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This study was conducted with the aim of presenting and evaluating a smart 

manufacturing model using a decision tree (case study: the mineral processing 

industry). Given the necessity of responding to environmental and competitive 

pressures, the integration of modern technologies—including the Industrial 

Internet of Things (IIoT), automation, and data mining—within the framework 

of smart manufacturing was considered. The required data were collected 

through questionnaires and extraction of operational information from mineral 

processing units. After initial data cleansing, seven key variables—including 

energy consumption, pollution level, technological status of production lines, 

presence of an Information Technology (IT) system, green planning, technical 

readiness, and production efficiency—were entered into the model. Modeling 

was performed using the Classification and Regression Tree (CART) method, 

and the factors affecting unit productivity were analyzed. The results showed that 

the technological status of production lines and the technical readiness of 

employees had the greatest weight in determining production efficiency, while 

green planning and the use of IT systems played complementary and influential 

roles in enhancing production and reducing pollution. It was also found that 

implementing green policies and improving technical knowledge levels can 

enhance process efficiency even in units with outdated technology. Comparing 

the decision tree model with other machine learning methods demonstrated its 

superior interpretability and suitable accuracy for industrial applications. 

Overall, the findings indicated that the use of data-driven smart models based on 

decision trees can provide an effective decision-support tool for improving 

productivity, reducing energy consumption, and achieving sustainability goals in 

the mineral processing industry. It is recommended that strategies for technology 

upgrading, continuous technical training of employees, and expanding green 

management be prioritized in future policymaking. 
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1. Introduction 

n recent years, the global manufacturing sector has 

undergone profound structural and technological 

transformations under the influence of Industry 4.0, which 

has reshaped the foundations of production, logistics, and 

organizational management. The emergence of cyber-

physical systems, the Internet of Things (IoT), Artificial 

Intelligence (AI), big data analytics, and digital twins has 

established a new paradigm commonly referred to as Smart 

Manufacturing (SM), which integrates intelligent sensing, 

autonomous decision-making, and self-optimizing processes 

to improve productivity, sustainability, and competitiveness 

(Edgar & Pistikopoulos, 2018; Gholami et al., 2021; Kusiak, 

2018). This paradigm shift is driven by increasing global 

competition, environmental pressures, and the rapid 

evolution of digital technologies that require manufacturing 

systems to be more flexible, responsive, and resource-

efficient (Ayan, 2024; Bayat & Khabiri, 2022; Jamwal et al., 

2021). 

The rationale for transitioning toward smart and green 

production models is strongly linked to the imperative of 

sustainable development and operational efficiency. 

Traditional linear production models are no longer 

compatible with the dynamic and uncertain conditions of 

contemporary markets. Integrating smart production 

systems (SPS) with green manufacturing practices has 

emerged as a strategic response to these challenges (Agarwal 

et al., 2020; Fiorello et al., 2023; Kannan et al., 2023). Smart 

production systems are capable of collecting, processing, 

and analyzing real-time operational data to optimize 

resource utilization, minimize waste, and enable predictive 

maintenance (Ahmad & Rahimi, 2022; Boostanpour & 

Nokooei Sang Atash, 2024). At the same time, the adoption 

of green production principles reduces environmental 

footprints, promotes circular resource flows, and enhances 

corporate social responsibility performance (Ching et al., 

2022; Tsai, 2018). 

One of the central enablers of smart manufacturing is the 

integration of data-driven and model-based decision-making 

frameworks, which are crucial for achieving operational 

agility and adaptive capacity (Amiri Deh Abadi et al., 2023; 

Danesh Naroui & Tamjidi, 2024). Smart systems utilize 

interconnected sensors, cloud-based platforms, and analytics 

engines to facilitate seamless communication across 

machines, production lines, and enterprise resource planning 

systems (Rane et al., 2023; Soori et al., 2023). This 

interconnectedness enables real-time monitoring and 

autonomous adjustments in production parameters, thereby 

reducing downtime and improving efficiency. Furthermore, 

the deployment of digital twins allows for virtual simulation 

of production processes, supporting scenario planning, risk 

assessment, and continuous improvement efforts 

(Ghayasitabari et al., 2025; Tripathi et al., 2022). 

The sustainability dimension of smart manufacturing is 

equally significant. Scholars have emphasized that 

integrating energy-efficient technologies and renewable 

energy sources within production systems not only reduces 

operational costs but also aligns industrial activities with 

global climate and sustainability goals (Jodeiri et al., 2022; 

Machado et al., 2020; Tamimi & Farhang, 2025). For 

instance, smart energy management frameworks can 

dynamically adjust energy loads, integrate on-site renewable 

generation, and reduce peak demand, thereby contributing to 

both environmental and economic performance (Edgar & 

Pistikopoulos, 2018; Götz & Jankowska, 2017). Moreover, 

studies have shown that leveraging digital transformation to 

enhance green production capabilities accelerates firms’ 

ability to comply with environmental regulations and 

respond to stakeholder expectations regarding ecological 

responsibility (Fasankari & Asarian, 2023; Janahi et al., 

2022). 

