancers by
enabling smart operations.

+ Pollution management: Effective control of pollutants
is not only an environmental obligation; it is also an indicator
of process health and contributes to optimal production
performance.

This table clearly shows managers of mineral processing
lines how each key change (in technology, training, green
management, energy, etc.) is reflected with a “tangible
magnitude” in production efficiency and where to prioritize
investment and managerial interventions.

4. Homogeneous Subgroups (Leaf Nodes) Analysis

Group Number of samples Average efficiency (%) Common characteristics

1 80 85 Modern technology, high technical readiness
2 70 62 Old technology, no green planning

3 90 74 Semi-modern technology, active IT

4 60 79 Modern technology, no IT

5 50 58 Low technical readiness, high pollution

Group 1: Modern technology + high technical
readiness

« Analysis: With an average efficiency of 85%, this group
shows the best performance. The combination of up-to-date
equipment and high employee skills drives units to peak
productivity.  This  scenario  demonstrates  that
simultaneously upgrading technology and continuously

investing in personnel training and expertise creates the most
positive impact on production.

» Managerial implication: Providing and developing
state-of-the-art technology and continuously enhancing
employee skills is the key factor for success.

Group 2: Old technology + lack of green planning
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 Analysis: With an efficiency of 62%, this group is
among the lowest-performing groups. The absence of
modern technology alongside the lack of green policies
(energy and environmental management) places these units
at the lowest level of productivity. Such a structure is
vulnerable and exposed to high energy and pollution costs.

« Managerial implication: Simultaneous investment in
technological improvement and the adoption of
environmental policies is the most urgent need for these
units.

Group 3: Semi-modern technology + active IT

* Analysis: With an average efficiency of 74%, this group
represents units that, despite not fully utilizing state-of-the-
art technology, have achieved relatively improved
productivity thanks to Information Technology (IT)
infrastructure. The role of digital and data-driven tools in
improving the production process is evident.

» Managerial implication: Even without large
investments in equipment, developing IT can create tangible
improvements.

Table 6

Comparison of the Performance of Different Methods

Journal of Resource Management and Decision Engineering 4:3 (2025) 1-13

Group 4: Modern technology + lack of IT

* Analysis: Although these units have modern
technology, their efficiency (79%) is lower than that of
Group 1 because they do not utilize IT. This shows that the
absence of digital and data-driven tools prevents part of the
potential of modern technology from being realized.

» Managerial implication: To fully realize the benefits
of modern technology, completing the digital cycle and
implementing IT is essential.

Group 5: Low technical readiness + high pollution

« Analysis: This group has the weakest efficiency (58%)
and suffers from both low workforce skills and serious
pollution problems. This reflects the compounded negative
effect of weak human resources and inability to control
pollution.

+ Managerial implication: For these units, priority
should be given to improving staff training and skills as well
as effectively controlling environmental pollution.

5. Model Comparison

Model Accuracy (R?) Interpretability
Decision Tree 0.78 Very good
Linear Regression 0.68 Good

Random Forest 0.82 Moderate
Neural Network 0.85 Poor

The decision tree had acceptable accuracy and, due to its
rules and paths, offered high interpretability (which is highly
useful in management studies).

Table 7

Error Analysis of Several Samples with the Largest Prediction Deviations

Sample Actual Predicted Error  Special feature

ID efficiency efficiency

114 62 75 +13 Very high pollution

235 88 70 -18 Very low energy consumption but lacking Information Technology (IT) and green
planning

321 80 92 +12 IT system recently installed but insufficient training

401 56 68 +12 Very low technical readiness

Samples with large prediction deviations from the model
usually have unexpected characteristics or rare combinations
of variables.
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Table 8
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Changing Green Planning from “Not Present” to “Present” in Different Groups

Technology status Technical readiness IT Scenario Predicted efficiency (%)
Old 5 Not present Green: Not present 60
Old 5 Not present Green: Present 67
Semi-modern 7 Present Green: Not present 74
Semi-modern 7 Present Green: Present 79
Modern 9 Present Green: Not present 83
Modern 9 Present Green: Present 88

7. Scenario Analysis

Scenario 1: Old technology, low technical readiness,
no IT, and no green planning (efficiency: 60%b6)

This combination has the lowest performance. Lack of
modern equipment, low employee skills, absence of IT, and
no environmental approach lead to the minimal possible
efficiency.

