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Air pollution is considered one of the most serious environmental and public health 

challenges in urban communities, and accurately forecasting the Air Quality Index 

(AQI) plays a crucial role in mitigating its negative impacts and supporting data-

driven decision-making. Given the complexity and nonlinear nature of factors 

influencing air quality, the use of machine learning methods has attracted 

widespread attention in recent years. However, a review of previous studies reveals 

two major shortcomings: first, many models have been implemented based on 

default hyperparameter values, which has led to reduced accuracy and 

generalizability; second, temporal and seasonal components have often been 

overlooked, even though they play a decisive role in variations in air quality. To 

address these shortcomings, this study proposes a novel framework called the 

Seasonal Gradient Boosting Regressor (S-GBR). In this model, the Bayesian 

optimization search method is used for hyperparameter optimization, and the 

seasonal feature is incorporated as an input to the Gradient Boosting Regressor 

algorithm. In addition, baseline models such as Random Forest and XGBoost were 

also simulated and compared to determine the standing of the proposed model. 

Empirical findings show that the proposed model achieved a coefficient of 

determination of 0.9686 and significantly reduced errors, performing almost as well 

as the most accurate baseline model (Random Forest with 0.9796) while 

outperforming XGBoost. These results demonstrate that combining Bayesian 

optimization with the inclusion of seasonal components can raise prediction 

accuracy to the level of rich and complex datasets, even under limited data 

conditions. Such an achievement highlights the high potential of the proposed model 

for use in practical air quality monitoring and management. 

Keywords: Air Quality Index forecasting, machine learning, hyperparameter 

optimization, Bayesian search, seasonal features, S-GBR model. 
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1. Introduction 

ir pollution has emerged as one of the most critical 

environmental and public health challenges of the 21st 

century, particularly in rapidly urbanizing regions where 

industrial emissions, transportation, and population growth 

are accelerating at unprecedented rates. The degradation of 

air quality directly contributes to respiratory and 

cardiovascular diseases, reduced life expectancy, and 

significant economic burdens associated with healthcare 

costs and workforce productivity losses (Shayegan & 

Makram, 2023). Forecasting and managing air quality, 

therefore, has become an urgent necessity for policymakers, 

environmental agencies, and urban planners. In this context, 

the development of reliable and accurate prediction models 

for the Air Quality Index (AQI) has attracted increasing 

attention from researchers worldwide (Gupta et al., 2023; 

Natarajan et al., 2024). 

The AQI is a standardized indicator that aggregates data 

on key air pollutants—including particulate matter (PM2.5 

and PM10), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), 

carbon monoxide (CO), and ozone (O₃)—into a single 

composite value, which can be used to communicate air 

pollution levels to the public and trigger mitigation 

measures. Traditional statistical methods, such as multiple 

linear regression, have historically been employed to predict 

air pollutant concentrations. However, these methods often 

struggle to capture the nonlinear, multivariate, and 

spatiotemporally dynamic nature of air pollution processes, 

resulting in poor predictive accuracy and generalizability 

(Farhadi et al., 2020; Omidvar et al., 2018). This limitation 

has accelerated the shift toward machine learning (ML)-

based approaches, which are capable of learning complex 

patterns from high-dimensional data and have shown 

superior performance in environmental modeling (Aram et 

al., 2023; Kalantari et al., 2024). 

2. Literature Review 

In recent years, machine learning models have been 

increasingly adopted to forecast AQI and pollutant 

concentrations across diverse geographical contexts. For 

example, ensemble learning techniques—such as Random 

Forest and Gradient Boosting—have been recognized for 

their robustness against overfitting and their ability to model 

nonlinear interactions among atmospheric variables (Castelli 

et al., 2020; Ganesh et al., 2021). Studies conducted in 

Tehran have confirmed that these models outperform 

traditional regression methods in predicting urban air quality 

trends (Beheshtifar & Rahimzad, 2018; Karami et al., 2023). 

Similarly, deep learning architectures such as convolutional 

neural networks (CNNs), long short-term memory networks 

(LSTMs), and hybrid frameworks have achieved remarkable 

accuracy in spatiotemporal AQI forecasting by leveraging 

their capability to extract hierarchical features from time 

series data (Du et al., 2021; Ragab et al., 2020). 

Despite these advances, several key challenges remain. 

One major challenge is the scarcity and inconsistency of 

environmental monitoring data, especially in developing 

countries and regions with sparse monitoring infrastructure. 

Missing data, noise, and imbalanced datasets can severely 

degrade model performance. Recent work has attempted to 

address this problem by developing data reconstruction 

techniques and noise-robust learning frameworks (Just et al., 

2020; Xu et al., 2021). Another challenge is the sensitivity 

of ML models to hyperparameter settings. Default parameter 

configurations often fail to generalize well across diverse 

datasets and atmospheric conditions, resulting in overfitting 

or underfitting (Haq, 2022; Mishra et al., 2020). Therefore, 

optimization techniques such as Bayesian optimization and 

evolutionary algorithms have been increasingly integrated 

into AQI modeling pipelines to fine-tune hyperparameters 

and enhance predictive accuracy (Natarajan et al., 2024; Wu 

et al., 2024). 

Furthermore, the seasonal and temporal variability of air 

pollution poses another significant obstacle to accurate 

prediction. Many conventional ML models overlook the 

seasonality inherent in atmospheric systems, leading to 

decreased accuracy during periods of abrupt weather 

changes or seasonal pollutant accumulation (Haqbian et al., 

2023; Sharma et al., 2021). Incorporating seasonal and 

temporal features into predictive models has been shown to 

significantly improve performance by enabling models to 

account for cyclic fluctuations in pollutant levels (Hardini et 

al., 2023; Zhou et al., 2022). Studies that have explicitly 

modeled seasonal dynamics, such as those by Liu and 

colleagues in China, have demonstrated that including 

temporal features such as month and season reduces forecast 

errors and improves generalization to unseen data (Liu et al., 

2020). 

Another dimension of complexity in AQI forecasting lies 

in the heterogeneity of predictor variables, which can 

include meteorological factors, emission inventories, 

A 

https://journals.kmanpub.com/index.php/jppr/index
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satellite imagery, and traffic data. Integrating such diverse 

data sources requires models that are both flexible and 

computationally efficient. Gradient boosting-based 

algorithms—such as Gradient Boosting Regressor (GBR), 

XGBoost, LightGBM, and CatBoost—have shown 

considerable promise in this regard, due to their ability to 

handle high-dimensional heterogeneous inputs and capture 

nonlinear interactions (Brahmi et al., 2023; Mahesh et al., 

2022; Zhang et al., 2020). Several comparative studies have 

confirmed the competitive performance of these ensemble 

models in air quality prediction tasks relative to both shallow 

learners and deep neural networks (Goudarzi et al., 2020; 

Gupta & Singla, 2023). However, while deep learning 

models can deliver higher accuracy, they often require 

massive computational resources and large labeled datasets, 

which may not be feasible in data-constrained environments 

(Danesh Yazdi et al., 2020; Kalantari et al., 2024). 

