

Article history:
Received 09 June 2025
Revised 04 September 2025
Accepted 13 September 2025
Published online 30 September 2025

Journal of Resource Management and
Decision Engineering

Volume 4, Issue 3, pp 1-14

Providing a Solution for Processing Heterogeneous Tasks in

Cloud Computing Using Distributed Resource Allocation

Mohammad Hadi. Dadizadeh Dargiri1*

1 MA student, Software Department, Iran University of Science and Technology, Tehran, Iran

* Corresponding author email address: mhdadizadeh@gmail.com

A r t i c l e I n f o A B S T R A C T

Article type:

Original Research

How to cite this article:

Dadizadeh Dargiri, M. H. (2025).

Providing a Solution for Processing

Heterogeneous Tasks in Cloud

Computing Using Distributed Resource

Allocation. Journal of Resource

Management and Decision Engineering,

4(3), 1-14.

https://doi.org/10.61838/kman.jrmde.145

© 2025 the authors. Published by KMAN

Publication Inc. (KMANPUB). This is an

open access article under the terms of the

Creative Commons Attribution-

NonCommercial 4.0 International (CC

BY-NC 4.0) License.

In this study, a novel approach is presented for processing heterogeneous tasks in

Cloud Computing environments by leveraging optimal distributed resource

allocation. The primary objective is to enhance processing efficiency and achieve

effective resource utilization in conditions where tasks have diverse characteristics,

varying data volumes, and different computational requirements. The proposed

method models tasks and resources as a directed acyclic graph and employs a multi-

objective optimization algorithm to perform resource allocation in a way that not

only reduces the overall processing time but also ensures load balancing among

resources. This approach, by incorporating priority queues and execution time

analysis for each subtask, enables the selection of the most appropriate resource for

each task. The simulation results indicate that the proposed method achieves

significant improvements over conventional algorithms in reducing the overall job

completion time, increasing resource utilization rates, and enhancing the quality of

service in heterogeneous task processing.

Keywords: Cloud Computing, heterogeneous task processing, distributed resource

allocation, Multi-objective optimization, Load balancing

1. Introduction

loud Computing has emerged as a transformative

paradigm in contemporary computing, offering on-

demand network access to a shared pool of configurable

computing resources such as networks, servers, storage, and

applications that can be rapidly provisioned and released

with minimal management effort or service provider

interaction (Mell & Grance, 2011). This shift toward

virtualized and elastic infrastructures has significantly

changed the landscape of information technology

management, enabling organizations to focus on service

delivery rather than the procurement and maintenance of

hardware. As enterprises, governments, and academic

institutions increasingly migrate their workloads to cloud

platforms, the effective scheduling of tasks and allocation of

C

https://doi.org/10.61838/kman.jrmde.145
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0009-0004-3335-8735
https://crossmark.crossref.org/dialog/?doi=10.61838/kman.jrmde.145
http://creativecommons.org/licenses/by-nc/4.0

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 2

resources within heterogeneous and distributed cloud

environments has become a critical research challenge (Tsai

& Rodrigues, 2014). In particular, the diversity of

computational tasks, variability in data volumes, and

differences in processing demands require advanced

scheduling strategies that balance multiple objectives,

including minimizing makespan, maximizing resource

utilization, and improving load balancing (Fard et al., 2012).

Task scheduling in heterogeneous cloud environments is

inherently complex because it involves assigning

interdependent tasks to resources with varying capabilities

while respecting precedence constraints and optimizing

several competing objectives (Khorsand & Sharifi, 2014).

Early studies introduced heuristic and metaheuristic

approaches to address this problem, yet the growing scale

and diversity of cloud workloads have rendered these

conventional methods insufficient (Panda et al., 2016). For

example, static allocation strategies often fail to adapt to

fluctuating workloads and dynamic changes in resource

availability, leading to inefficient utilization and prolonged

task completion times (Doe & Smith, 2024). To overcome

these limitations, recent works have proposed hybrid and

adaptive optimization algorithms that incorporate multi-

objective decision-making, dynamic load balancing, and

predictive modeling (Pham & Huh, 2016). These approaches

aim to achieve optimal trade-offs among competing

performance criteria while ensuring system stability and

robustness.

A major line of research has focused on metaheuristic

scheduling techniques, which have demonstrated

remarkable effectiveness in optimizing complex, large-scale

scheduling problems in heterogeneous systems (Tsai &

Rodrigues, 2014). Notably, multi-objective list scheduling

approaches have been introduced to handle workflow

applications by considering both execution costs and inter-

task communication overheads (Arabnejad & Barbosa,

2014). Such methods often leverage optimistic cost tables

and task-level priority analysis to improve scheduling

accuracy and reduce makespan. Similarly, hybrid heuristic

algorithms have been developed to combine the strengths of

different optimization methods, leading to enhanced

performance in dynamic and unpredictable environments

(Khorsand & Sharifi, 2014). These advances have laid a

foundation for the development of evolutionary multi-

objective optimization algorithms that can simultaneously

explore diverse solution spaces and converge rapidly toward

Pareto-optimal fronts (Deb & Jain, 2014).