Scenario 2: Old technology, low technical readiness,
no IT, but with green planning (efficiency: 67%)

Simply adding green management, even without
changing equipment or human resources, improves
efficiency by 7 percentage points. This shows the significant
impact of environmental approaches on productivity even in
technologically weak environments.

Scenario 3: Semi-modern technology, medium
technical readiness, equipped with IT, no green planning
(efficiency: 74%0)

Upgrading to semi-modern technology, increasing
technical readiness, and implementing IT creates a major
transformation (12 percentage points higher than the
previous row). This combination clearly demonstrates the

positive impact of new technologies and digital
transformation.
Scenario 4: Semi-modern technology, medium

technical readiness, equipped with
planning (efficiency: 79%)

Adding green management at this level adds another 5
percentage points to efficiency. This shows that even with
equipment upgrades, green policies are still the tipping point.

Scenario 5: Modern technology, high technical
readiness, equipped with IT, no green planning
(efficiency: 83%)

In this scenario, efficiency is high due to the highest
levels of technical readiness and technology (plus IT).
However, it is clear that the absence of green management
still prevents reaching peak productivity.

IT, with green

Scenario 6: Modern technology, high technical
readiness, equipped with IT, with green planning
(efficiency: 88%)

This is the ideal state: the synergy of modern technology,
trained staff, smart systems, and green management creates
the final productivity leap. This combination records the
highest predicted efficiency.

Overall, in almost all scenarios, adding green planning
leads to a noticeable increase in production efficiency, with
its effect being greater in modern groups.

Analysis of the Decision Tree Structure

1. First root split: which factor matters first?

According to the feature importance table, either
technical readiness (Tech Readiness) or technology status
(Tech Status) usually appears at the top.

This means that units with high technology and high
technical readiness have the most fundamental advantage for
improving productivity.

2. First branch — role of technical readiness and
green management

If technical readiness is high, the next split is often based
on green planning or energy consumption.

Units with high technical readiness and active green
planning usually have the lowest energy consumption and
pollution and significantly higher productivity than other
units (e.g., above 85%).

If green planning is inactive, productivity decreases (even
with high technical readiness; e.g., to 75-80%), while
implementing green planning directly improves productivity
and indirectly reduces energy and pollution.

3. Second branch — the role of technology status

When technical readiness is low or green planning is
absent, the model splits based on technology status:

» Units with modern technology: even without green
planning, they have moderate productivity (65—75%).

« Units with old technology: very low productivity (40—
60%) and usually high energy consumption and pollution.
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Modernizing equipment and technology partly
compensates for low readiness or lack of green management.
4. The role of energy consumption and pollution as
process health indicators
In many leaf nodes (outcomes), it is observed that:
* Units with low energy consumption, even with
moderate technology/readiness, have better productivity.
* Low or well-managed pollution leads to higher
classification in high-productivity groups.
5. Leaf outcomes: productivity predictions
At the final leaf nodes:
* Ideal paths (high Tech Readiness + Green Planning +
low Energy): highest productivity (90-95%).
» Weak paths (old Tech Status, high Energy, no Green
Planning): lowest productivity (40-60%).
+ Intermediate
planning): medium productivity (70-80%).
Summary and Analysis of the Decision Tree
1. Depth of technology and staff knowledge:
Leverage innovation and technological training;
even just improving technical readiness can cause a
major leap in productivity.

states (medium readiness + green

Figure 1

Decision Tree Model of the Study

Journal of Resource Management and Decision Engineering 4:3 (2025) 1-13

2. Implementing green management policies: Even
if technology budgets are limited, an active green
program can compensate for technological
weaknesses, and its domino effect reduces energy
and pollution.

3. Investing in modern equipment: If green
management is not initially prioritized in the tree
splits, up-to-date technology still creates an
advantage.

4. Reducing energy costs and managing pollution:
In all cases (even with medium technology or
readiness), controlling these two variables
increases recorded productivity.