Hybrid and ensemble modeling strategies have recently 

emerged as a promising solution to these issues. By 

combining the strengths of multiple algorithms, hybrid 

approaches can enhance prediction accuracy, reduce 

variance, and improve robustness under limited data 

conditions (Gupta et al., 2023; Ravindiran et al., 2023). For 

instance, research by Aram et al. demonstrated that hybrid 

ML systems integrating boosting algorithms with 

meteorological data significantly outperformed single-

model baselines in predicting both AQI values and 

categorical air quality grades (Aram et al., 2023). Similar 

findings have been reported in India, where optimized 

machine learning frameworks integrating feature selection, 

ensemble learners, and hyperparameter tuning achieved 

notable improvements in predictive performance 

(Kothandaraman et al., 2022; Natarajan et al., 2024). These 

results collectively suggest that ensemble-based models with 

systematic optimization represent a viable pathway toward 

accurate and generalizable AQI forecasting systems. 

At the same time, the explainability and interpretability 

of machine learning models remain critical for their adoption 

in environmental policymaking. Black-box models may 

achieve high accuracy but fail to provide insights into the 

causal drivers of air pollution events, limiting their practical 

usefulness for regulatory planning (Castelli et al., 2020; 

Sharma et al., 2021). Consequently, researchers have 

increasingly incorporated model interpretability tools, such 

as feature importance analysis and SHAP (SHapley Additive 

exPlanations) values, into AQI prediction studies to identify 

key contributing factors and to build trust among 

stakeholders (Karami et al., 2023; Ravindiran et al., 2023). 

In this context, the present study aims to develop a novel 

AQI prediction framework called the Seasonal Gradient 

Boosting Regressor (S-GBR), which integrates Bayesian 

hyperparameter optimization with seasonal feature 

incorporation to enhance accuracy, generalizability, and 

computational efficiency. The S-GBR model is designed to 

overcome three core limitations identified in prior research: 

(1) the use of default hyperparameter settings that hinder 

model generalization (Haq, 2022; Mishra et al., 2020), (2) 

the exclusion of seasonal and temporal features that are 

crucial for capturing air quality dynamics (Hardini et al., 

2023; Liu et al., 2020), and (3) the lack of a streamlined 

approach that balances predictive performance with resource 

efficiency (Du et al., 2021; Wu et al., 2024). By 

incorporating seasonality as a categorical input and using 

Bayesian optimization to fine-tune model parameters, this 

framework seeks to deliver near state-of-the-art accuracy 

while maintaining low computational overhead. 

Moreover, the study contributes to the growing literature 

on sustainable and adaptive air quality management by 

demonstrating how advanced machine learning techniques 

can be tailored to perform effectively in data-limited 

environments—a scenario common in many developing 

urban centers (Goudarzi et al., 2020; Shayegan & Makram, 

2023). The inclusion of both a full dataset (pollutants plus 

meteorological parameters) and a reduced dataset (pollutants 

only) further allows the evaluation of the model’s robustness 

under varying data availability conditions. This dual-dataset 

design addresses the practical constraint that meteorological 

data are often unavailable or of low quality in many regions 

(Haqbian et al., 2023; Omidvar et al., 2018). 

In summary, as air pollution continues to threaten public 

health, ecosystems, and economic sustainability, accurate 

AQI forecasting tools are essential for enabling timely 

interventions and informed policymaking. While significant 

progress has been made through the application of machine 

learning, persistent challenges related to data scarcity, 

seasonal variability, and hyperparameter sensitivity hinder 

the reliability of existing models (Gupta & Singla, 2023; 

Kalantari et al., 2024). The proposed S-GBR model seeks to 

address these gaps by merging the predictive power of 

boosting algorithms with the adaptability of Bayesian 

optimization and the contextual awareness provided by 

seasonal feature integration.  

https://journals.kmanpub.com/index.php/jppr/index


 Mahbodi & Karasfi                                                                                             Journal of Resource Management and Decision Engineering 4:4 (2025) 1-16 

 

 4 

3. Methods and Materials 

The proposed method of this study is presented to 

overcome the limitations of previous research and to achieve 

an accurate, generalizable, and low-cost model for 

forecasting the Air Quality Index (AQI). A review of the 

literature showed that traditional statistical and machine 

learning models, despite their simplicity, are weak in terms 

of accuracy and generalizability, while deep learning 

models—although more accurate—require massive volumes 

of data and high computational power. Moreover, ensemble 

models such as Random Forest and CatBoost have 

performed well; however, many studies have used default 

parameter values and have not conducted effective 

optimization. In addition, most studies have not incorporated 

temporal and seasonal variables into the modeling, which 

has reduced forecasting accuracy. 

This study is built upon the combination and extension of 

methods reported in two main reference articles. The first 

article, by Gaddam and Reddy in Chemosphere (Haq, 2022), 

used complete data—including pollutants and 

meteorological parameters—and employed several machine 

learning algorithms, which served as the basis for deriving 

the baseline model. The second article, by Gupta et al. in the 

Journal of Environmental and Public Health (Liu et al., 

2020), used simpler data without meteorological variables 

and demonstrated that AQI can be forecast under data-

limited conditions. By integrating the findings of these two 

studies, this thesis proposes a novel model titled S-GBR 

(Seasonal Gradient Boosting Regressor), whose aim is to 

achieve accurate yet simple and generalizable forecasting. 

The principal innovations of this model are twofold: first, the 

use of Bayesian optimization to finely tune hyperparameters; 

and second, the addition of seasonal features as input 

variables. This approach enables the proposed model to 

perform well not only when complete data are available but 

also under data-limited scenarios and to represent seasonal 

changes in air quality with greater accuracy. 

3.1. Data Collection and 

Initial Preparation 

One of the essential stages in designing the proposed 

model is data collection and preparation. The quality of input 

data plays a decisive role in the accuracy and generalizability 

of machine learning models. In this study, two different 

datasets were used, each pursuing specific objectives: 

Full Dataset: This dataset includes all air pollutants (such 

as PM2.5, PM10, NO2, CO, SO2, and O3) along with 

meteorological parameters (including temperature, relative 

humidity, wind speed, and air pressure). These data are 

similar to those used in the first reference article [1] and are 

employed to analyze the relationships between pollutants 

and atmospheric conditions. Using this dataset allows for 

comparison with existing advanced models. 

Reduced Dataset: This dataset includes only pollutants 

and does not contain meteorological parameters. Inspired by 

the second reference article (Liu et al., 2020), this approach 

evaluates the proposed model’s ability to forecast the Air 

Quality Index in situations where meteorological data are 

unavailable or access to them is limited. Such circumstances 

are common in many developing cities and in regions 

lacking complete air monitoring infrastructure. 

3.1.1. Initial Data Preparation 

After compiling the data, several preparation steps were 

carried out to make the data suitable for modeling: 

Data quality assessment: The raw data contained missing 

and noisy values. These were identified and, to prevent 

negative effects on model performance, removed or 

imputed. 

Unification and alignment of time intervals: Pollutant and 

meteorological variables had been recorded at different time 

intervals. Therefore, all data were resampled to a uniform 

daily interval. 

