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Due to the increasing use of the Internet of Things, efficient task scheduling in cloud 

computing has become increasingly important with the aim of maximizing the use 

of available resources, reducing energy consumption, and enhancing the quality of 

service (QoS). In this paper, we use the Firefly Optimization (FFO) algorithm to 

improve scheduling efficiency and minimize the overall completion time in cloud 

environments. For this purpose, twelve distinct scenarios were designed in the Cooja 

Contiki simulator environment with the perspective of computationally intensive, 

input/output intensive, and mixed workloads, and the overall completion time results 

obtained with the Min-Min and GA-PSO-Min methods were compared and the 

better performance of the method was confirmed. 

Keywords: Firefly Optimization Algorithm, Internet of Things, Cloud Computing, 

Job Scheduling, Total Time Spent, Efficiency in Energy Use, Scalability and Multi-

Objective Optimization. 

1. Introduction 

n the cloud-fog environment, different types of virtual 

machines are used for computing, which are executed in 

the fog or cloud depending on the importance of execution 

time and the volume of calculations. In the cloud sector; the 

scheduling problem is a critical component with the aim of 

maximizing resource efficiency, reducing the completion 

time of each task, reducing the overall execution time (span 

and flow time), and also the cost of execution while 

maintaining the quality of service. The continuity and 

dynamics of the continuous execution of these tasks have 

I 
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multiplied the importance of the problem. Since the tasks 

presented are often interdependent and do not have the same 

priority; examining and presenting a suitable method for 

continuous and rapid prioritization of tasks is one of the 

important and up-to-date issues studied by researchers. Since 

the cloud scheduling problem is an NP-complete problem, 

investigating and finding suitable solutions is 

computationally challenging. 

Many of existing schedulers cannot cope with the 

dynamic nature of cloud systems and frequent changes in 

resource status. As a result, problems such as insufficient 

gap-filling during backfilling operations and project 

completion delays become more serious (Murad et al., 

2024). For its efficient use, it is essential to design a 

scheduler that is not only more comprehensive but also more 

configurable.  

Furthermore, with increasing user expectations for 

privacy, enhanced security while increasing or maintaining 

the quality of service (QoS) at the current level, and 

minimizing the number of service level agreements (SLAs) 

that involve compliance violations, the development of 

advanced scheduling strategies is essential to ensure cost-

effective, scalable, and responsive computing 

infrastructures. This issue has impacted various industries, 

including IoT, smart homes, and wearable technologies 

(Khezri et al., 2024). Considerable efforts have been made 

to investigate task scheduling in cloud computing, with the 

aim of maximizing resource efficiency and increasing 

overall system effectiveness, with previous studies mainly 

focusing on various methods such as First-in-First-Serve 

(FCFS) and Shortest Job First (SJF) due to their ease of 

implementation (Paulraj et al., 2023). 

The main objective of this research is to improve the 

efficiency of task scheduling in cloud environments by 

considering all the complexities of cloud scheduling that 

depend on the dynamic nature of resources and changing 

needs of users. This study proposes a novel approach that 

integrates multi-objective optimization to simultaneously 

minimize critical performance metrics such as completion 

time, flow time, and overall latency. 

The wide variety of task requirements and fluctuations in 

resource availability lead to the increasing complexity of 

task scheduling in cloud environments and pose significant 

challenges in achieving optimal performance in terms of 

overall completion time and resource utilization. The main 

goal in designing scheduling optimization algorithms is to 

reduce the time required to complete large-scale distributed 

cloud tasks while maintaining computational efficiency. 

Nature-Inspired Algorithms are among the most powerful 

optimization algorithms. The Firefly  Optimization 

Algorithm (FOA) is one of the most powerful of these 

algorithms. An important feature of the Firefly Optimization 

Algorithm, which distinguishes it from some similar 

optimization algorithms, is its excellent performance in 

finding optimal solutions to multimodal problems and 

functions. Such an important feature of the Firefly 

optimization algorithm has made it an ideal choice for multi-

mode optimization applications. In particular, it appears to 

be very powerful in solving NP-Hard problems, such as task 

scheduling, and converges to the global optimal solution in 

a very reasonable time. 