Visual summary of decision tree paths:

* Tech Readiness (high) — Green Management (present)
— Energy (low) = very high productivity

* Tech Readiness (medium/low) — Tech Status (modern)
— Energy (medium) = medium productivity

» Tech Readiness (low) — Tech Status (old), no green
planning — Energy (high) = low productivity

Decision Tree for Production Efficiency

Energy <= 292.5

squared_error = 35.669
samples = 450
value = 91.371

Tech_Readiness <= 5.5
squared _error = 21.659

v

Ny

Tech_Readiness <= 7.5
squared_error = 62.512

Energy <= 314.5
squared_error = 89.467
samples = 800
value = 86.894

Tech_Status <= 0.5

Tech_Readiness <= 3.5
squared_error = 99.724
samples = 350
value = 81.137

e

squared_error = 112.366

~N

Tech_Status <= 0.5
squared_error = 68.536

samples = 351 samples = 99 samples = 103 samples = 247
value = 92.561 value = 87.152 value = 74.515 value = 83.899
/ Ve N\ / N\

Tech_Status <= 0.5 i Tech_Status <= 0.5 Pollution <= 50.5 | Green Planning <= 0.5 | Green_Planning <= 0.5|| [T _System <=0.5 |(Tech Readiness <= 7.5
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4. Discussion and Conclusion

The findings of this study highlight several pivotal
insights regarding the implementation of a decision-tree-
based smart manufacturing model in the mineral processing

industry. The descriptive analysis showed considerable
variability in operational performance among different units,
particularly in terms of energy consumption, pollution
levels, technical readiness, and production efficiency. The
decision tree model identified technology status and
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technical readiness as the most influential variables in
predicting production efficiency, with green planning and
the presence of Information Technology (IT) systems
serving as complementary enablers. Sensitivity analysis
further confirmed that upgrading technology from old to
modern yielded the largest efficiency gain (+15%), while
incremental improvements in technical readiness and
adoption of green planning contributed meaningfully to
performance enhancements. These results underscore the
importance of aligning technological modernization with
workforce capacity-building and environmental strategies to
drive operational excellence.

This aligns closely with the broader literature on Smart
Manufacturing (SM) and Industry 4.0, which emphasizes
that technological upgrading is a fundamental driver of
productivity and sustainability. For instance, (Kusiak, 2018)
conceptualizes SM as the integration of advanced digital
technologies, cyber-physical systems, and analytics-driven
decision-making to optimize production outcomes, while
(Edgar & Pistikopoulos, 2018) argues that embedding smart
energy management into manufacturing infrastructures
substantially enhances both energy efficiency and
production reliability. Our finding that units equipped with
modern technology achieved higher efficiencies echoes
(Gholami et al., 2021), who reported that adoption of Cyber-
Physical Systems (CPS) and big data analytics enables
continuous process optimization and significant reductions
in downtime. Similarly, (Ayan, 2024) observed that
interoperability capabilities in smart production planning
systems accelerate responsiveness and enable real-time
optimization of production schedules, ultimately improving
operational efficiency.

The strong positive effect of technical readiness in our
model reinforces the centrality of human capital
development in digital transformation contexts. The average
technical readiness score was moderately low, yet its
incremental increase was associated with notable
improvements in production efficiency. This supports
(Bayat & Khabiri, 2022), who emphasized that the
interaction of smart production systems (SPS), big data
analytics (BDA), and CPS depends heavily on workforce
digital competencies and the ability to interpret real-time
data. Similarly, (Brklja¢ & Sudarevi¢, 2018) underscored
that the transition to Industry 4.0 environments requires
cultivating a data-driven organizational culture and
continuous staff training. Our finding also resonates with
(Jamwal et al., 2021), who noted that employee readiness is
one of the key determinants of successful Industry 4.0
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adoption, often outweighing the benefits of technological
investments if neglected. In this study, units with high
technical readiness consistently outperformed others even
when their technology status was not fully modern,
suggesting that human capabilities can partly offset
technological deficits—a conclusion echoed by (Taghavi et
al., 2023), who found that human skills moderated the
relationship between advanced technologies and customer-
related outcomes.

The complementary role of green planning in our results
is equally noteworthy. Adding green planning to operational
strategies improved production efficiency across all
scenarios, with greater impacts in technologically advanced
units. This finding corroborates (Agarwal et al., 2020), who
demonstrated that incorporating green criteria into multi-
criteria decision-making models for manufacturing leads to
improved operational performance. (Ching et al., 2022) also
reported that sustainable manufacturing frameworks
leveraging Industry 4.0 technologies can achieve
simultaneous environmental and productivity gains by
optimizing material flows and reducing waste. Our results
further align with (Fiorello et al., 2023), who proposed a
smart-lean-green production paradigm, emphasizing that
green practices amplify the efficiency gains of smart and
lean strategies. Moreover, (Tsai, 2018) demonstrated
through mathematical programming that green production
planning enhances resource utilization efficiency in
manufacturing contexts. In the present study, even units with
old technology benefited significantly from green planning,
suggesting that environmental strategies can compensate for
technological gaps—a point supported by (Janahi et al.,
2022), who highlighted that eco-innovation strategies driven
by network collaboration can yield efficiency gains even
under resource constraints.