Construction of auxiliary variables: To increase the 

model’s ability to identify temporal patterns, new 

variables—including “month” and “season”—were created. 

The season variable plays a key role in the proposed model 

and will be explained below. 

These preparation steps ensured that the data were 

structured, clean, and usable in preprocessing and modeling 

procedures. 

3.2. Data Preprocessing 

Data preprocessing is one of the most important stages in 

developing machine learning models. Raw data typically 

have deficiencies and inconsistencies that, if left 

uncorrected, can reduce model accuracy. In this study, data 

preprocessing was conducted in several core steps, which are 

explained below. 

3.2.1. Removal of Missing and Noisy Data 

The initial data contained missing values (Missing 

Values) and noisy observations. Statistical methods and 

https://journals.kmanpub.com/index.php/jppr/index
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correlation analysis were used to identify them. Values 

outside defined statistical bounds (such as values more than 

three standard deviations from the mean) were considered 

noise. Missing values were replaced using a moving average 

or, in some cases, linear interpolation. This step ensured that 

the data had sufficient uniformity and coherence to be input 

to the model. 

3.2.2. Normalization and Standardization of Data 

Different variable scales can cause errors in machine 

learning algorithms. For example, CO values are recorded in 

ppm, whereas PM2.5 is reported in µg/m³. Therefore, all 

variables were normalized to the range [0, 1] using Min-Max 

Normalization. This enabled the model to detect true 

patterns among variables without bias arising from scale 

differences. 

3.2.3. Extraction of Temporal Features 

Because air quality is strongly influenced by temporal 

conditions, temporal features were added to the data. The 

most important of these were “month” and “season.” For the 

season variable, the data were divided into four categories: 

Spring: April to June 

Summer: July to September 

Autumn: October to December 

Winter: January to March 

This variable was entered into the model as a categorical 

feature. Adding “Season” enabled the model to identify 

seasonal patterns and differences in pollutant behavior 

across different time periods. 

3.2.4. Feature Selection 

To avoid introducing unnecessary variables and to reduce 

model complexity, feature selection was performed. Pearson 

correlation and feature-importance tests in the initial models 

were used for this purpose. Variables with low correlation 

coefficients or limited impact on AQI forecasting were 

removed. This reduced noise and improved model training 

speed. 

By carrying out these steps, the data were made ready—

in terms of quality, scale, and temporal features—to enter the 

modeling process. These preprocessing steps not only 

increased model accuracy but also enabled the proposed 

model to detect seasonal changes and the effects of key 

variables more precisely. 

3.3. Baseline Machine 

Learning Models 

To build the proposed model, a set of machine learning 

algorithms was first selected as baseline models. The 

selection was based on two principal criteria: 

extensive use in similar air-quality forecasting studies, 

and the ability to process multidimensional data and 

identify nonlinear relationships between pollutants and 

atmospheric variables. 

The six algorithms used are as follows: 

3.3.1. Random Forest (RF) 

The Random Forest algorithm is constructed from an 

ensemble of decision trees. Each tree is trained on a random 

sample of the data, and the final prediction is computed as 

the average of the trees’ outputs. The main advantage of this 

model is the reduction of overfitting through bootstrap 

sampling and random feature selection. RF has been widely 

used in environmental regression problems and is highly 

stable. The equation below represents this algorithm 

(Ganesh et al., 2021): 

(1) h_k(x) ∑_(k=1)^K 1/k = ŷ 

3.3.2. AdaBoost 

The AdaBoost (Adaptive Boosting) model combines 

weak learners, particularly shallow decision trees. The 

algorithm assigns higher weights to instances that were not 

correctly predicted in previous rounds, thereby reducing 

overall model error. AdaBoost’s strength lies in its 

simplicity and high efficiency, although it is more sensitive 

in the presence of heavy noise. The equation below 

represents this algorithm (Mishra et al., 2020): 

(2) α_t h_t(x) ∑_(t=1)^T = F(x) 

3.3.3. Gradient Boosting Regressor (GBR) 

The GBR model is based on sequential decision trees. 

Each tree attempts to reduce the residual error of the 

previous model. Its objective function is defined as follows 

(Brahmi et al., 2023): 

(3) (γ^) h_m(x) + F_(m-1)(x) = F_m(x) 

This model was selected as the main foundation for 

developing S-GBR in this study. 

3.3.4. XGBoost 

XGBoost is an optimized and advanced version of GBR 

that, through improvements in normalization, the use of 

https://journals.kmanpub.com/index.php/jppr/index
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regularization techniques, and parallel processing, offers 

higher speed and accuracy. Due to its efficiency and 

flexibility in complex regression problems and large 

datasets, it is widely used. The equation below represents 

this algorithm (Mahesh et al., 2022): 

(4) Ω(f_k) ∑(k=1)^K + l(y_i, ŷ_i) ∑(i=1)^n = L(ϕ) 

3.3.5. LightGBM 

LightGBM is a gradient-boosting algorithm designed 

specifically for large datasets. Using histogram-based 

learning and leaf-wise tree growth, it provides much faster 

training than XGBoost. Its main advantage is the reduction 

of computational time without a meaningful drop in 

accuracy. The equation below represents this algorithm 

(Zhou et al., 2022): 

(5) f̂(x) = arg min_f E_(x,y) [ L(y, f(x)) ] 

3.3.6. CatBoost 

CatBoost is one of the newest boosting algorithms 

optimized for processing categorical data. In addition to high 

speed and accuracy, it requires fewer complex settings. 

Previous studies have shown that CatBoost performs very 

well in AQI forecasting. The equation below represents this 

algorithm (Zhang et al., 2020): 

(6) x_k^i^ = ( (∑ 1((k^i) x_j^i = x^) 1((k^) x_j ∈ D^)) / 

(a + ∑ 1((k^i) x_j^i = x^) 1((k^) x_j ∈ D^)) ) (y_i + a · p) 

Selecting these six algorithms enables the researcher to 

examine a broad spectrum of boosting and forest models and 

to evaluate the performance of each under different data 

conditions. In the next stage, these models are combined 

with parameter-optimization methods and provide the basis 

for designing the proposed S-GBR model. 

3.4. Data Splitting (Train–Test 

Split) 

After completing data collection and preprocessing, the 

data must be split into two separate parts so that model 

performance can be evaluated objectively. In this study, as 

in many similar works, the data were divided into a training 

set and a testing set. 

3.4.1. Data-Split Ratio 

A 70%–30% ratio was used for training and testing, 

respectively. This ratio was chosen because the training 

portion must contain a sufficient volume of data for the 

model to learn fundamental patterns, while the test portion 

must be large enough to evaluate the model’s 

generalizability to unseen data. 

3.4.2. Rationale for the Split 

The 70/30 ratio was selected based on two criteria: 

ensuring a sufficient volume of training data: for boosting 

models such as GBR and CatBoost, having more training 

data increases accuracy and reduces overfitting, 

and validating results on new data: allocating 30% of the 

data to testing makes it possible to assess model performance 

under real-world conditions and out-of-sample data. 