In addition to technological advancements, 

organizational and managerial factors play a pivotal role in 

the success of smart manufacturing initiatives. Effective 

governance mechanisms, cross-functional integration, and 

human resource development are critical for ensuring the 

interoperability and scalability of smart production systems 

(Ayan, 2024; Rifat & Anjom, 2024; Taghavi et al., 2023). 

Building digital competencies and fostering a data-driven 

organizational culture enable employees to effectively 

operate and maintain intelligent systems, interpret analytics 

outputs, and make informed decisions in real time (Bayat & 

Khabiri, 2022; Brkljač & Sudarević, 2018). Moreover, the 

establishment of inter-organizational networks and cluster-

based collaboration enhances knowledge sharing and 

accelerates the diffusion of smart and sustainable practices 

across industrial ecosystems (Götz & Jankowska, 2017; Yap 

& Al-Mutairi, 2024). 

However, despite its transformative potential, the 

implementation of smart manufacturing faces numerous 

challenges that need to be systematically addressed. These 

include technological integration complexities, 

cybersecurity vulnerabilities, high capital investment 

requirements, and resistance to organizational change 

(Gholami et al., 2021; Jamwal et al., 2021; Soori et al., 

I 
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2023). Research indicates that without a coherent strategic 

framework and top management commitment, many digital 

transformation projects fail to achieve their intended 

outcomes (Fiorello et al., 2023; Kannan et al., 2023). 

Moreover, the lack of standardized interoperability protocols 

and insufficient workforce training often leads to fragmented 

systems and underutilization of advanced technologies 

(Ahmad & Rahimi, 2022; Boostanpour & Nokooei Sang 

Atash, 2024). Consequently, there is a critical need for 

structured methodologies that align technological innovation 

with managerial processes, workforce development, and 

sustainability imperatives (Amiri Deh Abadi et al., 2023; 

Ghayasitabari et al., 2025). 

Recent studies have proposed integrated decision-support 

models to guide the deployment of smart manufacturing 

systems. These models combine data-driven techniques such 

as machine learning, multi-criteria decision-making, and 

decision trees to analyze operational data, predict 

performance outcomes, and optimize resource allocation 

(Agarwal et al., 2020; Tamimi & Farhang, 2025; Tripathi et 

al., 2022). For example, decision tree models can classify 

production units based on key performance indicators, 

identify high-impact variables affecting efficiency, and 

support scenario-based planning (Danesh Naroui & Tamjidi, 

2024; Soori et al., 2023). Such models offer managers 

practical tools to prioritize technological investments, design 

targeted interventions, and monitor the impact of green 

initiatives on productivity (Ching et al., 2022; Fiorello et al., 

2023). 

Furthermore, the integration of advanced connectivity 

technologies such as 5G has the potential to significantly 

enhance the real-time responsiveness and adaptability of 

smart production systems (Ayan, 2024; Fasankari & 

Asarian, 2023). High-speed, low-latency networks enable 

seamless communication between thousands of 

interconnected devices, which is crucial for synchronizing 

complex production processes and ensuring data integrity. 

This digital backbone supports the implementation of 

predictive maintenance, autonomous quality control, and 

dynamic scheduling systems that can respond 

instantaneously to fluctuations in demand and supply (Edgar 

& Pistikopoulos, 2018; Jamwal et al., 2021). In parallel, the 

convergence of blockchain and IoT technologies is opening 

new opportunities for enhancing transparency, traceability, 

and trust across supply chains (Janahi et al., 2022; Rane et 

al., 2023). 

From a strategic perspective, aligning smart 

manufacturing with green production goals contributes to 

building resilient and future-ready industrial systems. Firms 

that successfully combine technological innovation, 

environmental responsibility, and organizational agility are 

better positioned to achieve long-term competitiveness and 

stakeholder value creation (Fiorello et al., 2023; Gholami et 

al., 2021; Kannan et al., 2023). The shift toward data-centric 

and sustainability-oriented manufacturing also reflects 

broader socio-economic trends that prioritize circular 

economy models, eco-innovation, and knowledge-based 

value chains (Brkljač & Sudarević, 2018; Jodeiri et al., 2022; 

Machado et al., 2020). As global industries increasingly 

operate within complex networks of stakeholders, 

regulations, and technological infrastructures, the capacity 

to integrate these diverse dimensions into coherent smart 

production strategies becomes a decisive competitive 

advantage (Rifat & Anjom, 2024; Yap & Al-Mutairi, 2024). 

In summary, the transition toward smart manufacturing 

represents not only a technological evolution but also a 

paradigm shift in managerial thinking and industrial 

organization. It demands the integration of advanced digital 

technologies, green production practices, and human-centric 

management approaches to create manufacturing systems 

that are intelligent, sustainable, and resilient (Ghayasitabari 

et al., 2025; Tamimi & Farhang, 2025; Tsai, 2018). The 

present study contributes to this growing body of knowledge 

by proposing and evaluating a data-driven smart 

manufacturing model based on decision tree algorithms, 

aiming to enhance production efficiency, reduce 

environmental impacts, and support strategic decision-

making in the mineral processing industry.  

