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Due to the increasing use of the Internet of Things, efficient task scheduling in cloud
computing has become increasingly important with the aim of maximizing the use
of available resources, reducing energy consumption, and enhancing the quality of
service (QoS). In this paper, we use the Firefly Optimization (FFO) algorithm to
improve scheduling efficiency and minimize the overall completion time in cloud
environments. For this purpose, twelve distinct scenarios were designed in the Cooja
Contiki simulator environment with the perspective of computationally intensive,
input/output intensive, and mixed workloads, and the overall completion time results
obtained with the Min-Min and GA-PSO-Min methods were compared and the
better performance of the method was confirmed.

Keywords: Firefly Optimization Algorithm, Internet of Things, Cloud Computing,
Job Scheduling, Total Time Spent, Efficiency in Energy Use, Scalability and Multi-

Objective Optimization.

1.

Introduction

In the cloud-fog environment, different types of virtual

machines are used for computing, which are executed in
the fog or cloud depending on the importance of execution
time and the volume of calculations. In the cloud sector; the

scheduling problem is a critical component with the aim of
maximizing resource efficiency, reducing the completion
time of each task, reducing the overall execution time (span
and flow time), and also the cost of execution while
maintaining the quality of service. The continuity and

dynamics of the continuous execution of these tasks have
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multiplied the importance of the problem. Since the tasks
presented are often interdependent and do not have the same
priority; examining and presenting a suitable method for
continuous and rapid prioritization of tasks is one of the
important and up-to-date issues studied by researchers. Since
the cloud scheduling problem is an NP-complete problem,
investigating and finding suitable solutions is
computationally challenging.

Many of existing schedulers cannot cope with the
dynamic nature of cloud systems and frequent changes in
resource status. As a result, problems such as insufficient
gap-filling during backfilling operations and project
completion delays become more serious (Murad et al.,
2024). For its efficient use, it is essential to design a
scheduler that is not only more comprehensive but also more
configurable.

Furthermore, with increasing user expectations for
privacy, enhanced security while increasing or maintaining
the quality of service (QoS) at the current level, and
minimizing the number of service level agreements (SLAs)
that involve compliance violations, the development of
advanced scheduling strategies is essential to ensure cost-
effective,  scalable, and  responsive  computing
infrastructures. This issue has impacted various industries,
including IoT, smart homes, and wearable technologies
(Khezri et al., 2024). Considerable efforts have been made
to investigate task scheduling in cloud computing, with the
aim of maximizing resource efficiency and increasing
overall system effectiveness, with previous studies mainly
focusing on various methods such as First-in-First-Serve
(FCFS) and Shortest Job First (SJF) due to their ease of
implementation (Paulraj et al., 2023).

The main objective of this research is to improve the
efficiency of task scheduling in cloud environments by
considering all the complexities of cloud scheduling that
depend on the dynamic nature of resources and changing
needs of users. This study proposes a novel approach that
integrates multi-objective optimization to simultaneously
minimize critical performance metrics such as completion
time, flow time, and overall latency.

The wide variety of task requirements and fluctuations in
resource availability lead to the increasing complexity of
task scheduling in cloud environments and pose significant
challenges in achieving optimal performance in terms of
overall completion time and resource utilization. The main
goal in designing scheduling optimization algorithms is to
reduce the time required to complete large-scale distributed

cloud tasks while maintaining computational efficiency.
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Nature-Inspired Algorithms are among the most powerful
optimization algorithms. The Firefly —Optimization
Algorithm (FOA) is one of the most powerful of these
algorithms. An important feature of the Firefly Optimization
Algorithm, which distinguishes it from some similar
optimization algorithms, is its excellent performance in
finding optimal solutions to multimodal problems and
functions. Such an important feature of the Firefly
optimization algorithm has made it an ideal choice for multi-
mode optimization applications. In particular, it appears to
be very powerful in solving NP-Hard problems, such as task
scheduling, and converges to the global optimal solution in
a very reasonable time.