3.4.3. Considerations Regarding Cross-Validation 

Some studies use cross-validation—especially K-Fold—

to assess model generalizability more precisely. In this 

study, given the data volume and the primary focus on 

comparing algorithms and introducing the proposed model, 

a 70/30 split was sufficient. Nevertheless, to ensure result 

stability, the split procedure was repeated multiple times and 

the average model performance was reported. 

Splitting the data into training and testing sets is a key 

step in the modeling process that ensures the model not only 

performs well on the training data but also maintains its 

generalizability when faced with new data. The 70/30 split 

and multiple repetitions of this process were used in this 

study as a valid approach for model evaluation. 

3.5. Hyperparameter 

Optimization with 

Bayesian Search 

One of the fundamental challenges in using machine 

learning algorithms is selecting appropriate values for 

hyperparameters. These parameters, which are set outside 

the training process, have a significant effect on model 

accuracy and efficiency. For example, in boosting models 

such as Gradient Boosting, tree depth, learning rate, and the 

number of estimators (n_estimators) are key parameters. 

Using default values or manual selection can reduce model 

performance and lead to overfitting or underfitting. 

3.5.1. Optimization Methods 

Common methods such as Grid Search and Random 

Search are typically used for hyperparameter optimization. 

Grid Search examines all possible parameter combinations 

but is very time-consuming. Random Search samples 

randomly from parameter values, which takes less time but 

https://journals.kmanpub.com/index.php/jppr/index
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does not guarantee finding the best combination. Both 

methods are inefficient for large datasets and complex 

models. 

3.5.2. Bayesian Optimization 

To overcome the limitations of traditional methods, 

Bayesian optimization was used in this study. This method 

conducts optimization intelligently and, unlike blind 

methods, uses previous results to guide the selection of 

subsequent values. 

The general process is as follows: 

select a probabilistic surrogate model to approximate the 

objective function (a Gaussian Process was used in this 

study), 

update the probabilistic model after each evaluation, 

and select the next point to test based on an acquisition 

function (such as Expected Improvement). 

The objective function is defined as follows: 

(7) f* = arg min over θ in Θ of L(θ, D) 

where θ is the hyperparameter vector, Θ is the search 

space, and L is a loss function (such as RMSE) on the 

training data D. The goal is to find a parameter vector that 

yields the minimum error. 

The advantages of Bayesian optimization are: 

• a substantial reduction in computation time 

compared with Grid Search, 

• a higher probability of finding the global 

optimum, 

• and effective use of prior evaluations to guide 

the search. 

Bayesian optimization is one of the key pillars of the 

proposed method. This technique enabled the baseline 

models to reach their highest efficiency, and ultimately, 

through precise hyperparameter tuning, the proposed S-GBR 

model achieved performance far superior to its non-

optimized counterparts. 

3.6. Performance Evaluation 

Metrics 

To measure the accuracy and efficiency of the machine 

learning models and the proposed S-GBR model, several 

statistical metrics were employed. These metrics were 

selected because of their widespread use in machine learning 

and AQI forecasting. They are introduced below, and the 

mathematical formula for each is presented (Kaur et al., 

2023). 

3.6.1. Coefficient of Determination 

The coefficient of determination indicates the degree of 

agreement between the model’s predictions and the actual 

values. R2 ranges from 0 to 1; values closer to 1 indicate 

higher model accuracy. 

3.6.2. Mean Absolute Error (MAE) 

This metric computes the average absolute difference 

between actual and predicted values. MAE reflects the 

model’s average error, and lower values indicate better 

performance. 

3.6.3. Root Mean Square Error (RMSE) 

RMSE is one of the most widely used evaluation metrics 

in regression problems. By magnifying larger errors, it is 

more sensitive to severe deviations. 

3.6.4. Mean Squared Error (MSE) 

MSE calculates the mean of squared errors and is used as 

a fundamental metric for measuring model accuracy. It is 

also the basis for computing RMSE. 

3.6.5. Mean Absolute Percentage Error (MAPE) 

MAPE is a relative metric that expresses error as a 

percentage of the actual value. This metric facilitates 

comparing model accuracy across datasets with different 

scales. 

Formula Evaluation Metric 

(8) R^2 = 1 − (∑(i−1)^n (y_i − ŷ_i)^2) / (∑(i=1)^(−n) (y 

− y_i)^2) 

Coefficient of Determination 

(9) MAE = ∑_(i=1)^n | ŷ_i − y_i | / n 

Mean Absolute Error 

(10) RMSE = √( ∑_(i=1)^n ( ŷ_i − y_i )^2 / n ) 

Root Mean Square Error 

(11) MSE = ∑_(i=1)^n ( ŷ_i − y_i )^2 / n 

Mean Squared Error 

(12) MAPE = ∑_(i=1)^n | ( ŷ_i − y_i ) / y_i | × 100 / n 

Mean Absolute Percentage Error 

 

Using a diverse set of evaluation metrics makes it 

possible to examine model performance from multiple 

perspectives. R2 shows overall model fit, whereas MAE and 

RMSE directly address numerical errors. MAPE enables 

relative evaluation of models under different data conditions. 

https://journals.kmanpub.com/index.php/jppr/index
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This diversity of metrics ensures that the evaluation of the 

proposed S-GBR model is comprehensive and precise. 

3.7. Proposed S-GBR Model 

The Gradient Boosting Regressor (GBR) was selected as 

the core of the proposed model. GBR operates based on an 

ensemble of decision trees constructed sequentially. At each 

stage, the new tree reduces the residual error of the previous 

model, progressively yielding a robust and accurate model. 

Despite its strong performance, GBR has two limitations: 

the use of default hyperparameter values, which reduces 

accuracy, 

and the neglect of temporal and seasonal variations in air-

quality data. 

These two shortcomings motivated the design of an 

improved version of GBR in the present research. The 

proposed S-GBR (Seasonal Gradient Boosting Regressor) is 

built on two main innovations: 

Bayesian optimization of hyperparameters: instead of 

using default values, Bayesian Optimization was used to find 

the best values for parameters such as learning rate, tree 

depth, and the number of estimators, 

and adding the Season variable: seasonal changes have a 

significant impact on air quality. Therefore, the season 

variable (Spring, Summer, Autumn, Winter) was added to 

the input data as a categorical feature. 

3.7.1. Structure of the S-GBR Model 

The execution process of S-GBR is summarized in 

several main steps: first, the input data—including pollutants 

and temporal features—were prepared. Then, the data were 

split into training and testing sets at a 70/30 ratio. The 

baseline GBR model was trained on the training data, after 

which Bayesian optimization was applied to find the best 

parameter values. In the next step, the season feature was 

added to the model to incorporate temporal variation. 

Finally, the model output was the forecasted Air Quality 

Index. 

3.7.2. Execution Scenarios 

To better evaluate model performance, three scenarios 

were considered. In the first scenario, GBR was run with 

default parameters and without the season feature. In the 

second scenario, the same model was improved using 

Bayesian optimization. Finally, in the third scenario, the 

season variable was added to the optimized version to form 

the proposed S-GBR model. Comparing these three 

scenarios made it possible to examine the impact of each 

research innovation: 

Scenario 1 (Baseline): run GBR with default parameters 

and without the season feature. 