2. Methods and Materials 

The present study was conducted with an applied 

approach using Data Mining and smart modeling methods. 

The required data were collected through the review of 

internal documents, operational reports, and questionnaires 

completed by managers and experts from mineral processing 

units. The dataset consisted of various operational stations 

(daily or monthly production samples) and seven key 

variables: energy consumption, pollution level, 

technological status of production lines, presence of an 

Information Technology (IT) system, green planning, 

technical readiness, and production efficiency. 

After data collection, validation, initial cleaning (removal 

of incomplete or invalid data), and standardization of data 

formats were performed. Qualitative variables (such as 

https://journals.kmanpub.com/index.php/jppr/index
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technology status, IT, and green planning) were categorized 

and converted into numerical form. 

In the first stage, the frequency distribution of qualitative 

variables and statistical indicators of quantitative variables 

(mean, median, standard deviation, etc.) were calculated to 

gain a preliminary understanding of the production lines. 

Then, using the Classification and Regression Trees (CART) 

algorithm, a decision tree model was implemented to predict 

production efficiency based on other variables. After 

training the model, feature importance, key model rules 

(from the top paths of the decision tree), scenario analyses, 

and grouping of terminal leaves were extracted. 

Furthermore, the model results were compared with other 

Machine Learning models (linear regression, random forest, 

etc.). 

Specific Formulas Related to the Variables of the 

Study 

Energy Efficiency (EE) 

Formula for the ratio of useful output to total energy 

consumption of production lines: 

EE = useful output / total energy consumption 

Technical Readiness Index (TRI) 

A composite index based on scoring sub-indices 

(maintenance, training, modernization): 

TRI = (S1 + S2 + S3) / 3 

where S1 = maintenance score, S2 = technical training 

score, and S3 = equipment modernization score (each from 

0 to 100). 

Tech Status Score (TSS) 

Weighted sum of technological status: 

TSS = Σ (wi × Ti) 

where wi represents the weight of each technological 

component, and Ti represents its score. 

Intelligent Production Efficiency (IPE) 

An integrated formula derived from the key effects of 

variables: 

IPEᵢ = α₁X₁ᵢ + α₂X₂ᵢ + … + αₖXₖᵢ + C 

• αₖ: model adjustment coefficients (extracted from 

regression or machine learning analyses) 

• C: constant 

• subscript i: each unit/factory or production line 

Smart Decision-Making Function Based on 

Thresholds (Simple Decision Tree) 

If we wish to represent the logic of the model in the form 

of a decision-support formula: 

If (Tech Status Score > threshold₁) AND (TRI > 

threshold₂) THEN production level = high 

Otherwise: production level = normal or requires 

improvement. 

3. Findings and Results 

In this section, the descriptive findings of the research 

variables are reported. 

Table 1 

Comprehensive Statistical Information of the Variables 

Variable Type Number of 

categories/groups 

Mean Standard 

deviation 

Minimum Maximum Median Frequency of each state 

(count/%) 

Energy 

consumption 

Numerical - 320 41 210 436 318 - 

Pollution level Numerical - 65 19 21 139 67 - 

Technical 
readiness 

Numerical - 6.5 2.1 2 10 7 - 

Production 
efficiency 

Numerical - 72 9 48 93 73 - 

Technology 
status 

Categorical 3 - - - - - Old: 175 (35%) / Semi-
modern: 165 (33%) / Modern: 

160 (32%) 

IT system Binary 2 - - - - - Present: 257 (51%) / Not 

present: 243 (49%) 

Green planning Binary 2 - - - - - Present: 239 (48%) / Not 

present: 261 (52%) 

 

Description of Numerical Variables: 

• Energy consumption (kWh/ton): The average energy 

consumption is 320 kilowatt-hours per ton of mineral 

material. The standard deviation of 41 indicates relatively 

high data dispersion and significant differences in energy 

consumption between units. The minimum and maximum 

energy consumption are 210 and 436 kilowatt-hours, 

respectively, showing a wide range of variation. 

https://journals.kmanpub.com/index.php/jppr/index
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• Pollution level (mg/m³): The average pollution level is 

65 milligrams per cubic meter. The standard deviation of 19 

also indicates considerable dispersion in pollution levels. 

The range (21 to 139 milligrams per cubic meter) shows a 

significant difference in pollution levels across units. 

• Technical readiness (1–10): The average technical 

readiness score is 6.5 out of 10, indicating that processing 

units are at a moderate level of technical readiness. The 

standard deviation of 2.1 shows that the data are also 

considerably dispersed. 

• Production efficiency (%): The average production 

efficiency is 72%. The standard deviation of 9 indicates that 

variation in production efficiency among different units is 

significant. 