Another significant result was the supportive but less
dominant influence of IT systems. While the decision tree
assigned lower feature importance to IT compared to
technology and technical readiness, units equipped with IT
infrastructure performed better than those without,
particularly when combined with higher technical readiness.
This aligns with (Soori et al., 2023), who reviewed the role
of digital twins and IT integration in enabling real-time
monitoring and adaptive control in smart manufacturing
systems. Likewise, (Rane et al., 2023) illustrated how
integrating blockchain and 10T in product development
architectures enhances traceability, operational
responsiveness, and efficiency. These findings suggest that
while IT alone may not drive large performance
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improvements, it plays a critical enabling role by enhancing
the effectiveness of human and technological resources. This
observation is consistent with (Fasankari & Asarian, 2023),
who found that the deployment of 5G technologies and
advanced connectivity substantially enhances the
responsiveness of smart systems, primarily by supporting
the data flows required for predictive analytics and real-time
decision-making.

The study’s model comparison results further strengthen
these interpretations. Although the decision tree achieved
slightly lower predictive accuracy than the Neural Network
model (0.78 vs. 0.85), it offered superior interpretability,
which is crucial for managerial decision-making. This
reinforces arguments by (Tripathi et al., 2022) and (Agarwal
et al., 2020) that decision tree-based frameworks are
especially valuable in manufacturing because they provide
transparent decision rules and feature importance rankings,
enabling practitioners to understand causal relationships and
prioritize interventions. The ability of our decision tree to
classify units into homogeneous subgroups based on
combined characteristics (e.g., modern technology + high
technical readiness vs. old technology + no green planning)
aligns with the conceptual models proposed by (Danesh
Naroui & Tamjidi, 2024) and (Amiri Deh Abadi et al., 2023),
who highlighted the need for interpretable and adaptive
decision-support  tools in  smart  manufacturing
environments.

The broader strategic implications of our findings are
supported by multiple studies emphasizing that sustainable
competitive advantage in the Industry 4.0 era requires
integrating technological, human, and environmental
dimensions. For example, (Kannan et al., 2023) argued that
smart manufacturing serves as a strategic tool for
overcoming sustainability challenges when combined with
green practices and organizational agility. (Gholami et al.,
2021) also stressed that sustainable manufacturing 4.0
requires coordinated action across technology adoption,
workforce development, and environmental governance.
This perspective is echoed by (Machado et al., 2020), who
proposed an emerging research agenda focused on aligning
Industry 4.0 technologies with sustainability-oriented
organizational strategies. Our study reinforces this
integrated viewpoint by empirically demonstrating that
productivity gains in mineral processing are maximized not
through technology alone, but through the synergy of
advanced technologies, skilled human resources, and green
policies.
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Additionally, the clustering of high-performing units
(Group 1: modern technology + high technical readiness)
and low-performing units (Group 2: old technology + no
green planning) offers important insights into the dynamics
of technological diffusion and organizational readiness.
(Gotz & Jankowska, 2017) argued that industry clusters can
accelerate technology adoption and innovation diffusion, but
only when firms possess the absorptive capacity—primarily
human and organizational—to leverage new technologies.
Similarly, (Yap & Al-Mutairi, 2024) noted that the Industry
4.0-agriculture  nexus depends on ecosystem-level
integration of knowledge, technology, and human expertise.
Our results align with these perspectives, showing that
technological availability alone is insufficient; readiness and
organizational alignment are prerequisites for capturing the
full value of smart technologies. Furthermore, (Rifat &
Anjom, 2024) emphasized the role of governance and
strategic alignment in achieving high performance in
technologically advanced firms, suggesting that managerial
commitment is a key moderating factor—an insight that
helps explain why some modernized units in our study still
underperformed when lacking IT or green practices.

Overall, the results of this study support a growing
consensus in the literature that the pathway to sustainable
industrial competitiveness lies in combining technological
modernization, human capacity building, and environmental
stewardship in integrated smart manufacturing systems
(Ching et al., 2022; Fiorello et al., 2023; Jodeiri et al., 2022).
The decision tree model developed here contributes to this
field by providing a transparent, data-driven tool that can
help managers in the mineral processing sector prioritize
interventions and navigate the complex interdependencies
among these factors.