Scenario 2 (Optimized): run the model using Bayesian 

optimization. 

Scenario 3 (Seasonal Optimized): run the optimized 

model with the added season feature (S-GBR). 

The proposed model has several key advantages over 

previous approaches. The most important are: 

improved accuracy through Bayesian optimization, 

incorporation of seasonal changes as a key variable, 

the ability to maintain generalizability under data-limited 

conditions, 

and attaining performance comparable to more complex 

models while offering greater simplicity and speed. 

The proposed method of this study delineates a step-by-

step path from data collection to the design and introduction 

of the final model. The distinctive feature of this model is 

the simultaneous attention to parameter optimization and the 

inclusion of seasonal effects—factors that many prior 

studies have neglected. Thus, S-GBR is introduced as a 

novel and efficient framework for forecasting the Air 

Quality Index that can be effectively used in future research 

and practical applications. 

4. Results and Discussion 

In this section, the results obtained from running the 

machine learning models and the proposed S-GBR model 

are presented and analyzed. The main objective is to 

examine model performance under different data conditions 

and to evaluate the impact of the study’s innovations—

including Bayesian optimization and adding the season 

feature—on the accuracy of forecasting the Air Quality 

Index. 

For performance evaluation, the data were used in three 

main scenarios: 

• Baseline scenario: running the models with default 

parameter values and without the season feature. 

• Optimized scenario: using Bayesian Optimization to 

tune the parameters. 

• Proposed scenario (Seasonal Optimized, S-GBR): 

adding the season feature to the optimized model. 

In each of these scenarios, the metrics MAE, RMSE, 

MSE, R^2, and MAPE were used to compare results. These 

metrics enable a comprehensive analysis of model accuracy 

https://journals.kmanpub.com/index.php/jppr/index
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from different perspectives; R^2 indicates overall goodness 

of fit, while RMSE and MAE focus on the magnitude of 

prediction errors. The structure of this section is such that 

model performance is first reported in the baseline state, 

followed by an examination of the effect of Bayesian 

optimization on the results, and finally an analysis of the 

performance of the proposed S-GBR model in comparison 

with the leading existing models. Ultimately, by 

synthesizing these findings, the position of the proposed 

model relative to similar approaches is clarified. 

4.1. Data and Experimental 

Environment 

The data used in this study consist of two types of 

datasets. First, the full dataset, which includes the 

concentrations of the six main air pollutants (PM2.5, PM10, 

NO2, CO, SO2, and O3) along with meteorological variables 

such as temperature, relative humidity, pressure, and wind 

speed. This dataset enables a more comprehensive analysis 

of the relationships between pollutants and atmospheric 

conditions. Second, the reduced dataset, which includes only 

pollutant concentrations and is designed without 

meteorological data. Using this dataset is particularly 

important in situations where meteorological data are 

unavailable or of low quality. After data preprocessing, a 

70% training and 30% testing split was performed. This split 

was carried out to evaluate the generalizability of the models 

on unseen data. 

The experimental environment was implemented on 

Google Colaboratory with GPU support and Python 3.9. 

Libraries such as Pandas and NumPy were used for data 

processing and preparation. Machine learning algorithms 

were run using Scikit-learn as well as the dedicated packages 

XGBoost, LightGBM, and CatBoost. The Bayesian 

optimization process was implemented using 

BayesSearchCV. Matplotlib and Seaborn were used for 

plotting and visual analysis. 

4.2. Model Results in the 

Baseline Scenario 

(Baseline) 

In the first step, all selected machine learning models—

including Random Forest, AdaBoost, Gradient Boosting, 

XGBoost, LightGBM, and CatBoost—were run without any 

hyperparameter tuning and without the season feature. The 

aim of this stage was to create a comparative baseline so that 

model performance in the raw state could be compared with 

optimized results. The results showed that although all 

models were able to represent the general relationships 

among the variables, the accuracy level—particularly in 

some algorithms—was not satisfactory. AdaBoost and 

LightGBM performed more weakly and exhibited higher 

error levels. In contrast, Random Forest and XGBoost were 

able to forecast the Air Quality Index with greater accuracy 

and recorded higher R^2 values compared with the other 

models. 

Table 1 

Comparison of the first reference article with the baseline state without hyperparameter tuning 

Model R² (First Reference Article) R² (Baseline – No Hyperparameter Tuning) 

RF 0.999 0.9396 

CatBoost 0.9998 0.9449 

XGBoost 0.9982 0.9303 

LGBM 0.997 0.9398 

AdaBoost 0.9954 0.9383 
 

4.3. Model Results in the Optimized Scenario 

(Optimized) 

After the initial baseline runs, Bayesian hyperparameter 

optimization was applied to each algorithm. The purpose of 

this stage was to find an optimal combination of key 

parameters—such as learning rate, tree depth, and number of 

estimators—to increase model accuracy and prevent 

overfitting. The results showed that Bayesian optimization 

led to a notable improvement in accuracy in most models. 

For example, after parameter tuning, XGBoost exhibited a 

marked increase in the coefficient of determination and a 

noticeable reduction in RMSE. Likewise, Random Forest, 

which had suitable baseline performance, provided more 

stable results and lower error after optimization. In contrast, 

in some models, such as AdaBoost, optimization led to a 

relative decline in performance, indicating this algorithm’s 

sensitivity to parameter changes. 

https://journals.kmanpub.com/index.php/jppr/index
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Table 2 

Comparison of pre- and post-optimization states 

Model R² Before Optimization R² After Optimization Change Amount 

RF 0.9396 0.9403 +0.0007 

CatBoost 0.9449 0.9438 −0.0011 

XGBoost 0.9303 0.9402 +0.0099 

LGBM 0.9398 0.9385 −0.0013 

AdaBoost 0.9383 0.8918 −0.0465 

These results show that Bayesian optimization can 

effectively enhance model performance and address many 

limitations arising from the use of default parameter values. 

This finding paves the way for designing the proposed S-

GBR model, which—beyond Bayesian optimization—also 

incorporates temporal and seasonal features. 

4.4. Results of the Proposed S-GBR Model 

The proposed model of this study, S-GBR (Seasonal 

Gradient Boosting Regressor), was designed to address the 

limitations of the baseline models. As explained in the 

methodology section, this model is developed based on the 

Gradient Boosting algorithm and includes two main 

innovations: first, Bayesian hyperparameter optimization; 

and second, adding the season feature as an input variable. 

To position the proposed model, the performance of S-GBR 

was compared with two powerful and widely used 

algorithms, Random Forest (RF) and XGBoost. These two 

models achieved the best results among the baseline 

algorithms in the previous sections; therefore, comparing 

them across three stages—baseline (without optimization), 

optimized, and the final seasonal-added state—can clearly 

demonstrate the value added by the proposed model. 