In this paper, we will use the Firefly optimization
algorithm to provide a scalable and practical solution that
increases resource efficiency and speeds up the execution of
activities, especially those with time-sensitive workloads in
the cloud. The remaining parts of this work are structured as
follows: In Section 2, we will review the related work that
has been done on heuristic scheduling algorithms in cloud
systems. We will also get acquainted with the history and
applications of the Firefly optimization algorithm. The
proposed Firefly optimization algorithm, including the
algorithm architecture, will be presented in Section 3. In
Section 4, the performance of the proposed technique is
evaluated using data collected from experiments. In
addition, a comparison is made between the total completion
times of the proposed algorithm with Min-Min and GA-
PSO-Min methods in a wide range of sparse and diverse
situations, and figures and tables provide assistance based on
the situation requirements. The results, contributions, and
suggestions for further research are summarized in Section
5, which serves as the conclusion of the study.

2. Literature Review and Previous Work

This section defines and introduces the subject literature's
concepts, methods, and standard definitions and termi-

nology. Subsequently, previous studies are reviewed.

2.1.  Task scheduling in Cloud-fog environments

The task scheduling problem in cloud-fog environments
has become one of the main issues studied by many
researchers due to the widespread use of the Internet of
Things. For example, Abedinzadeh and Akiol (Abedinzadeh
& Akyol, 2023) proposed the AEOSA algorithm to improve
the efficiency of more heterogeneous datasets. Zhang et al.
(Zhang et al., 2022) proposed the SCC-DSO algorithm to
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optimize queues based on storage location. Liu et al. (Liu et
al., 2018) designed a framework for cloud-fog (IoT) for
clustering and decentralized scheduling. Zhao et al. (Zhao et
al., 2023) proposed a location-aware scheduling strategy for
autonomous tasks to reduce the execution time by using data
replication. Sobhanayak et al. (Sobhanayak et al., 2018)
proposed a hybrid initiative influenced by biological
processes and optimized energy generation and consumption
time. Ghobaei-Arani et al. (Ghobaei-Arani et al., 2018)
proposed a hybrid reinforcement learning and self-directed
strategy to allocate resources and improve efficiency by
using the MAPE cycle.

A Tabu-Harmony hybrid was developed to improve
throughput and reduce task execution time in (Alazzam et
al., 2019). In (Devaraj et al., 2020), the firefly algorithm and
the improved multi-objective PSO (IMPSO) are combined
to optimize response time and resource utilization while
Whale
optimization is used in (Reddy & Kumar, 2017) to provide a

ignoring memory and cost considerations.

better balance between resource utilization, energy
consumption, quality of service, and better performance of
alternatives in terms of energy efficiency.

A heuristic task scheduling strategy (TSO-MCR) was
introduced in the field of cloud computing (Boroumand et
al., 2025). A hybrid fuzzy meta-heuristic approach called
IVPTS was designed for quality of service (QoS) and was
introduced in (Long et al., 2025). In (Chen et al., 2025), a
customer-oriented multi-task scheduling model for cloud
production was proposed. The advanced Willow Cat
optimization (AWCO) technique is introduced to improve
task scheduling in cloud computing (Pan et al., 2025). In
(Zade et al., 2025), Mohammad Hassanizadeh et al.
proposed an improved multi-objective Beluga Whale
optimization approach with ring topology (MO-IBWO-
Ring) for multi-objective task scheduling in cloud
computing, focusing on minimizing time and cost.

In (Khaledian et al., 2025), a hybrid Markov chain-based
dynamic scheduling architecture is proposed to improve load
balancing in cloud-fog conditions. Modified parallel particle
swarm optimization (MPPSO) is designed to achieve the
goal of improving task scheduling in cloud computing
(Pradhan et al., 2025). Archimedes optimization algorithm
with deadline and budget constraints (ADB) is developed for
scheduling workflows in cloud computing (Kushwaha &
Singh, 2025). A hybrid GA-PSO-Min approach is proposed
in (Mokhtari et al., 2025) for multi-objective optimization or
adaptation to changing cloud conditions.
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2.2.  Min-Min Scheduling strategy

The Min-Min scheduling heuristic is used in parallel and
distributed computing to map tasks to processors. The
algorithm works as follows:

1. The completion time of each task is calculated on each
available machine.

2. The task with the minimum completion time is selected
among all machines and assigned to the machine where it
completes faster.

3. The above two steps are repeated iteratively, and the
completion time is calculated after each assignment until all
tasks are scheduled.

The goal of this approach is to minimize the overall
completion time (total completion time) by prioritizing tasks
that can be completed quickly and thus reduce idle time on
machines.