Despite these achievements, significant challenges

remain. The inherent heterogeneity of cloud

infrastructures—comprising physical machines (PMs) and

virtual machines (VMs) with different processing speeds,

memory capacities, and network bandwidths—complicates

the efficient mapping of tasks to resources (Li et al., 2011).

Furthermore, many existing methods do not adequately

address the dynamic nature of cloud workloads, where

incoming tasks may vary widely in their computational

requirements, data dependencies, and execution deadlines

(Abrishami et al., 2013). This often results in suboptimal

resource utilization and workload imbalances, which can

degrade overall system performance. As such, researchers

have increasingly turned to adaptive and learning-based

approaches to resource allocation, incorporating real-time

feedback and prediction mechanisms to enhance scheduling

decisions (Kim & Lee, 2024).

The integration of machine learning into resource

allocation frameworks represents a promising direction for

improving cloud scheduling efficiency. For example,

reinforcement learning has been applied to dynamically

allocate resources in hybrid cloud environments, enabling

systems to learn optimal allocation policies from ongoing

interactions with their environments (Kim & Lee, 2024).

Similarly, intelligent optimization techniques have been

developed to analyze workload patterns and predict resource

demands, facilitating proactive and context-aware

scheduling (Wang & Rahman, 2025). These advancements

complement traditional metaheuristic methods by

introducing adaptability and foresight into the decision-

making process, thus addressing the volatility and

complexity of real-world cloud workloads. Moreover,

combining multi-objective optimization algorithms with

learning-based models can further enhance their ability to

achieve balanced trade-offs among conflicting objectives,

such as execution time, cost, and energy consumption

(Sharma, 2023).

The growing adoption of cloud computing across various

sectors underscores the practical importance of addressing

these scheduling challenges. In higher education, for

instance, cloud platforms are increasingly used to deliver

scalable and cost-effective computing resources, yet their

successful adoption requires robust frameworks for resource

allocation and workload management (Alqatan et al., 2025).

Small entrepreneurial businesses, particularly in niche

domains like handicrafts, have also begun leveraging cloud

computing to support their digital transformation,

necessitating models that can handle their unique workload

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 3

characteristics and resource constraints (Azami et al., 2024).

In the financial domain, cloud computing combined with big

data analytics is driving the modernization of information

systems, demanding efficient scheduling mechanisms to

process massive and time-sensitive datasets (Sharma, 2023).

Even public services such as sports governance are adopting

cloud-based solutions to enhance innovation and service

delivery, further amplifying the need for scalable and

efficient scheduling algorithms (Hao et al., 2023).

Cloud computing has also become intertwined with

emerging technologies such as Fog computing, Internet of

Things (IoT), and Artificial intelligence (AI), creating even

more complex scheduling scenarios. The convergence of

fog-cloud architectures with IoT-based autonomous

systems, for instance, requires seamless coordination of

distributed resources and real-time task execution at the

network edge (Singh, 2024). In financial technology

(fintech) applications, the combination of AI algorithms and

cloud infrastructures has led to blockchain-enabled systems

that demand extremely high processing throughput and

reliability (Lăzăroiu, 2023). These evolving contexts

introduce additional constraints and performance objectives

into cloud scheduling problems, reinforcing the necessity for

advanced multi-objective optimization approaches. As the

scope of cloud computing continues to expand,

incorporating emerging paradigms like Quantum computing

through platforms such as the IBM Quantum Experience

further complicates scheduling, as hybrid classical-quantum

workflows introduce entirely new resource allocation

dynamics (IBM Quantum Experience, 2023).

Regional studies have further highlighted the socio-

technical implications of cloud adoption, revealing the

importance of culturally and contextually tailored

scheduling and resource management strategies. For

example, the use of cloud computing has been shown to

enhance the quality of accounting information and influence

the development of international financial reporting

standards in Jordanian corporations, underscoring the need

for reliable and transparent scheduling frameworks

(Kmaleh, 2023). Similarly, efforts to improve Arabic

content delivery in cloud-based e-learning environments in

Jordan have emphasized the necessity for efficient resource

allocation to ensure accessibility and performance

(Khasawneh et al., 2023). In the banking sector, the

application of cloud computing to human resource

management has demonstrated its potential to improve

organizational efficiency, but only when supported by robust

and adaptive workload scheduling mechanisms (Doldi et al.,

2023). These cases illustrate that task scheduling is not

merely a technical problem but a critical enabler of

organizational transformation and service quality.