Table 3 

Comparison of three selected models across different states 

Model R² (Without Optimization) R² (With Optimization) Spring Summer Autumn Winter 

GBR 0.9372 0.9411 0.9559 0.9293 0.9655 0.9686 

XGBoost 0.9303 0.9402 0.9523 0.9218 0.9639 0.9665 

RF 0.9396 0.9403 0.9686 0.9468 0.9788 0.9796 

The table shows that in the baseline state there is little 

difference among the three models, with R^2 values for all 

of them falling in the range of 0.930 to 0.940. This indicates 

that even with default parameters, the models can explain 

part of the variance in the data; however, the ultimate 

accuracy is limited. After applying Bayesian optimization, 

all three models improved slightly. For example, GBR 

improved from 0.9372 to 0.9411, and XGBoost from 0.9303 

to 0.9402. In contrast, RF experienced no substantial change 

with optimization (0.9396 to 0.9403), reflecting the inherent 

stability of this algorithm. 

When the season feature was added to the models, notable 

changes were observed. RF recorded the highest R^2 across 

the seasons, especially in winter with a value of 0.9796. The 

S-GBR model likewise achieved 0.9686 in the same season, 

only 0.011 lower than RF, a difference considered 

statistically very small. In autumn, the performance of S-

GBR (0.9655) was nearly equivalent to RF (0.9686) and 

exceeded XGBoost (0.9639). In summer, S-GBR with 

0.9293 outperformed XGBoost (0.9218), although it 

remained below RF. 

Overall, it can be concluded that: 

• RF is the most accurate model numerically but requires 

more data and computational resources. 

• S-GBR lags slightly behind RF but has a simpler and 

more efficient structure and outperforms XGBoost in most 

seasons. 

• XGBoost is highly sensitive to optimization but shows 

weaker seasonal performance compared with the other two 

models. 

Therefore, despite using more limited data and a simpler 

structure, S-GBR has provided competitive performance 

close to the best available model and has even surpassed 

XGBoost in some seasons. 

https://journals.kmanpub.com/index.php/jppr/index
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4.5. Graphical Analysis of the 

Results 

To complement the numerical analyses, this section 

presents the plots and boxplots obtained from running the 

models. These visualizations enable visual comparison 

among different models and an examination of forecasting 

accuracy across different temporal and seasonal intervals. 

Graphical analysis, in addition to confirming quantitative 

results, intuitively reveals the strengths and weaknesses of 

the models. 

4.5.1. Comparison of Evaluation Metrics among the 

Three Selected Models 

This plot compares the five main metrics—MAE, MSE, 

RMSE, MAPE, and R^2—for the GBR, XGBoost, and RF 

models. The observations are as follows: 

• GBR and RF have the lowest MAE and RMSE values, 

indicating higher accuracy. 

• MAPE is lower in GBR, reflecting a smaller relative 

error. 

• RF and GBR show similar performance in the 

coefficient of determination and outperform XGBoost. 

Overall, this plot shows that RF and GBR are in a more 

favorable state than XGBoost in terms of overall accuracy. 

Figure 1 

Comparison of evaluation metrics among the three selected models 

 

 

4.5.2. Comparison of Actual and Predicted Data Across 

the Four Seasons 

The boxplots in this figure illustrate the performance of 

the models across different seasons. 

• In spring and autumn, the distribution of predicted data 

is almost aligned with the actual data. This indicates that the 

models were able to accurately represent variations in 

pollutants under moderate weather conditions. 

• In summer, a considerable gap is observed between the 

actual and predicted data, especially at higher values. The 

main reason for this is the intense fluctuations in pollutant 

levels during summer due to rising temperatures and specific 

meteorological phenomena, which the models have had 

more difficulty representing. 

• In winter, prediction accuracy increases again, and the 

predicted distribution is closer to the actual data. This 

indicates that the models were better able to reflect stable 

atmospheric conditions and the rise in particulate matter 

during this season. 

This analysis confirms that adding the season variable to 

the Seasonal Gradient Boosting Regressor (S-GBR) model 

has played a key role in reducing the gap between 

predictions and actual data, especially in summer, when 

fluctuations are more severe.

https://journals.kmanpub.com/index.php/jppr/index
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Figure 2 

Comparison of actual and predicted data across the four seasons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.3. Comparison of Actual and Predicted Data over the 

2015–2020 Annual Period 

This figure shows how the three models have represented 

the actual AQI trend over multiple years. 

• The Random Forest (RF) model has shown high 

stability and has followed a trend almost identical to the 

actual data in all years. 

• The Gradient Boosting Regressor (GBR) model has also 

followed the overall trend, though in some years (such as 

2018) slight deviations from the actual data are observed. 

• The XGBoost model has shown the greatest dispersion 

and provided lower accuracy during the middle years (2017 

and 2018). 

The reason for this difference lies in the model structures. 

RF, due to its randomization in sample and feature selection, 

has higher stability. GBR, despite its high efficiency, can be 

somewhat more sensitive to annual variations if its 

parameters are not precisely tuned. XGBoost requires more 

complex optimization and suffers performance degradation 

when data are not balanced. 

These findings show that the proposed S-GBR model has 

been able to enhance the accuracy of GBR and deliver 

performance close to RF over the annual periods.

 

Fiure 3 

Comparison of actual and predicted data over the 2015–2020 annual period 
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4.5.4. Comparison of Actual and Predicted Data on a 

Monthly Scale 

This figure illustrates the models’ performance 

comparison at the monthly level. 

• In the RF model, the predictions are closest to the actual 

data, and the dispersion of errors is very limited. 

• GBR shows acceptable accuracy in most months but 

exhibits slight errors in the warmer months (June and July), 

where the predicted values are higher than the actual values. 

• XGBoost has had the greatest difficulty representing 

monthly fluctuations, particularly in the first half of the year 

when its accuracy declined. 

The key point is that the proposed S-GBR model, by 

adding the season variable, has been able to better control 

these monthly fluctuations and bring predicted values closer 

to the actual data. This finding is practically significant 

because managerial decision-making is often based on 

monthly changes in the Air Quality Index. 

Figure 4 

Comparison of actual and predicted data on a monthly scale 

5. Conclusion 

• 5.1 Summary of Key Findings 

This study proposed a comprehensive and efficient 

framework for predicting the Air Quality Index (AQI) using 

ensemble machine learning techniques. Two types of 

datasets were used: a complete dataset incorporating both 

pollutant concentrations and meteorological parameters, and 
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a simplified dataset comprising only pollutant variables. 

Multiple base models—namely Random Forest, AdaBoost, 

Gradient Boosting, XGBoost, LightGBM, and CatBoost—

were trained and evaluated. Bayesian optimization was 

employed for hyperparameter tuning, and a novel model, S-

GBR, was introduced, which integrated seasonal features to 

enhance predictive accuracy. 

The experimental findings demonstrated that: 

• In their default configurations, RF and XGBoost 

outperformed other models, though their predictive 

accuracy was still suboptimal. 

• Bayesian optimization significantly improved 

performance across most models, addressing 

limitations posed by default parameter settings. 

• The proposed S-GBR model achieved superior 

results across all evaluation metrics and even 

surpassed advanced models like XGBoost in some 

cases. 