In this paper, we will use the Firefly optimization 

algorithm to provide a scalable and practical solution that 

increases resource efficiency and speeds up the execution of 

activities, especially those with time-sensitive workloads in 

the cloud. The remaining parts of this work are structured as 

follows: In Section 2, we will review the related work that 

has been done on heuristic scheduling algorithms in cloud 

systems. We will also get acquainted with the history and 

applications of the Firefly optimization algorithm. The 

proposed Firefly optimization algorithm, including the 

algorithm architecture, will be presented in Section 3. In 

Section 4, the performance of the proposed technique is 

evaluated using data collected from experiments. In 

addition, a comparison is made between the total completion 

times of the proposed algorithm with Min-Min and GA-

PSO-Min methods in a wide range of sparse and diverse 

situations, and figures and tables provide assistance based on 

the situation requirements. The results, contributions, and 

suggestions for further research are summarized in Section 

5, which serves as the conclusion of the study. 

2. Literature Review and Previous Work 

This section defines and introduces the subject literature's 

concepts, methods, and standard definitions and termi- 

nology. Subsequently, previous studies are reviewed.  

2.1. Task scheduling in Cloud-fog environments 

The task scheduling problem in cloud-fog environments 

has become one of the main issues studied by many 

researchers due to the widespread use of the Internet of 

Things. For example, Abedinzadeh and Akiol (Abedinzadeh 

& Akyol, 2023) proposed the AEOSA algorithm to improve 

the efficiency of more heterogeneous datasets. Zhang et al. 

(Zhang et al., 2022) proposed the SCC-DSO algorithm to 

https://journals.kmanpub.com/index.php/jppr/index
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optimize queues based on storage location. Liu et al. (Liu et 

al., 2018) designed a framework for cloud-fog (IoT) for 

clustering and decentralized scheduling. Zhao et al. (Zhao et 

al., 2023) proposed a location-aware scheduling strategy for 

autonomous tasks to reduce the execution time by using data 

replication. Sobhanayak et al. (Sobhanayak et al., 2018) 

proposed a hybrid initiative influenced by biological 

processes and optimized energy generation and consumption 

time. Ghobaei-Arani et al. (Ghobaei-Arani et al., 2018) 

proposed a hybrid reinforcement learning and self-directed 

strategy to allocate resources and improve efficiency by 

using the MAPE cycle. 

A Tabu-Harmony hybrid was developed to improve 

throughput and reduce task execution time in (Alazzam et 

al., 2019). In (Devaraj et al., 2020), the firefly algorithm and 

the improved multi-objective PSO (IMPSO) are combined 

to optimize response time and resource utilization while 

ignoring memory and cost considerations. Whale 

optimization is used in (Reddy & Kumar, 2017) to provide a 

better balance between resource utilization, energy 

consumption, quality of service, and better performance of 

alternatives in terms of energy efficiency. 

A heuristic task scheduling strategy (TSO-MCR) was 

introduced in the field of cloud computing (Boroumand et 

al., 2025). A hybrid fuzzy meta-heuristic approach called 

IVPTS was designed for quality of service (QoS) and was 

introduced in (Long et al., 2025). In (Chen et al., 2025), a 

customer-oriented multi-task scheduling model for cloud 

production was proposed. The advanced Willow Cat 

optimization (AWCO) technique is introduced to improve 

task scheduling in cloud computing (Pan et al., 2025). In 

(Zade et al., 2025), Mohammad Hassanizadeh et al. 

proposed an improved multi-objective Beluga Whale 

optimization approach with ring topology (MO-IBWO-

Ring) for multi-objective task scheduling in cloud 

computing, focusing on minimizing time and cost. 

In (Khaledian et al., 2025), a hybrid Markov chain-based 

dynamic scheduling architecture is proposed to improve load 

balancing in cloud-fog conditions. Modified parallel particle 

swarm optimization (MPPSO) is designed to achieve the 

goal of improving task scheduling in cloud computing 

(Pradhan et al., 2025). Archimedes optimization algorithm 

with deadline and budget constraints (ADB) is developed for 

scheduling workflows in cloud computing (Kushwaha & 

Singh, 2025). A hybrid GA-PSO-Min approach is proposed 

in (Mokhtari et al., 2025) for multi-objective optimization or 

adaptation to changing cloud conditions. 

2.2. Min-Min Scheduling strategy  

The Min-Min scheduling heuristic is used in parallel and 

distributed computing to map tasks to processors. The 

algorithm works as follows: 

1. The completion time of each task is calculated on each 

available machine. 

2. The task with the minimum completion time is selected 

among all machines and assigned to the machine where it 

completes faster. 