Despite the relatively simple implementation of Min-
Min, because its effectiveness depends on the characteristics
of tasks and machines, and especially in heterogeneous
environments where machines have different processing
capabilities and tasks have different computational loads; it
does not lead to finding a global optimum. Therefore, it is
always recommended to consider hybrid or adaptive
approaches that change strategies based on workload
characteristics.

2.3.  Firefly optimization algorithm

To date, about 2,000 different species of fireflies have
been recorded in the world, and most of them produce short,
rhythmic flashes of light. Usually, each species of firefly
produces a unique and unique flashing light pattern. The
flashing light emitted by fireflies is produced by a biological
process called bioluminescence, which causes the fireflies to
glow. Researchers have found that fireflies use flashing
lights as a protective mechanism to send warnings to other
fireflies in the environment. The rhythm or frequency of the
flashing light, the rate of the light flashing, and the duration
of the light flashing by the fireflies form different parts of
the communication system between the worms.

One thing to remember about the light flashing pattern of
fireflies is that the “Light Intensity” at a given distance, T,
from the “Light Source” follows the “Inverse Square Law.”
In addition, the “Air” absorbs light, which in turn causes the
light intensity to become weaker and weaker with increasing
distance. The combination of these two important factors
makes fireflies visible only from a certain distance.
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The flashing light produced by fireflies can be formulated
to correspond to an “objective function” that is to be
optimized by optimization algorithms; this allows
researchers to formulate and implement new optimization
algorithms.

The firefly optimization algorithm proposed by Xin-She
Yang (Yang, 2008) in 2008. The firefly optimization
algorithm is one of the most reliable optimization techniques
implemented on various problem domains and achieves
good accuracy (Adaniya et al., 2015; Adaniya et al., 2012;
Ahmed & Maheswari, 2017; Mahdi & Hassan, 2018; Tuba
et al., 2018). Although it has some inefficiency in terms of
parameter dependence and computing complexity (Yu,
2020), it has been used in various applications because of its
reliability and accuracy, such as power economic dispatch
problems and spectrum access (Kolias et al., 2015;
Lakshmana Rao et al., 2021; Liaquat et al., 2020; Shandilya
et al., 2023).

To implement the Firefly Optimization Algorithm, the
characteristic features related to the behavior of fireflies and
the flashing light pattern produced by them will be
formulated. To simplify the formulation of the firefly
algorithm, the following rules are used:

1. All fireflies are “unisex”. In other words, fireflies,
regardless of their gender, will be attracted to other fireflies
in the problem space.

2. In the Firefly Algorithm (FA), the “Attractiveness” of
a firefly will be proportional to its “Brightness”. In other
words, for every two flashing fireflies, the one with less light
will be attracted to the one with more light. Therefore, the
attractiveness of a firefly will be proportional to its
brightness. When the distance between two worms
increases, their Attractiveness and Brightness decrease. In
other words, when the distance between two fireflies
increases, not only does their attractiveness to each other
decrease, but their (visible) brightness (to each other) also
decreases. If a particular firefly is brighter than the others, it
will move randomly in the environment (it will not be
attracted to any of the others).

3. The brightness of a firefly is affected by or determined
by the characteristic features of the objective function. In
"Maximization" problems, the brightness can be specified in
proportion to the value of the "Fitness Function". It is worth
noting that it is possible to define the brightness of fireflies
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in a similar way to the fitness function in "Genetic
Algorithms".

3. Methodology / Proposed Method
3.1.  Description of the Proposed Method or Algorithm

Since the task scheduling problem in cloud environments
is a dynamic and constantly evolving problem, providing a
suitable task scheduling algorithm with reasonable speed is
a major challenge. Since the Min-Min algorithm performs
well in static scenarios; in this paper, we use the optimized
Min-Min algorithm (Muradi et al., 2022) to generate the
initial population for the Firefly optimization algorithm with
the aim of minimizing the total completion time as a critical
performance criterion and also ensuring scalability and
compatibility in dynamic cloud systems. The end result is a
robust hybrid task scheduling algorithm that outperforms the

techniques used alone in various distributed scenarios.