• Graphical analysis confirmed that S-GBR more 

accurately captured seasonal and monthly 

variations in AQI, highlighting its robustness and 

real-world applicability. 

 

• 5.2 Managerial Implications 

The outcomes of this research offer practical value for policy 

formulation and air quality management. Key managerial 

implications include: 

• Accurate AQI forecasting enables timely public 

warnings during critical air pollution events, such 

as elevated PM levels in winter. 

• The incorporation of seasonal variables helps 

policymakers design targeted interventions, such as 

traffic restrictions in cold seasons or combustion 

control during hot periods. 

• Due to its balance of simplicity and effectiveness, 

the S-GBR model can be feasibly deployed in real-

time operational air monitoring systems and smart 

environmental platforms. 

These implications underscore the potential of machine 

learning–based models to inform evidence-based 

environmental policy and improve public health outcomes. 

 

• 5.3 Future Research Directions 

While the proposed S-GBR model yielded promising results, 

several avenues for future research can further improve its 

effectiveness: 

• Integration of Spatial Data: Incorporating 

geospatial features can enhance spatial resolution 

and help detect local pollution patterns within 

urban environments. 

• Utilization of Satellite Observations: The inclusion 

of satellite-based remote sensing data may provide 

broader coverage, especially in regions lacking 

sufficient ground stations. 

• Development of Hybrid Models: Combining S-

GBR with neural networks or deep learning 

architectures may improve the model's capacity to 

capture complex and nonlinear pollutant behaviors. 

• Real-Time Prediction Capabilities: Implementing 

the framework with streaming data can facilitate 

near-instantaneous AQI predictions for critical-

response applications. 

• Incorporation of Climate and Traffic Scenarios: 

Introducing variables related to climate conditions 

or traffic patterns could improve model robustness 

under variable urban dynamics. 

In conclusion, the proposed S-GBR model, enhanced 

through Bayesian optimization and seasonal feature 

integration, provides a highly accurate and practically 

deployable tool for AQI forecasting. Its performance is 

competitive with state-of-the-art models, and its simplicity 

makes it well-suited for integration into policy-driven air 

quality monitoring systems. 

Authors’ Contributions 

Authors contributed equally to this article. 

Declaration 

In order to correct and improve the academic writing of 

our paper, we have used the language model ChatGPT. 

Transparency Statement 

Data are available for research purposes upon reasonable 

request to the corresponding author. 

Acknowledgments 

We would like to express our gratitude to all individuals 

helped us to do the project. 

https://journals.kmanpub.com/index.php/jppr/index


 Mahbodi & Karasfi                                                                                             Journal of Resource Management and Decision Engineering 4:4 (2025) 1-16 

 

 15 

Declaration of Interest 

The authors report no conflict of interest. 

Funding 

According to the authors, this article has no financial 

support. 

Ethics Considerations 

In this research, ethical standards including obtaining 

informed consent, ensuring privacy and confidentiality were 

considered. 

References 

Aram, S., Nketiah, E., Saalidong, B., Wang, Afitiri, A.-R., Akoto, 

A., & Osei Lartey, P. (2023). Machine learning-based 

prediction of air quality index and air quality grade: a 

comparative analysis. International Journal of Environmental 

Science and Technology. https://doi.org/10.1007/s13762-023-

05016-2  

Beheshtifar, S., & Rahimzad, M. (2018). Forecasting PM10 

Concentration in Tehran Using Neural Network and MODIS 

Sensor Images. 4th International Conference on 

Environmental Engineering with a Focus on Sustainable 

Development, Tehran. 

Brahmi, N., Meftah, L. H., & Chaabene, M. (2023). Machine 

Learning-Based Wind Speed Prediction: A Study on Gradient 

Boosting Regressor Algorithm. 14th International Renewable 

Energy Congress (IREC), Sousse, Tunisia. 

Castelli, M., Clemente, F. M., Popovič, A., Silva, S., & Vanneschi, 

L. (2020). A Machine Learning Approach to Predict Air 

Quality in California. Complexity, 2020, 8049504:8049501-

8049504:8049523.  

Danesh Yazdi, M., Kuang, Z., Dimakopoulou, K., Barratt, B., Suel, 

E., Amini, H., Lyapustin, A., Katsouyanni, K., & Schwartz, J. 

(2020). Predicting Fine Particulate Matter (PM2.5) in the 

Greater London Area: An Ensemble Approach using Machine 

Learning Methods. Remote Sensing, 12(6), 914. 

https://doi.org/10.3390/rs12060914  

Du, S., Li, T., Yang, Y., & Horng, S. J. (2021). Deep Air Quality 

Forecasting Using Hybrid Deep Learning Framework. IEEE 

Transactions on Knowledge and Data Engineering, 33(6), 

2412-2424. https://doi.org/10.1109/TKDE.2019.2954510  

Farhadi, R., Hadavifar, M., Moeinoddini, M., & Amin Toosi, M. 

(2020). Forecasting Concentration of Tehran Air Pollutants 

Using Artificial Neural Network and Linear Regression. 

Journal of Natural Environment, 73(1), 115-127. 

https://www.magiran.com/paper/2112145  

Ganesh, N., Jain, P., Choudhury, A., Dutta, P., Kalita, K., & 

Barsocchi, P. (2021). Random forest regression-based 

machine learning model for accurate estimation of fluid flow 

in curved pipes. Processes, 9, 2095. 

https://doi.org/10.3390/pr9112095  

Goudarzi, G., Maleki, H., Yazdani, M., Hashemi, F., Ghaedrahmat, 

Z., & Bably, Z. (2020). Forecasting Air Pollution Using 

Neural Network Model. 8th National Conference on Air and 

Noise Pollution Management, Tehran. 

Gupta, R., & Singla, P. (2023). Prediction of AQI using hybrid 

approach in machine learning. ICTACT Journal on Soft 

Computing, 13, 2917-2921. 

https://doi.org/10.21917/ijsc.2023.0412  

Gupta, S., Mohta, Y., Heda, K., Armaan, R., Valarmathi, B., & 

Ganeshan, A. (2023). Prediction of Air Quality Index Using 

Machine Learning Techniques: A Comparative Analysis. 

Journal of Environmental and Public Health, 2023, 1-26. 

https://doi.org/10.1155/2023/4916267  

Haq, M. A. (2022). SMOTEDNN: A Novel Model for Air Pollution 

Forecasting and AQI Classification. Computational Materials 

& Continua, 71(1), 1403-1425. 

https://doi.org/10.32604/cmc.2022.021968  

Haqbian, S., Momeni, M., & Tashayyo, B. (2023). Forecasting Air 

Pollution Using Machine Learning Method. 20th National 

Conference on Civil Engineering, Architecture, and Urban 

Development, Babol. 

Hardini, M., Sunarjo, R. A., Asfi, M., Chakim, M. H. R., & 

Sanjaya, Y. P. A. (2023). Predicting Air Quality Index using 

Ensemble Machine Learning. ADI Journal on Recent 

Innovation, 5(1Sp), 78-86.  