Description of Categorical and Binary Variables: 

• Technology status: The distribution of technology 

status among the three groups—old (35%), semi-modern 

(33%), and modern (32%)—is almost equal. This indicates 

technological diversity among processing units and suggests 

that investing in technological upgrades could improve 

productivity. 

• IT system: Slightly more than half of the units (51%) 

use Information Technology (IT) systems. This indicates 

there is still room to expand the use of IT systems in mineral 

processing, which could improve efficiency if utilized 

optimally. 

• Green planning: Slightly less than half of the units 

(48%) employ green planning. This indicates that the 

application of environmental principles in processing 

operations still requires further expansion. 

Decision Rule Extraction 

A Decision Tree is not only a modeling tool but also a 

powerful analytical-descriptive tool that can be used to 

explain the importance of variables, create managerial 

knowledge, identify target groups, analyze variable 

sensitivity, discover decision rules, and even analyze 

errors—all of which are highly applicable for better 

decision-making in mining or any organization. In this part, 

the steps leading to the construction of the decision tree are 

presented. 

1. Feature Importance Analysis 

In this analysis, the weight and role of each feature in the 

Classification and Regression Trees (CART) decision tree 

model are presented. 

Table 2 

Feature Importance Analysis 

Variable Importance (%) 

Technology status 31 

Technical readiness 24 

Green planning 18 

Energy consumption 15 

IT system 9 

Pollution level 3 

 

Technology status and technical readiness have the 

highest predictive power for production efficiency. Green 

planning is also influential, whereas IT systems and 

pollution have secondary roles. 

Table 3 

Sample Rules (from major tree paths) 

Rule Decision Rule Description (if–then) 

1 If technology status = modern and technical readiness > 7 → production efficiency > 80% 

2 If technology status = old and green planning = not present → production efficiency < 65% 

3 If IT system = present and technical readiness > 6 → production efficiency between 75% and 80% 

4 If green planning = present and energy consumption < 300 → production efficiency ≈ 85% 

 

• Determinant factor: Technology status and technical 

readiness have the greatest effect on production efficiency, 

but managerial policies (such as IT and green management) 

can play compensatory and complementary roles. 

https://journals.kmanpub.com/index.php/jppr/index
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• Flexibility: Units equipped with old technology can 

compensate for part of their technological shortcomings if 

they have green planning and provide staff training. 

• Strategic policy: For managers in the mineral industry, 

adhering to data-driven governance, investing in human 

resource training, and supporting green approaches are the 

fastest pathways to achieving productivity and 

sustainability. 

• Practical application: These rules are quickly 

implementable, and each unit can compare its current status 

against these rules and transparently select its improvement 

priorities. 

3. Sensitivity Analysis 

 

Table 4 

Effect of Increasing or Decreasing Each Main Variable on Production Efficiency 

Variable Change Effect on production efficiency (%) 

Technology status Old → Modern ↑ +15 

Technical readiness Each 1-unit increase ↑ +4 

Green planning Not present → Present ↑ +6 

Energy consumption Each 20-unit decrease ↑ +3 

IT system Not present → Present ↑ +3 

Pollution level Each 20-unit decrease ↑ +2 

 

• Major leverage: Technological upgrading is the most 

fundamental and impactful action for boosting production 

efficiency; its message to managers is that investing in 

equipping production lines and adopting advanced 

technologies has the highest impact in the shortest time. 

• Key human capital: Increasing employee skills and 

technical readiness also has significant stepwise effects and 

accelerates productivity following technological 

modernization. 

• Sustainability and greenness: Green management 

policies and reducing energy consumption simultaneously 

help preserve the environment and improve performance, 

complementing technology and human capital. 

• Digital transformation: Information Technology (IT) 

and data-driven approaches act as productivity enhancers by 

enabling smart operations. 

• Pollution management: Effective control of pollutants 

is not only an environmental obligation; it is also an indicator 

of process health and contributes to optimal production 

performance. 

This table clearly shows managers of mineral processing 

lines how each key change (in technology, training, green 

management, energy, etc.) is reflected with a “tangible 

magnitude” in production efficiency and where to prioritize 

investment and managerial interventions. 

4. Homogeneous Subgroups (Leaf Nodes) Analysis 

Table 5 

Grouping of Samples in Key Leaves of the Decision Tree Model 

Group Number of samples Average efficiency (%) Common characteristics 

1 80 85 Modern technology, high technical readiness 

2 70 62 Old technology, no green planning 

3 90 74 Semi-modern technology, active IT 

4 60 79 Modern technology, no IT 

5 50 58 Low technical readiness, high pollution 

 

Group 1: Modern technology + high technical 

readiness 

• Analysis: With an average efficiency of 85%, this group 

shows the best performance. The combination of up-to-date 

equipment and high employee skills drives units to peak 

productivity. This scenario demonstrates that 

simultaneously upgrading technology and continuously 

investing in personnel training and expertise creates the most 

positive impact on production. 

• Managerial implication: Providing and developing 

state-of-the-art technology and continuously enhancing 

employee skills is the key factor for success. 