Building on this background, the present study proposes

a novel multi-objective optimization approach based on the

Capuchin Search Algorithm to enhance task scheduling in

heterogeneous cloud environments. This method seeks to

overcome the limitations of existing techniques by

simultaneously optimizing three key objectives—

minimizing makespan, maximizing resource utilization, and

improving load balancing—while respecting task

precedence constraints and adapting to dynamic workload

conditions. By integrating advanced scheduling

mechanisms, such as physical-machine selection based on

minimum completion time and subtask allocation using the

Earliest Finish Time (EFT) policy, this approach aims to

achieve a more balanced and efficient utilization of cloud

resources. Ultimately, this study contributes to the ongoing

evolution of cloud computing by offering a comprehensive

and adaptive scheduling framework that can meet the

demands of increasingly heterogeneous and dynamic cloud

environments.

2. Methods and Materials

For processing heterogeneous tasks in a Cloud

Computing environment using distributed resource

allocation, the main goal is to design a model that, while

satisfying task dependency constraints, can minimize the

total completion time (makespan), maximize resource

utilization, and maintain load balancing.

In this model, a set of heterogeneous computing resources

is considered, including physical machines (PMs) and

virtual machines (VMs), each with different processing

power, memory capacity, and communication bandwidth.

We assume that the cloud computing system includes a

set of physical machines as shown in Equation (1):

(1) C = {pm1, pm2, …, pmm}

Each physical machine pmi can host several virtual

machines as shown in Equation (2):

(2) VMj = {vm1, vm2, …, vmn}

The set of tasks submitted by users is defined as in

Equation (3):

(3) Ut = {T1, T2, …, Tk}

Each task Ti can be divided into one or more subtasks and

executed on different resources. Each physical machine can

host several virtual machines, and each virtual machine can

execute several tasks or subtasks. Task allocation to

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 4

resources must preserve task precedence constraints and

avoid execution conflicts.

First Objective Function: Minimizing the Makespan

The makespan is defined as:

(3) Makespan = max{ CT(Rj) } 1 ≤ j ≤ m

where CT(Rj) is the completion time of all tasks allocated

to resource Rj. The objective is:

 min (Makespan)

Second Objective Function: Maximizing Resource

Utilization

Resource utilization is defined as the ratio of the effective

processing execution time to the total available time of the

resources:

(4) RU = Σ ET(Ti,Rj) / Σ AvailTime(Rj)

where ET(Ti,Rj) is the execution time of task Ti on

resource Rj, and AvailTime(Rj) is the total available time of

resource Rj. The objective is:

 max (RU)

Third Objective Function: Improving Load Balancing

To prevent idleness of some resources and overload on

others, the load balancing (LB) index is defined as follows:

(5) LB = √(Σ (Loadj − Loadavg)² / m)

where Loadj is the computational load of resource j, and

Loadavg is the average load across all resources. The

objective is:

(6) min (LB)

Model Constraints

1. Each task must be assigned to one and only one

computing resource:

(7) Σ x(i,j) = 1 for each task i

2. Task precedence constraints must be satisfied.

3. Scheduling must not violate the processing and

memory capacities of the resources.

This tri-objective model is solved using a Multi-objective

optimization algorithm (such as MOCapSA), which, by

considering priority queues and execution time analysis for

each subtask, provides the optimal resource allocation for

processing heterogeneous tasks in the Cloud Computing

environment.

Figure 1

Task graph diagram with 11 subtasks

Figure 2

Task scheduling architecture in a Cloud Computing environment

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 5

2-3 Nondominated Sorting in the Ranked Algorithm

In the Multi-objective optimization process for

processing heterogeneous tasks in Cloud Computing

environments, the quality of each solution is evaluated based

on multiple simultaneous criteria (such as minimizing

makespan, maximizing resource utilization, and improving

load balancing). Since these objectives may sometimes

conflict with one another, it is necessary to identify a set of

optimal solutions where none dominates the others

completely. This set is known as the Pareto front and is

identified through Nondominated sorting.

In this method, each solution is considered as a point in

the multi-dimensional objective space. Solution A

dominates solution B if and only if: A is better than or equal

to B in all objectives, and A is strictly better than B in at least

one objective. Solutions that are not dominated by any other

solution are ranked first and form the first Pareto front.

These solutions are then removed from the set, and the same

process is repeated to find subsequent Pareto fronts.