3.2, Technical Details (e.g., Algorithm, Model, or
Architecture)

Suppose that n jobs are considered for processing in m
virtual machine in the cloud at the beginning of the algorithm
and tij (i=1,..., n, j=1,...,m) is the time to complete each
job ion the j machine. In the proposed hybrid Min-Min-FOA
algorithm, an initial population is generated using the Min-
Min method based on the completion of each job on the
entire machine, which accelerates the convergence process
by providing a starting point with superior quality. Then, the
firefly optimization algorithm uses the aforementioned
initial population to find the global optimal solution with the
feature of using the fewest machines to perform the most
work and in the shortest possible time. This feature also
ensures a reduction in energy consumption. The solution
provided is in the form of an array that specifies the order in
which the machines are placed in that order to start the work.
The length of this array is proportional to the number of
machines in use. During the optimization process, the main
step, i.e., using the firefly optimization algorithm, is repeated
over and over again.

The pseudocode below outlines the Min-Min-FOA
algorithm, integrating the described phases:
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Table 1
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Pseudo-code for Min-Min-FOA algorithm, combining Min-Min strategy and FOA algorithm.

Define Objective function I=f(x)(I is light intensity)
For all jobs
For all virtual machined
Calculate completion time

Choose the job with the least time, remove the desired job and VM from the list.

Go to 1 until all jobs mapped to Vms.
Choose sorted jobs as initial population of fireflies
Define absorption coefficient y
While (t<MaxGeneration):
For i=1 to n (fireflies)
Forj=1to1i:
If Ii>]j:
Vary attractiveness with distance r via exp(-yr)
Move firefly I towards j
Evaluate new solutions and update light intensity
Rank fireflies and find the current best

4. Experiments / Results and Discussion
4.1.  Parameter Settings and Sensitivity Analysis

This method leads to further energy savings and
associated costs by further reducing the task completion
time. Faster task execution minimizes the system execution
time and therefore improves performance. In the FOA
implementation, we initialized a population of 50 fireflies,
set MaxGen to 1000 iterations, and defined the attractiveness
parameter (B) as 0.5 with a light absorption coefficient (y) of
0.01. To ensure exploration, a Gaussian distribution was
used for the random parameter (¢). Convergence was
controlled by tracking the minimum value of the objective
function and achieving stability after 800 iterations. The
initial population was selected using the EHD strategy. The
simulation parameters were selected empirically after
sensitivity analysis, ensuring robust evaluation of the
proposed method.

To ensure stability, we tuned the FOA parameters based
on initial experiments with the Cooja simulator. The
attractiveness  parameter (f=0.5), which balances
exploration and exploitation, and the light absorption
coefficient (y=0.01), which ensures gradual convergence
under hyperdynamic conditions, were experimentally tested
by performing sensitivity analysis by varying B (0.1 to 1.0)
and vy (0.001 to 0.1) in 10 runs with 50 fireflies and 10 virtual
machines. The results showed that p=0.5 and y=0.01
minimize the energy consumption (33.28%) and latency

(18% reduction) with convergence in 1000 iterations, while

higher B values (e.g., 1.0) increase the computational
overhead by 18% and lower y (e.g., 0.001) delay
convergence. These findings confirm the selected

parameters as optimal parameters.

4.2.  Description of experiments or simulations

To evaluate the performance of the proposed algorithm
and given our intention to compare the proposed method
with the results of the methods Min-Min and Min-PSO-GA,
we performed simulations using a set of 512 tasks mapped
to 16 virtual machines (VMs) in a simulated cloud
environment, to have the same conditions and a more
realistic comparison. The tasks were represented as fireflies,
where each entry represents the virtual machine assigned to
that task. The simulations were performed in the Contiki
Cooja simulator environment, which was traditionally
designed for IoT networks but we had made some changes
to simulate cloud activities, and the reason for choosing
Cooja is its flexibility in modeling distributed systems such
as cloud scheduling. Our emphasis on scalability and
flexibility in dynamic cloud environments is consistent with
this approach, which, although unusual, enables rapid
prototyping of scheduling algorithms across different
resource configurations. Task execution times and virtual
machine capacities were artificially generated to reflect
twelve distinct scenarios categorized into compute-intensive
(c), input/output-intensive (i), and mixed (p) workloads,
each with task-virtual machine heterogeneity levels of high-
high (hihi), high-low (hilo), low-high (lohi), and low-low
(lolo), as shown in Table 2. To ensure realism, we adopted a
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uniform distribution for task execution times, ranging from
10 to 1000 time units for computationally intensive tasks
(simulating CPU-intensive tasks), 1000 to 10000 units for
I/O-intensive tasks (reflecting data transfer latencies), and 50
to 5000 units for mixed workloads. The capacities of the
virtual machines were similarly varied: high-capacity virtual
machines (1000 units/s) for “high” scenarios and low-
capacity virtual machines (100 units/s) for “low” scenarios,
calibrated based on benchmarks from previous cloud studies
(Paulraj et al., 2023; Pradhan et al., 2025). This distribution
mimics realistic workload patterns, such as bursty 1/O
demands or computationally intensive  scientific
applications, and ensures testing scenarios for the stability of