Group 2: Old technology + lack of green planning 

https://journals.kmanpub.com/index.php/jppr/index


 Ahrari et al.                                                                                                       Journal of Resource Management and Decision Engineering 4:3 (2025) 1-13 

 

 7 

• Analysis: With an efficiency of 62%, this group is 

among the lowest-performing groups. The absence of 

modern technology alongside the lack of green policies 

(energy and environmental management) places these units 

at the lowest level of productivity. Such a structure is 

vulnerable and exposed to high energy and pollution costs. 

• Managerial implication: Simultaneous investment in 

technological improvement and the adoption of 

environmental policies is the most urgent need for these 

units. 

Group 3: Semi-modern technology + active IT 

• Analysis: With an average efficiency of 74%, this group 

represents units that, despite not fully utilizing state-of-the-

art technology, have achieved relatively improved 

productivity thanks to Information Technology (IT) 

infrastructure. The role of digital and data-driven tools in 

improving the production process is evident. 

• Managerial implication: Even without large 

investments in equipment, developing IT can create tangible 

improvements. 

Group 4: Modern technology + lack of IT 

• Analysis: Although these units have modern 

technology, their efficiency (79%) is lower than that of 

Group 1 because they do not utilize IT. This shows that the 

absence of digital and data-driven tools prevents part of the 

potential of modern technology from being realized. 

• Managerial implication: To fully realize the benefits 

of modern technology, completing the digital cycle and 

implementing IT is essential. 

Group 5: Low technical readiness + high pollution 

• Analysis: This group has the weakest efficiency (58%) 

and suffers from both low workforce skills and serious 

pollution problems. This reflects the compounded negative 

effect of weak human resources and inability to control 

pollution. 

• Managerial implication: For these units, priority 

should be given to improving staff training and skills as well 

as effectively controlling environmental pollution. 

5. Model Comparison 

Table 6 

Comparison of the Performance of Different Methods 

Model Accuracy (R²) Interpretability 

Decision Tree 0.78 Very good 

Linear Regression 0.68 Good 

Random Forest 0.82 Moderate 

Neural Network 0.85 Poor 

The decision tree had acceptable accuracy and, due to its 

rules and paths, offered high interpretability (which is highly 

useful in management studies). 

Table 7 

Error Analysis of Several Samples with the Largest Prediction Deviations 

Sample 

ID 

Actual 

efficiency 

Predicted 

efficiency 

Error Special feature 

114 62 75 +13 Very high pollution 

235 88 70 -18 Very low energy consumption but lacking Information Technology (IT) and green 

planning 

321 80 92 +12 IT system recently installed but insufficient training 

401 56 68 +12 Very low technical readiness 

 

Samples with large prediction deviations from the model 

usually have unexpected characteristics or rare combinations 

of variables. 

 

 

https://journals.kmanpub.com/index.php/jppr/index
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Table 8 

Changing Green Planning from “Not Present” to “Present” in Different Groups 

Technology status Technical readiness IT Scenario Predicted efficiency (%) 

Old 5 Not present Green: Not present 60 

Old 5 Not present Green: Present 67 

Semi-modern 7 Present Green: Not present 74 

Semi-modern 7 Present Green: Present 79 

Modern 9 Present Green: Not present 83 

Modern 9 Present Green: Present 88 

 

7. Scenario Analysis 

Scenario 1: Old technology, low technical readiness, 

no IT, and no green planning (efficiency: 60%) 

This combination has the lowest performance. Lack of 

modern equipment, low employee skills, absence of IT, and 

no environmental approach lead to the minimal possible 

efficiency. 

Scenario 2: Old technology, low technical readiness, 

no IT, but with green planning (efficiency: 67%) 

Simply adding green management, even without 

changing equipment or human resources, improves 

efficiency by 7 percentage points. This shows the significant 

impact of environmental approaches on productivity even in 

technologically weak environments. 

Scenario 3: Semi-modern technology, medium 

technical readiness, equipped with IT, no green planning 

(efficiency: 74%) 

Upgrading to semi-modern technology, increasing 

technical readiness, and implementing IT creates a major 

transformation (12 percentage points higher than the 

previous row). This combination clearly demonstrates the 

positive impact of new technologies and digital 

transformation. 

Scenario 4: Semi-modern technology, medium 

technical readiness, equipped with IT, with green 

planning (efficiency: 79%) 

Adding green management at this level adds another 5 

percentage points to efficiency. This shows that even with 

equipment upgrades, green policies are still the tipping point. 

Scenario 5: Modern technology, high technical 

readiness, equipped with IT, no green planning 

(efficiency: 83%) 

In this scenario, efficiency is high due to the highest 

levels of technical readiness and technology (plus IT). 

However, it is clear that the absence of green management 

still prevents reaching peak productivity. 

Scenario 6: Modern technology, high technical 

readiness, equipped with IT, with green planning 

(efficiency: 88%) 

This is the ideal state: the synergy of modern technology, 

trained staff, smart systems, and green management creates 

the final productivity leap. This combination records the 

highest predicted efficiency. 