Despite its contributions, this study has several
limitations that should be acknowledged. First, the dataset
was limited to operational units within the mineral
processing industry, which may constrain the
generalizability of the findings to other manufacturing
sectors with different technological structures, regulatory
contexts, or market dynamics. Second, while the decision
tree model provided interpretable and actionable insights, it
inherently simplifies the underlying relationships among
variables and may not fully capture nonlinear interactions or
dynamic feedback loops that can emerge in complex
production systems. Third, the study primarily relied on
cross-sectional data, limiting the ability to infer causal
relationships or account for temporal variations in
performance as units adopt and integrate new technologies
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over time. Fourth, the assessment of technical readiness and
green planning was based on managerial questionnaires and
self-reported data, which may be subject to response bias or
inconsistencies. Fifth, the analysis did not incorporate cost-
benefit assessments or financial metrics, which are crucial
for evaluating the economic feasibility and investment
priorities of smart manufacturing initiatives.

Future studies could extend this research in several
promising directions. One important avenue would be to
apply the decision tree model to other manufacturing sectors,
such as automotive, electronics, or food processing, to
examine the extent to which the identified relationships hold
across different industrial contexts. Longitudinal studies
tracking the same units over time would provide deeper
insights into the causal mechanisms by which technological
upgrades, workforce development, and green policies
influence operational performance. Future work could also
integrate cost and financial performance indicators to assess
the return on investment of smart manufacturing strategies
and to identify optimal resource allocation patterns.
Additionally, combining decision tree models with more
sophisticated machine learning techniques, such as ensemble
methods or hybrid approaches, could enhance predictive
accuracy while retaining interpretability. Further research
could explore the role of organizational culture, leadership,
and change management practices in moderating the
effectiveness of smart manufacturing adoption. Finally,
investigating  cross-organizational networks, industry
clusters, and policy environments could reveal how external
ecosystem factors shape the diffusion and performance
impacts of smart and sustainable manufacturing systems.

For practitioners and industry managers, the results of this
study underscore the necessity of pursuing an integrated
strategy that simultaneously advances technological
modernization, human capital development, and
environmental management. Investing in modern production
technologies should be complemented by continuous
training and upskilling programs to ensure that employees
can fully leverage advanced systems and analytics. Green
planning initiatives, including energy efficiency measures
and pollution control, should be embedded into core
operational processes rather than treated as peripheral
activities. Managers should prioritize the deployment of IT
infrastructure to enhance data visibility, real-time
monitoring, and process automation, which can amplify the
benefits of both technology and human capabilities.
Decision tree-based decision-support tools should be
incorporated into strategic planning and performance
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monitoring systems to enable evidence-based prioritization
of improvement interventions. Finally, fostering a data-
driven culture and aligning organizational structures with
smart manufacturing objectives will be essential for
sustaining productivity gains and achieving long-term
competitiveness in the evolving industrial landscape.

Authors’ Contributions

Authors contributed equally to this article.

Declaration

In order to correct and improve the academic writing of
our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable
request to the corresponding author.

Acknowledgments

We would like to express our gratitude to all individuals
helped us to do the project.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial
support.

Ethics Considerations

In this research, ethical standards including obtaining
informed consent, ensuring privacy and confidentiality were
considered.

References

Agarwal, S., Agrawal, V., & Dixit, J. K. (2020). Green
manufacturing: A MCDM approach. Materials Today:
Proceedings, 26, 2869-2874.
https://doi.org/10.1016/j.matpr.2020.02.595

Ahmad, H. M., & Rahimi, A. (2022). Deep learning methods for
object detection in smart manufacturing: A survey. Journal of
Manufacturing Systems, 64, 181-196.
https://doi.org/10.1016/j.jmsy.2022.06.011

Amiri Deh Abadi, I., Sanavi Fard, F. H., & Kiamarth. (2023).
Examining the Agility of Production Processes Using
Mechanisms of Smart Industry. Quarterly Journal of


https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.1016/j.matpr.2020.02.595
https://doi.org/10.1016/j.jmsy.2022.06.011

Abhrari et al.
MAN

PUBLISHING INSTITUTE

Economic  Jurisprudence  Studies, 5(5), 977-1000.
http://www.journal.ihrci.ir/article_187020.html

Ayan, E. (2024). Investigating the Interoperability Capabilities of
Smart Production Planning in Manufacturing Industries Based
on the Fourth Industrial Revolution. Proceedings of the 13th
International  Conference on Industrial Engineering,
Productivity, and Quality, Tehran.