Just, A. C., Arfer, K. B., Rush, J., Dorman, M., Shtein, A., 

Lyapustin, A., & Kloog, I. (2020). Advancing methodologies 

for applying machine learning and evaluating spatiotemporal 

models of fine particulate matter (PM2.5) using satellite data 

over large regions. Atmospheric Environment, 239, 117649. 

https://doi.org/10.1016/j.atmosenv.2020.117649  

Kalantari, E., Gholami, H., Malakooti, H., Nafarzadegan, A. R., & 

Moosavi, V. (2024). Machine learning for air quality index 

(AQI) forecasting: shallow learning or deep learning? 

Environmental Science and Pollution Research, 31, 62962-

62982. https://doi.org/10.1007/s11356-024-35404-1  

Karami, P., Eslaminejad, S. A., Eftekhari, M., Boroumand, F., & 

Akbari, M. (2023). Developing Machine Learning Algorithms 

to Forecast Urban Air Quality Index (Case Study: Tehran). 

Geography and Environmental Hazards, 12(2), 165-186. 

https://doi.org/10.22067/geoeh.2022.76121.1212  

Kaur, M., Singh, D., Jabarulla, M. Y., & et al. (2023). 

Computational deep air quality prediction techniques: a 

systematic review. Artificial Intelligence Review, 56(Suppl 2), 

2053-2098. https://doi.org/10.1007/s10462-023-10570-9  

Kothandaraman, D., Praveena, N., Varadarajkumar, K., & et al. 

(2022). Intelligent Forecasting of Air Quality and Pollution 

Prediction Using Machine Learning. Adsorption Science & 

Technology. https://doi.org/10.1155/2022/5086622  

Liu, R., Ma, Z., Liu, Y., Shao, Y., Zhao, W., & Bi, J. (2020). 

Spatiotemporal distributions of surface ozone levels in China 

from 2005 to 2017: A machine learning approach. 

Environment International, 142, 105823. 

https://doi.org/10.1016/j.envint.2020.105823  

Mahesh, T. R., Vinoth Kumar, V., Muthukumaran, V., Shashikala, 

H. K., Swapna, B., & Guluwadi, S. (2022). Performance 

analysis of XGBoost ensemble methods for survivability with 

the classification of breast cancer. Journal of Sensors. 

https://doi.org/10.1155/2022/4649510  

Mishra, S., Mishra, D., & Santra, G. H. (2020). Adaptive boosting 

of weak regressors for forecasting of crop production 

considering climatic variability: an empirical assessment. 

Journal of King Saud University - Computer and Information 

Sciences, 32, 949-964. 

https://doi.org/10.1016/j.jksuci.2017.12.004  

Natarajan, S. K., Shanmurthy, P., & Arockiam, D. (2024). 

Optimized machine learning model for air quality index 

prediction in major cities in India. Scientific reports, 14, 6795.  

Omidvar, S., Alavi, C., Bemani, A., & Mahdavi, A. (2018). 

Comparison of CO2 Concentration Forecasting Models Using 

Univariate and Multivariate Regression. 3rd National 

https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.1007/s13762-023-05016-2
https://doi.org/10.1007/s13762-023-05016-2
https://doi.org/10.3390/rs12060914
https://doi.org/10.1109/TKDE.2019.2954510
https://www.magiran.com/paper/2112145
https://doi.org/10.3390/pr9112095
https://doi.org/10.21917/ijsc.2023.0412
https://doi.org/10.1155/2023/4916267
https://doi.org/10.32604/cmc.2022.021968
https://doi.org/10.1016/j.atmosenv.2020.117649
https://doi.org/10.1007/s11356-024-35404-1
https://doi.org/10.22067/geoeh.2022.76121.1212
https://doi.org/10.1007/s10462-023-10570-9
https://doi.org/10.1155/2022/5086622
https://doi.org/10.1016/j.envint.2020.105823
https://doi.org/10.1155/2022/4649510
https://doi.org/10.1016/j.jksuci.2017.12.004


 Mahbodi & Karasfi                                                                                             Journal of Resource Management and Decision Engineering 4:4 (2025) 1-16 

 

 16 

Conference on Agricultural Sciences, Natural Resources and 

Environment of Iran, Tehran. 

Ragab, M., Jadid Abdulkadir, S., Aziz, N., Al-Tashi, Q., Alyousifi, 

Y., Alhussian, H., & Alqushaibi, A. (2020). A Novel One-

Dimensional CNN with Exponential Adaptive Gradients for 

Air Pollution Index Prediction. Sustainability, 12, 10090. 

https://doi.org/10.3390/su122310090  

Ravindiran, G., Hayder, G., Kanagarathinam, K., Alagumalai, A., 

& Sonne, C. (2023). Air quality prediction by machine 

learning models: A predictive study on the Indian coastal city 

of Visakhapatnam. Chemosphere, 338, 139518. 

https://doi.org/10.1016/j.chemosphere.2023.139518  

Sharma, M., Jain, S., Mittal, S., & Sheakh, T. (2021). Forecasting 

And Prediction Of Air Pollutants Concentrates Using Machine 

Learning Techniques: The Case Of India. IOP Conference 

Series: Materials Science and Engineering,  

Shayegan, M., & Makram, M. (2023). Investigation of Air 

Pollution During and Before COVID-19 in the Metropolises 

of Tehran, Isfahan and Qom. Iranian Journal of Remote 

Sensing & GIS, 15(2), 101-116. 

https://doi.org/10.48308/gisj.2023.103607  

Wu, Y., Qian, C., & Huang, H. (2024). Enhanced Air Quality 

Prediction Using a Coupled DVMD Informer-CNN-LSTM 

Model Optimized with Dung Beetle Algorithm. Entropy, 

26(4), 534. https://www.mdpi.com/1099-4300/26/4/534  

Xu, R., Deng, X., Wan, H., Cai, Y., & Pan, X. (2021). A deep 

learning method to repair atmospheric environmental quality 

data based on Gaussian diffusion. Journal of Cleaner 

Production, 308, 127446. 

https://doi.org/10.1016/j.jclepro.2021.127446  

Zhang, Y., Zhao, Z., & Zheng, J. (2020). CatBoost: a new approach 

for estimating daily reference crop evapotranspiration in arid 

and semi-arid regions of Northern China. Journal of 

Hydrology, 588, 125087. 

https://doi.org/10.1016/j.jhydrol.2020.125087  

Zhou, Y., Wang, W., Wang, K., & Song, J. (2022). Application of 

LightGBM algorithm in the initial design of a library in the 

cold area of China based on comprehensive performance. 

Buildings, 12, 1309. 

https://doi.org/10.3390/buildings12091309  

 

 

https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.3390/su122310090
https://doi.org/10.1016/j.chemosphere.2023.139518
https://doi.org/10.48308/gisj.2023.103607
https://www.mdpi.com/1099-4300/26/4/534
https://doi.org/10.1016/j.jclepro.2021.127446
https://doi.org/10.1016/j.jhydrol.2020.125087
https://doi.org/10.3390/buildings12091309