3. The above two steps are repeated iteratively, and the 

completion time is calculated after each assignment until all 

tasks are scheduled. 

The goal of this approach is to minimize the overall 

completion time (total completion time) by prioritizing tasks 

that can be completed quickly and thus reduce idle time on 

machines. 

Despite the relatively simple implementation of Min-

Min, because its effectiveness depends on the characteristics 

of tasks and machines, and especially in heterogeneous 

environments where machines have different processing 

capabilities and tasks have different computational loads; it 

does not lead to finding a global optimum. Therefore, it is 

always recommended to consider hybrid or adaptive 

approaches that change strategies based on workload 

characteristics. 

2.3. Firefly optimization algorithm 

To date, about 2,000 different species of fireflies have 

been recorded in the world, and most of them produce short, 

rhythmic flashes of light. Usually, each species of firefly 

produces a unique and unique flashing light pattern. The 

flashing light emitted by fireflies is produced by a biological 

process called bioluminescence, which causes the fireflies to 

glow.  Researchers have found that fireflies use flashing 

lights as a protective mechanism to send warnings to other 

fireflies in the environment. The rhythm or frequency of the 

flashing light, the rate of the light flashing, and the duration 

of the light flashing by the fireflies form different parts of 

the communication system between the worms. 

One thing to remember about the light flashing pattern of 

fireflies is that the “Light Intensity” at a given distance, r, 

from the “Light Source” follows the “Inverse Square Law.” 

In addition, the “Air” absorbs light, which in turn causes the 

light intensity to become weaker and weaker with increasing 

distance. The combination of these two important factors 

makes fireflies visible only from a certain distance. 

https://journals.kmanpub.com/index.php/jppr/index
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The flashing light produced by fireflies can be formulated 

to correspond to an “objective function” that is to be 

optimized by optimization algorithms; this allows 

researchers to formulate and implement new optimization 

algorithms. 

The firefly optimization algorithm proposed by Xin-She 

Yang (Yang, 2008) in 2008. The firefly optimization 

algorithm is one of the most reliable optimization techniques 

implemented on various problem domains and achieves 

good accuracy (Adaniya et al., 2015; Adaniya et al., 2012; 

Ahmed & Maheswari, 2017; Mahdi & Hassan, 2018; Tuba 

et al., 2018). Although it has some inefficiency in terms of 

parameter dependence and computing complexity (Yu, 

2020), it has been used in various applications because of its 

reliability and accuracy, such as power economic dispatch 

problems and spectrum access (Kolias et al., 2015; 

Lakshmana Rao et al., 2021; Liaquat et al., 2020; Shandilya 

et al., 2023).  

 To implement the Firefly Optimization Algorithm, the 

characteristic features related to the behavior of fireflies and 

the flashing light pattern produced by them will be 

formulated. To simplify the formulation of the firefly 

algorithm, the following rules are used: 

1. All fireflies are “unisex”. In other words, fireflies, 

regardless of their gender, will be attracted to other fireflies 

in the problem space. 

2. In the Firefly Algorithm (FA), the “Attractiveness” of 

a firefly will be proportional to its “Brightness”. In other 

words, for every two flashing fireflies, the one with less light 

will be attracted to the one with more light. Therefore, the 

attractiveness of a firefly will be proportional to its 

brightness. When the distance between two worms 

increases, their Attractiveness and Brightness decrease. In 

other words, when the distance between two fireflies 

increases, not only does their attractiveness to each other 

decrease, but their (visible) brightness (to each other) also 

decreases. If a particular firefly is brighter than the others, it 

will move randomly in the environment (it will not be 

attracted to any of the others). 

3. The brightness of a firefly is affected by or determined 

by the characteristic features of the objective function. In 

"Maximization" problems, the brightness can be specified in 

proportion to the value of the "Fitness Function". It is worth 

noting that it is possible to define the brightness of fireflies 

in a similar way to the fitness function in "Genetic 

Algorithms". 

3. Methodology / Proposed Method  

3.1. Description of the Proposed Method or Algorithm 

Since the task scheduling problem in cloud environments 

is a dynamic and constantly evolving problem, providing a 

suitable task scheduling algorithm with reasonable speed is 

a major challenge. Since the Min-Min algorithm performs 

well in static scenarios; in this paper, we use the optimized 

Min-Min algorithm (Muradi et al., 2022) to generate the 

initial population for the Firefly optimization algorithm with 

the aim of minimizing the total completion time as a critical 

performance criterion and also ensuring scalability and 

compatibility in dynamic cloud systems. The end result is a 

robust hybrid task scheduling algorithm that outperforms the 

techniques used alone in various distributed scenarios. 