Bayat, K. B. S. A., & Khabiri, N. (2022). Identifying the Main
Factors for Improving Business Process Management (BPM)
with a Focus on the Interaction of Smart Production Systems
(SPS), Big Data Analytics (BDA), and Cyber-Physical
Systems (CPS): A Case Study of the Iranian Automotive
Market. New Research in Management and Accounting,
80(8), 327-337.
https://www.noormags.ir/view/en/articlepage/1882663

Boostanpour, J., & Nokooei Sang Atash, H. (2024). Artificial
Intelligence and Its Application in Industrial Management and
Green Production. Proceedings of the First National
Conference on Management in the Era of Transformation with
a Focus on Technology, Science, and Practice, Ardabil.

Brklja¢, M., & Sudarevi¢, T. (2018). SHARING ECONOMY AND
"INDUSTRY 4.0" AS THE BUSINESS ENVIRONMENT
OF MILLENNIAL GENERATION A MARKETING
PERSPECTIVE. Annals of DAAAM & Proceedings,

Ching, N. T., Ghobakhloo, M., Iranmanesh, M., Maroufkhani, P.,
& Asadi, S. (2022). Industry 4.0 applications for sustainable
manufacturing: A systematic literature review and a roadmap
to sustainable development. Journal of Cleaner Production,
334, 130133. https://doi.org/10.1016/j.jclepro.2021.130133

Danesh Naroui, K., & Tamjidi, M. (2024). Examining the Effects
of Implementing Digital Twins and Big Data in Smart
Manufacturing and Industry 4.0. Proceedings of the First
Conference on Opportunities and Challenges of Artificial
Intelligence and New Technologies in Industry and Mining,
Khash.

Edgar, T. F., & Pistikopoulos, E. N. (2018). Smart manufacturing
and energy systems. Computers & chemical engineering, 114,
130-144.
https://doi.org/10.1016/j.compchemeng.2017.10.027

Fasankari, & Asarian. (2023). Identifying and Prioritizing the
Applications of Fifth Generation Internet (5G) in Smart
Manufacturing. Journal of Smart Business Management
Studies, 12(45), 203-231.
https://ims.atu.ac.ir/article_16498.html

Fiorello, M., Gladysz, B., Corti, D., Wybraniak-Kujawa, M.,
Ejsmont, K., & Sorlini, M. (2023). Towards a smart lean green
production paradigm to improve operational performance.
Journal  of Cleaner  Production, 413, 137418.
https://doi.org/10.1016/j.jclepro.2023.137418

Ghayasitabari, M., Khandan Alam Dari, S. A., & Saber. (2025).
Identifying the Management Pattern of Causal Relationships
and Prioritizing Factors Affecting Green Production in Smart
Production Systems Based on Digital Transformation. Journal
of Accounting and Management Auditing, 14(54), 221-237.
https://www.jmaak.ir/article_23573.html?lang=fa

Gholami, H., Abu, F., Lee, J. K. Y., Karganroudi, S. S., & Sharif,
S. (2021). Sustainable manufacturing 4.0-pathways and
practices. Sustainability, 13(24), 13956.
https://doi.org/10.3390/su132413956

Gotz, M., & Jankowska, B. (2017). Clusters and Industry 4.0-do
they fit together? European Planning Studies, 25(9), 1633-
1653. https://doi.org/10.1080/09654313.2017.1327037

Jamwal, A., Agrawal, R., Sharma, M., & Giallanza, A. (2021).
Industry 4.0 technologies for manufacturing sustainability: A
systematic review and future research directions. Applied
Sciences, 11(12), 5725. https://doi.org/10.3390/app11125725

13

Journal of Resource Management and Decision Engineering 4:3 (2025) 1-13

Janahi, N. A., Durugbo, C. M., & Al-Jayyousi, O. R. (2022).
Exploring network strategies for eco-innovation in
manufacturing from a triple helix perspective. Cleaner
Logistics and Supply Chain, 4, 100035.
https://doi.org/10.1016/j.clscn.2022.100035

Jodeiri, A. M., Goldsworthy, M. J., Buffa, S., & Cozzini, M.
(2022). Role of sustainable heat sources in transition towards
fourth generation district heating-A review. Renewable and
Sustainable Energy Reviews, 158, 112156.
https://doi.org/10.1016/j.rser.2022.112156