Overall, in almost all scenarios, adding green planning 

leads to a noticeable increase in production efficiency, with 

its effect being greater in modern groups. 

Analysis of the Decision Tree Structure 

1. First root split: which factor matters first? 

According to the feature importance table, either 

technical readiness (Tech Readiness) or technology status 

(Tech Status) usually appears at the top. 

This means that units with high technology and high 

technical readiness have the most fundamental advantage for 

improving productivity. 

2. First branch — role of technical readiness and 

green management 

If technical readiness is high, the next split is often based 

on green planning or energy consumption. 

Units with high technical readiness and active green 

planning usually have the lowest energy consumption and 

pollution and significantly higher productivity than other 

units (e.g., above 85%). 

If green planning is inactive, productivity decreases (even 

with high technical readiness; e.g., to 75–80%), while 

implementing green planning directly improves productivity 

and indirectly reduces energy and pollution. 

3. Second branch — the role of technology status 

When technical readiness is low or green planning is 

absent, the model splits based on technology status: 

• Units with modern technology: even without green 

planning, they have moderate productivity (65–75%). 

• Units with old technology: very low productivity (40–

60%) and usually high energy consumption and pollution. 

https://journals.kmanpub.com/index.php/jppr/index
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Modernizing equipment and technology partly 

compensates for low readiness or lack of green management. 

4. The role of energy consumption and pollution as 

process health indicators 

In many leaf nodes (outcomes), it is observed that: 

• Units with low energy consumption, even with 

moderate technology/readiness, have better productivity. 

• Low or well-managed pollution leads to higher 

classification in high-productivity groups. 

5. Leaf outcomes: productivity predictions 

At the final leaf nodes: 

• Ideal paths (high Tech Readiness + Green Planning + 

low Energy): highest productivity (90–95%). 

• Weak paths (old Tech Status, high Energy, no Green 

Planning): lowest productivity (40–60%). 

• Intermediate states (medium readiness + green 

planning): medium productivity (70–80%). 

Summary and Analysis of the Decision Tree 

1. Depth of technology and staff knowledge: 

Leverage innovation and technological training; 

even just improving technical readiness can cause a 

major leap in productivity. 

2. Implementing green management policies: Even 

if technology budgets are limited, an active green 

program can compensate for technological 

weaknesses, and its domino effect reduces energy 

and pollution. 

3. Investing in modern equipment: If green 

management is not initially prioritized in the tree 

splits, up-to-date technology still creates an 

advantage. 

4. Reducing energy costs and managing pollution: 

In all cases (even with medium technology or 

readiness), controlling these two variables 

increases recorded productivity. 

Visual summary of decision tree paths: 

• Tech Readiness (high) → Green Management (present) 

→ Energy (low) ⇒ very high productivity 

• Tech Readiness (medium/low) → Tech Status (modern) 

→ Energy (medium) ⇒ medium productivity 

• Tech Readiness (low) → Tech Status (old), no green 

planning → Energy (high) ⇒ low productivity 

Figure 1 

Decision Tree Model of the Study 

 

 

4. Discussion and Conclusion 

The findings of this study highlight several pivotal 

insights regarding the implementation of a decision-tree-

based smart manufacturing model in the mineral processing 

industry. The descriptive analysis showed considerable 

variability in operational performance among different units, 

particularly in terms of energy consumption, pollution 

levels, technical readiness, and production efficiency. The 

decision tree model identified technology status and 
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technical readiness as the most influential variables in 

predicting production efficiency, with green planning and 

the presence of Information Technology (IT) systems 

serving as complementary enablers. Sensitivity analysis 

further confirmed that upgrading technology from old to 

modern yielded the largest efficiency gain (+15%), while 

incremental improvements in technical readiness and 

adoption of green planning contributed meaningfully to 

performance enhancements. These results underscore the 

importance of aligning technological modernization with 

workforce capacity-building and environmental strategies to 

drive operational excellence. 

This aligns closely with the broader literature on Smart 

Manufacturing (SM) and Industry 4.0, which emphasizes 

that technological upgrading is a fundamental driver of 

productivity and sustainability. For instance, (Kusiak, 2018) 

conceptualizes SM as the integration of advanced digital 

technologies, cyber-physical systems, and analytics-driven 

decision-making to optimize production outcomes, while 

(Edgar & Pistikopoulos, 2018) argues that embedding smart 

energy management into manufacturing infrastructures 

substantially enhances both energy efficiency and 

production reliability. Our finding that units equipped with 

modern technology achieved higher efficiencies echoes 

(Gholami et al., 2021), who reported that adoption of Cyber-

Physical Systems (CPS) and big data analytics enables 

continuous process optimization and significant reductions 

in downtime. Similarly, (Ayan, 2024) observed that 

interoperability capabilities in smart production planning 

systems accelerate responsiveness and enable real-time 

optimization of production schedules, ultimately improving 

operational efficiency. 