3.2. Technical Details (e.g., Algorithm, Model, or 

Architecture) 

Suppose that n jobs are considered for processing in m 

virtual machine in the cloud at the beginning of the algorithm 

and tij (i=1,…, n,   j=1,…,m) is the time to complete each 

job i on the j machine. In the proposed hybrid Min-Min-FOA 

algorithm, an initial population is generated using the Min-

Min method based on the completion of each job on the 

entire machine, which accelerates the convergence process 

by providing a starting point with superior quality. Then, the 

firefly optimization algorithm uses the aforementioned 

initial population to find the global optimal solution with the 

feature of using the fewest machines to perform the most 

work and in the shortest possible time. This feature also 

ensures a reduction in energy consumption. The solution 

provided is in the form of an array that specifies the order in 

which the machines are placed in that order to start the work. 

The length of this array is proportional to the number of 

machines in use. During the optimization process, the main 

step, i.e., using the firefly optimization algorithm, is repeated 

over and over again. 

The pseudocode below outlines the Min-Min-FOA 

algorithm, integrating the described phases: 

  

https://journals.kmanpub.com/index.php/jppr/index
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Table 1 

Pseudo-code for Min-Min-FOA algorithm, combining Min-Min strategy and FOA algorithm. 

Define Objective function I=f(x)(I is light intensity) 

For all jobs 

               For all virtual machined 

             Calculate completion time 

Choose the job with the least time, remove the desired job and VM from the list.  

Go to 1 until all jobs mapped to Vms. 

Choose sorted jobs as initial population of fireflies 

Define absorption coefficient γ 

While (t<MaxGeneration): 

                             For i=1 to n (fireflies) 

                                    For j=1 to i: 

                                           If Ii>Ij: 

                                               Vary attractiveness with distance r via exp(-γr) 

                                                Move firefly I towards j 

                                                Evaluate new solutions and update light intensity 

                                        Rank fireflies and find the current best                   

 

 

4. Experiments / Results and Discussion  

4.1. Parameter Settings and Sensitivity Analysis 

This method leads to further energy savings and 

associated costs by further reducing the task completion 

time. Faster task execution minimizes the system execution 

time and therefore improves performance. In the FOA 

implementation, we initialized a population of 50 fireflies, 

set MaxGen to 1000 iterations, and defined the attractiveness 

parameter (β) as 0.5 with a light absorption coefficient (γ) of 

0.01. To ensure exploration, a Gaussian distribution was 

used for the random parameter (ε). Convergence was 

controlled by tracking the minimum value of the objective 

function and achieving stability after 800 iterations. The 

initial population was selected using the EHD strategy. The 

simulation parameters were selected empirically after 

sensitivity analysis, ensuring robust evaluation of the 

proposed method. 

To ensure stability, we tuned the FOA parameters based 

on initial experiments with the Cooja simulator. The 

attractiveness parameter (β=0.5), which balances 

exploration and exploitation, and the light absorption 

coefficient (γ=0.01), which ensures gradual convergence 

under hyperdynamic conditions, were experimentally tested 

by performing sensitivity analysis by varying β (0.1 to 1.0) 

and γ (0.001 to 0.1) in 10 runs with 50 fireflies and 10 virtual 

machines. The results showed that β=0.5 and γ=0.01 

minimize the energy consumption (33.28%) and latency 

(18% reduction) with convergence in 1000 iterations, while 

higher β values (e.g., 1.0) increase the computational 

overhead by 18% and lower γ (e.g., 0.001) delay 

convergence. These findings confirm the selected 

parameters as optimal parameters. 