Kannan, D., Gholipour, P., & Bai, C. (2023). Smart manufacturing
as a strategic tool to mitigate sustainable manufacturing
challenges: a case approach. Annals of Operations Research,
331(1), 543-579. https://doi.org/10.1007/s10479-023-05472-
6

Kusiak, A. (2018). Smart manufacturing. International Journal of
Production Research, 56(1-2), 508-517.
https://doi.org/10.1080/00207543.2017.1351644

Machado, C. G., Winroth, M. P., & Ribeiro da Silva, E. H. D.
(2020). Sustainable manufacturing in Industry 4.0: an
emerging research agenda. International Journal of
Production Research, 58(5), 1462-1484.
https://doi.org/10.1080/00207543.2019.1652777

Rane, S. B., Potdar, P. R., & Aware, S. (2023). Strategies for
development of smart and green products using Blockchain-
loT integrated architecture. Operations Management
Research, 16(4), 1830-1857. https://doi.org/10.1007/s12063-
023-00398-5

Rifat, A., & Anjom, W. (2024). Exploring the Impact of Corporate
Governance on Financial Performance: Evidence from
Fourth-generation Private Banks of Bangladesh. Asian
Journal of Economics, Business and Accounting, 24(12), 420-
431. https://doi.org/10.9734/ajeba/2024/v24i121618

Soori, M., Arezoo, B., & Dastres, R. (2023). Digital twin for smart
manufacturing, A review. Sustainable Manufacturing and
Service Economics, 2, 100017.
https://doi.org/10.1016/j.smse.2023.10001

Taghavi, S. M., Janpors, N. N., & Raeisi Ziarani, M. (2023).
Investigating the effects of the fourth-generation marketing
parameters on customer satisfaction and export performance:
a case study of the paints and coatings industries. In 5th
International Conference on Brand Marketing, Challenges and
Opportunities,

Tamimi, S., & Farhang. (2025). Management of Construction and
Creation of an Intelligent Energy Production System for
Buildings Utilizing Available Renewable Resources. Pars
Project Management, 1(2), 124-150.
https://jpm.pu.ac.ir/article_721751.html

Tripathi, V., Chattopadhyaya, S., Mukhopadhyay, A. K., Sharma,
S., Li, C., & Di Bona, G. (2022). A sustainable methodology
using lean and smart manufacturing for the cleaner production
of shop floor management in industry 4.0. Mathematics, 10(3),
347. https://doi.org/10.3390/math10030347

Tsai, W. H. (2018). Green production planning and control for the
textile industry by using mathematical programming and
industry 4.0 techniques. Energies, 11(8), 2072.
https://doi.org/10.3390/en11082072

Yap, C. K., & Al-Mutairi, K. A. (2024). A conceptual model
relationship between Industry 4.0-Food-agriculture nexus and
agroecosystem: A literature review and knowledge gaps.
Foods, 13(1), 150. https://doi.org/10.3390/foods13010150


https://journals.kmanpub.com/index.php/jppr/index
http://www.journal.ihrci.ir/article_187020.html
https://www.noormags.ir/view/en/articlepage/1882663
https://doi.org/10.1016/j.jclepro.2021.130133
https://doi.org/10.1016/j.compchemeng.2017.10.027
https://ims.atu.ac.ir/article_16498.html
https://doi.org/10.1016/j.jclepro.2023.137418
https://www.jmaak.ir/article_23573.html?lang=fa
https://doi.org/10.3390/su132413956
https://doi.org/10.1080/09654313.2017.1327037
https://doi.org/10.3390/app11125725
https://doi.org/10.1016/j.clscn.2022.100035
https://doi.org/10.1016/j.rser.2022.112156
https://doi.org/10.1007/s10479-023-05472-6
https://doi.org/10.1007/s10479-023-05472-6
https://doi.org/10.1080/00207543.2017.1351644
https://doi.org/10.1080/00207543.2019.1652777
https://doi.org/10.1007/s12063-023-00398-5
https://doi.org/10.1007/s12063-023-00398-5
https://doi.org/10.9734/ajeba/2024/v24i121618
https://doi.org/10.1016/j.smse.2023.100017
https://jpm.pu.ac.ir/article_721751.html
https://doi.org/10.3390/math10030347
https://doi.org/10.3390/en11082072
https://doi.org/10.3390/foods13010150