The strong positive effect of technical readiness in our 

model reinforces the centrality of human capital 

development in digital transformation contexts. The average 

technical readiness score was moderately low, yet its 

incremental increase was associated with notable 

improvements in production efficiency. This supports 

(Bayat & Khabiri, 2022), who emphasized that the 

interaction of smart production systems (SPS), big data 

analytics (BDA), and CPS depends heavily on workforce 

digital competencies and the ability to interpret real-time 

data. Similarly, (Brkljač & Sudarević, 2018) underscored 

that the transition to Industry 4.0 environments requires 

cultivating a data-driven organizational culture and 

continuous staff training. Our finding also resonates with 

(Jamwal et al., 2021), who noted that employee readiness is 

one of the key determinants of successful Industry 4.0 

adoption, often outweighing the benefits of technological 

investments if neglected. In this study, units with high 

technical readiness consistently outperformed others even 

when their technology status was not fully modern, 

suggesting that human capabilities can partly offset 

technological deficits—a conclusion echoed by (Taghavi et 

al., 2023), who found that human skills moderated the 

relationship between advanced technologies and customer-

related outcomes. 

The complementary role of green planning in our results 

is equally noteworthy. Adding green planning to operational 

strategies improved production efficiency across all 

scenarios, with greater impacts in technologically advanced 

units. This finding corroborates (Agarwal et al., 2020), who 

demonstrated that incorporating green criteria into multi-

criteria decision-making models for manufacturing leads to 

improved operational performance. (Ching et al., 2022) also 

reported that sustainable manufacturing frameworks 

leveraging Industry 4.0 technologies can achieve 

simultaneous environmental and productivity gains by 

optimizing material flows and reducing waste. Our results 

further align with (Fiorello et al., 2023), who proposed a 

smart-lean-green production paradigm, emphasizing that 

green practices amplify the efficiency gains of smart and 

lean strategies. Moreover, (Tsai, 2018) demonstrated 

through mathematical programming that green production 

planning enhances resource utilization efficiency in 

manufacturing contexts. In the present study, even units with 

old technology benefited significantly from green planning, 

suggesting that environmental strategies can compensate for 

technological gaps—a point supported by (Janahi et al., 

2022), who highlighted that eco-innovation strategies driven 

by network collaboration can yield efficiency gains even 

under resource constraints. 

Another significant result was the supportive but less 

dominant influence of IT systems. While the decision tree 

assigned lower feature importance to IT compared to 

technology and technical readiness, units equipped with IT 

infrastructure performed better than those without, 

particularly when combined with higher technical readiness. 

This aligns with (Soori et al., 2023), who reviewed the role 

of digital twins and IT integration in enabling real-time 

monitoring and adaptive control in smart manufacturing 

systems. Likewise, (Rane et al., 2023) illustrated how 

integrating blockchain and IoT in product development 

architectures enhances traceability, operational 

responsiveness, and efficiency. These findings suggest that 

while IT alone may not drive large performance 
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improvements, it plays a critical enabling role by enhancing 

the effectiveness of human and technological resources. This 

observation is consistent with (Fasankari & Asarian, 2023), 

who found that the deployment of 5G technologies and 

advanced connectivity substantially enhances the 

responsiveness of smart systems, primarily by supporting 

the data flows required for predictive analytics and real-time 

decision-making. 

The study’s model comparison results further strengthen 

these interpretations. Although the decision tree achieved 

slightly lower predictive accuracy than the Neural Network 

model (0.78 vs. 0.85), it offered superior interpretability, 

which is crucial for managerial decision-making. This 

reinforces arguments by (Tripathi et al., 2022) and (Agarwal 

et al., 2020) that decision tree-based frameworks are 

especially valuable in manufacturing because they provide 

transparent decision rules and feature importance rankings, 

enabling practitioners to understand causal relationships and 

prioritize interventions. The ability of our decision tree to 

classify units into homogeneous subgroups based on 

combined characteristics (e.g., modern technology + high 

technical readiness vs. old technology + no green planning) 

aligns with the conceptual models proposed by (Danesh 

Naroui & Tamjidi, 2024) and (Amiri Deh Abadi et al., 2023), 

who highlighted the need for interpretable and adaptive 

decision-support tools in smart manufacturing 

environments. 

The broader strategic implications of our findings are 

supported by multiple studies emphasizing that sustainable 

competitive advantage in the Industry 4.0 era requires 

integrating technological, human, and environmental 

dimensions. For example, (Kannan et al., 2023) argued that 

smart manufacturing serves as a strategic tool for 

overcoming sustainability challenges when combined with 

green practices and organizational agility. (Gholami et al., 

2021) also stressed that sustainable manufacturing 4.0 

requires coordinated action across technology adoption, 

workforce development, and environmental governance. 

This perspective is echoed by (Machado et al., 2020), who 

proposed an emerging research agenda focused on aligning 

Industry 4.0 technologies with sustainability-oriented 

organizational strategies. Our study reinforces this 

integrated viewpoint by empirically demonstrating that 

productivity gains in mineral processing are maximized not 

through technology alone, but through the synergy of 

advanced technologies, skilled human resources, and green 

policies. 