4.2. Description of experiments or simulations  

To evaluate the performance of the proposed algorithm 

and given our intention to compare the proposed method 

with the results of the methods Min-Min and Min-PSO-GA, 

we performed simulations using a set of 512 tasks mapped 

to 16 virtual machines (VMs) in a simulated cloud 

environment, to have the same conditions and a more 

realistic comparison. The tasks were represented as fireflies, 

where each entry represents the virtual machine assigned to 

that task. The simulations were performed in the Contiki 

Cooja simulator environment, which was traditionally 

designed for IoT networks but we had made some changes 

to simulate cloud activities, and the reason for choosing 

Cooja is its flexibility in modeling distributed systems such 

as cloud scheduling. Our emphasis on scalability and 

flexibility in dynamic cloud environments is consistent with 

this approach, which, although unusual, enables rapid 

prototyping of scheduling algorithms across different 

resource configurations. Task execution times and virtual 

machine capacities were artificially generated to reflect 

twelve distinct scenarios categorized into compute-intensive 

(c), input/output-intensive (i), and mixed (p) workloads, 

each with task-virtual machine heterogeneity levels of high-

high (hihi), high-low (hilo), low-high (lohi), and low-low 

(lolo), as shown in Table 2. To ensure realism, we adopted a 

https://journals.kmanpub.com/index.php/jppr/index
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uniform distribution for task execution times, ranging from 

10 to 1000 time units for computationally intensive tasks 

(simulating CPU-intensive tasks), 1000 to 10000 units for 

I/O-intensive tasks (reflecting data transfer latencies), and 50 

to 5000 units for mixed workloads. The capacities of the 

virtual machines were similarly varied: high-capacity virtual 

machines (1000 units/s) for “high” scenarios and low-

capacity virtual machines (100 units/s) for “low” scenarios, 

calibrated based on benchmarks from previous cloud studies 

(Paulraj et al., 2023; Pradhan et al., 2025). This distribution 

mimics realistic workload patterns, such as bursty I/O 

demands or computationally intensive scientific 

applications, and ensures testing scenarios for the stability of 

the proposed algorithm under diverse cloud conditions. 

5. Results  

A summary of the findings from the experiment can be 

seen in Table 2, and the examples can be seen in Figures 1 

through 3. Table 2 also contains the outcomes of the 

experiment.  Table 2 displays, for each of the twelve 

instances that are shown, the total amount of time that is 

necessary to complete GA-PSO-Min, Min-Min and 

proposed algorithm.  Furthermore, this reveals that proposed 

algorithm is superior than Min-Min and GA-PSO-Min on a 

constant basis.   In the case of the compute-intensive high-

high scenario (c_hihi), for example, Min-Min-FOA was able 

to achieve a completion time of 223.47 units, which is a drop 

of about 1.83% in comparison to the completion time of GA-

PSO-Min, which was 227.65 units. In the I/O-intensive low-

low scenario (i_lolo), Min-Min-FOA made a considerable 

improvement to the completion time by decreasing it from 

29,064,893.5 units to 28491511.7 units. This represents an 

improvement of about 1.98%.   The figures 1 through 5 

provide a graphical representation of a comparison of the 

completion times across all of the instances.  It is evident that 

GA-PSO-Min consistently plots below Min-Min, which 

exemplifies the performance advantage that it has. Table 2 

graphically presented in Figure 1. 

Table 2 

All states and all distributed environments 

Instance Min-min GAPSO Min-Min-FOA 

c_hihi 237.75 227.65 223.47 

c_hilo 1411 1319.55 1294.16 

c_lohi 2182578.65 2052542.3 2011489.46 

c_lolo 12854160.55 11874263.4 11646775.14 

i_hihi 487.3 476 466.53 

i_hilo 3265.4 3157.05 3092.8 

i_lohi 4456769.5 4310440.35 4224218.55 

i_lolo 30258306.9 29064893.5 28491511.7 

p_hihi 306 296.35 288.43 

p_hilo 1890.1 1754 1718.8 

p_lohi 2759795.95 2631302.05 2456676 

p_lolo 17113178.8 16173294.95 15848821.2 

 

  

https://journals.kmanpub.com/index.php/jppr/index
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Figure 1 

Performance comparison between GA-PSO-Min and the Min-Min heuristic in scenarios with both heterogeneous tasks and virtual machines 

(VMs) 

  

  

 

6. Discussion and Conclusion 

The experimental results of this study underscore the 

efficacy of the Min-Min-FOA algorithm in addressing the 

complexities of job scheduling within dynamic cloud 

environments. Across twelve diverse scenarios, Min-Min-

FOA consistently outperformed the Min-PSO-GA, reducing 

total completion time by 1.5–3%. This improvement stems 

from the hybrid architecture, which capitalizes on Min-

Min’s efficient initial solution, FOA’s robust global 

exploration.  These gains highlight the algorithm’s 

adaptability to varying task-VM interactions. This 

adaptability positions Min-Min-FOA as a promising 

solution for modern cloud systems, where resource states 

and user demands fluctuate unpredictably. 
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