the proposed algorithm under diverse cloud conditions.

5. Results

A summary of the findings from the experiment can be
seen in Table 2, and the examples can be seen in Figures 1
through 3. Table 2 also contains the outcomes of the

Table 2

All states and all distributed environments

Journal of Resource Management and Decision Engineering 4:4 (2025) 1-9

experiment. Table 2 displays, for each of the twelve
instances that are shown, the total amount of time that is
necessary to complete GA-PSO-Min, Min-Min and
proposed algorithm. Furthermore, this reveals that proposed
algorithm is superior than Min-Min and GA-PSO-Min on a
constant basis. In the case of the compute-intensive high-
high scenario (c_hihi), for example, Min-Min-FOA was able
to achieve a completion time of 223.47 units, which is a drop
of about 1.83% in comparison to the completion time of GA-
PSO-Min, which was 227.65 units. In the I/O-intensive low-
low scenario (i_lolo), Min-Min-FOA made a considerable
improvement to the completion time by decreasing it from
29,064,893.5 units to 28491511.7 units. This represents an
The figures 1 through 5
provide a graphical representation of a comparison of the

improvement of about 1.98%.

completion times across all of the instances. It is evident that
GA-PSO-Min consistently plots below Min-Min, which
exemplifies the performance advantage that it has. Table 2
graphically presented in Figure 1.

Instance Min-min GAPSO Min-Min-FOA
c¢_hihi 237.75 227.65 223.47
¢_hilo 1411 1319.55 1294.16
c_lohi 2182578.65 2052542.3 2011489.46
c_lolo 12854160.55 11874263.4 11646775.14
i_hihi 487.3 476 466.53

i_hilo 3265.4 3157.05 3092.8
i_lohi 4456769.5 4310440.35 4224218.55
i_lolo 30258306.9 29064893.5 28491511.7
p_hihi 306 296.35 288.43
p_hilo 1890.1 1754 1718.8
p_lohi 2759795.95 2631302.05 2456676
p_lolo 17113178.8 16173294.95 15848821.2

6
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Figure 1

Performance comparison between GA-PSO-Min and the Min-Min heuristic in scenarios with both heterogeneous tasks and virtual machines

(VMs)
600 4000
500
3000
400
300 2000
200 1000
100
0 0
c_hihi p_hihi i_hihi c_hilo p_hilo i_hilo
B Min-min B GAPSO M Min-Min-FOA B Min-min B GAPSO  ® Min-Min-FOA
5000000 40000000
4000000 30000000
3000000
5000000 20000000
1000000 III 10000000 I I I I I I
0 0
c_lohi p_lohi i_lohi c_lolo p_lolo i_lolo
® Min-min  ®GAPSO  ® Min-Min-FOA B Min-min B GAPSO ® Min-Min-FOA

6. Discussion and Conclusion

The experimental results of this study underscore the
efficacy of the Min-Min-FOA algorithm in addressing the
complexities of job scheduling within dynamic cloud
environments. Across twelve diverse scenarios, Min-Min-
FOA consistently outperformed the Min-PSO-GA, reducing
total completion time by 1.5-3%. This improvement stems
from the hybrid architecture, which capitalizes on Min-
Min’s efficient initial solution, FOA’s robust global
exploration.
adaptability
adaptability positions Min-Min-FOA as a promising

These gains highlight the algorithm’s

to varying task-VM interactions. This

solution for modern cloud systems, where resource states
and user demands fluctuate unpredictably.
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