Additionally, the clustering of high-performing units 

(Group 1: modern technology + high technical readiness) 

and low-performing units (Group 2: old technology + no 

green planning) offers important insights into the dynamics 

of technological diffusion and organizational readiness. 

(Götz & Jankowska, 2017) argued that industry clusters can 

accelerate technology adoption and innovation diffusion, but 

only when firms possess the absorptive capacity—primarily 

human and organizational—to leverage new technologies. 

Similarly, (Yap & Al-Mutairi, 2024) noted that the Industry 

4.0-agriculture nexus depends on ecosystem-level 

integration of knowledge, technology, and human expertise. 

Our results align with these perspectives, showing that 

technological availability alone is insufficient; readiness and 

organizational alignment are prerequisites for capturing the 

full value of smart technologies. Furthermore, (Rifat & 

Anjom, 2024) emphasized the role of governance and 

strategic alignment in achieving high performance in 

technologically advanced firms, suggesting that managerial 

commitment is a key moderating factor—an insight that 

helps explain why some modernized units in our study still 

underperformed when lacking IT or green practices. 

Overall, the results of this study support a growing 

consensus in the literature that the pathway to sustainable 

industrial competitiveness lies in combining technological 

modernization, human capacity building, and environmental 

stewardship in integrated smart manufacturing systems 

(Ching et al., 2022; Fiorello et al., 2023; Jodeiri et al., 2022). 

The decision tree model developed here contributes to this 

field by providing a transparent, data-driven tool that can 

help managers in the mineral processing sector prioritize 

interventions and navigate the complex interdependencies 

among these factors. 

Despite its contributions, this study has several 

limitations that should be acknowledged. First, the dataset 

was limited to operational units within the mineral 

processing industry, which may constrain the 

generalizability of the findings to other manufacturing 

sectors with different technological structures, regulatory 

contexts, or market dynamics. Second, while the decision 

tree model provided interpretable and actionable insights, it 

inherently simplifies the underlying relationships among 

variables and may not fully capture nonlinear interactions or 

dynamic feedback loops that can emerge in complex 

production systems. Third, the study primarily relied on 

cross-sectional data, limiting the ability to infer causal 

relationships or account for temporal variations in 

performance as units adopt and integrate new technologies 

https://journals.kmanpub.com/index.php/jppr/index


 Ahrari et al.                                                                                                       Journal of Resource Management and Decision Engineering 4:3 (2025) 1-13 

 

 12 

over time. Fourth, the assessment of technical readiness and 

green planning was based on managerial questionnaires and 

self-reported data, which may be subject to response bias or 

inconsistencies. Fifth, the analysis did not incorporate cost-

benefit assessments or financial metrics, which are crucial 

for evaluating the economic feasibility and investment 

priorities of smart manufacturing initiatives. 

Future studies could extend this research in several 

promising directions. One important avenue would be to 

apply the decision tree model to other manufacturing sectors, 

such as automotive, electronics, or food processing, to 

examine the extent to which the identified relationships hold 

across different industrial contexts. Longitudinal studies 

tracking the same units over time would provide deeper 

insights into the causal mechanisms by which technological 

upgrades, workforce development, and green policies 

influence operational performance. Future work could also 

integrate cost and financial performance indicators to assess 

the return on investment of smart manufacturing strategies 

and to identify optimal resource allocation patterns. 

Additionally, combining decision tree models with more 

sophisticated machine learning techniques, such as ensemble 

methods or hybrid approaches, could enhance predictive 

accuracy while retaining interpretability. Further research 

could explore the role of organizational culture, leadership, 

and change management practices in moderating the 

effectiveness of smart manufacturing adoption. Finally, 

investigating cross-organizational networks, industry 

clusters, and policy environments could reveal how external 

ecosystem factors shape the diffusion and performance 

impacts of smart and sustainable manufacturing systems. 

For practitioners and industry managers, the results of this 

study underscore the necessity of pursuing an integrated 

strategy that simultaneously advances technological 

modernization, human capital development, and 

environmental management. Investing in modern production 

technologies should be complemented by continuous 

training and upskilling programs to ensure that employees 

can fully leverage advanced systems and analytics. Green 

planning initiatives, including energy efficiency measures 

and pollution control, should be embedded into core 

operational processes rather than treated as peripheral 

activities. Managers should prioritize the deployment of IT 

infrastructure to enhance data visibility, real-time 

monitoring, and process automation, which can amplify the 

benefits of both technology and human capabilities. 

Decision tree-based decision-support tools should be 

incorporated into strategic planning and performance 

monitoring systems to enable evidence-based prioritization 

of improvement interventions. Finally, fostering a data-

driven culture and aligning organizational structures with 

smart manufacturing objectives will be essential for 

sustaining productivity gains and achieving long-term 

competitiveness in the evolving industrial landscape. 
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