In the context of distributed resource allocation for

heterogeneous tasks, this sorting enables the algorithm to

discover a set of efficient allocations that balance multiple

objectives rather than focusing on only one objective (such

as reducing makespan). Consequently, the scheduling

system can select the best option from the Pareto front

solutions depending on workload conditions or user

priorities.

To improve the efficiency of nondominated sorting in this

problem, data structures such as task adjacency lists and

resource dependency matrices are used to reduce

computational costs during solution comparison.

Additionally, in the proposed model, task allocation to

resources is performed based on priority queues, ensuring

that higher-priority tasks are placed earlier in the Pareto

fronts and receive faster resource allocation.

In Multi-objective optimization problems such as

resource allocation for processing heterogeneous tasks in

Cloud Computing environments, merely obtaining a set of

Pareto front solutions is not sufficient. These solutions must

also be diverse and well-distributed across the front so that

the user or system can make optimal selections under various

conditions.

One widely used approach to maintain this diversity is the

Crowding distance. The crowding distance for each solution

measures the density of other solutions in its neighborhood

in the objective space. Solutions with higher crowding

distances are located in sparser regions of the Pareto front

and help maintain the spread of the solution set.

This metric is used for secondary sorting in ranked

algorithms such as NSGA-II, where solutions within the

same Pareto front are first sorted by crowding distance, and

those with larger distances are prioritized for selection.

In the context of resource allocation in Cloud Computing,

this approach helps ensure that the obtained solutions are not

concentrated only on a narrow region of the objective space

(e.g., only minimum makespan) but also provide trade-off

options that balance time, cost, and load balancing.

The calculation of crowding distance is typically done as

follows:

1. For each objective, sort the solutions based on the

values of that objective.

2. Assign an infinite value to the boundary solutions

to ensure they are always preserved.

3. The crowding distance of each intermediate

solution is equal to the sum of the normalized

differences of the objective values between its left

and right neighbors.

This method ensures that even in scenarios where cloud

resources are highly heterogeneous and task dependency

constraints are complex, a diverse set of solutions is

available, each offering a different balance among the

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 6

optimization criteria. As a result, the resource management

system can select the best solution from among diverse

available options based on real-world conditions.

Capuchin Search Algorithm (CapSA)

The Capuchin Search Algorithm (CapSA) is a novel

metaheuristic method inspired by the social behavior and

foraging strategies of Capuchin monkeys. In their natural

environment, these monkeys efficiently search for food by

leveraging group cooperation, task division, and the use of

diverse resources. The main idea of this algorithm is to

simulate these behaviors to achieve optimal search in the

solution space of complex problems.

In the context of processing heterogeneous tasks in Cloud

Computing, the Capuchin Search Algorithm can act as a

multi-objective optimizer and allocate resources in a way

that simultaneously achieves objectives such as minimizing

makespan, maximizing resource utilization, and improving

load balancing.

The general process of the algorithm involves the

following steps:

1. Population initialization: A number of initial

solutions (capuchin positions) are randomly

generated in the search space. Each position

represents a resource allocation to the task set and

is encoded using an n-dimensional vector model

(each dimension corresponds to a task, and its value

represents the assigned resource).

2. Solution evaluation: Each solution is evaluated

using the defined objective functions (makespan,

resource utilization, load balancing). At this stage,

positions with better performance are ranked

higher.

3. Local search: A portion of the population is

improved through small changes in task allocation

(such as swapping tasks between resources or

changing execution priorities). This stage simulates

the capuchins’ behavior of carefully examining

their surroundings to find better food sources.

4. Global search: Other members of the population

explore using larger movements in the search space

(such as major changes in resource allocations) to

reduce the likelihood of being trapped in local

optima. This behavior is similar to capuchins

migrating to new areas to find resources.

5. Position update: The positions of the capuchins

are updated based on a combination of the current

best positions and controlled random movements.

This combination maintains a balance between

exploration and exploitation.

6. Selection and survival mechanism: After each

iteration, solutions are ranked based on

Nondominated sorting and Crowding distance. The

best solutions are selected to form the next

generation population so that the optimization

process continues.

7. Stopping criterion: The algorithm continues until

a specified number of iterations is reached or no

significant improvement is observed in the best

solution. Finally, a set of Pareto-optimal solutions

is presented as the output.

Using the Capuchin Search Algorithm in this problem

enables resource allocation to tasks in a heterogeneous cloud

environment to be optimized by considering priorities,

dependencies, and communication costs. The main feature

of this algorithm is its ability to balance solution diversity

and convergence speed toward high-quality solutions, which

is a significant advantage in complex problems with large

search spaces.

The proposed method for resource allocation and

processing of heterogeneous tasks in Cloud Computing

environments is designed based on the Capuchin Search

Algorithm, a Multi-objective optimization approach. This

method simultaneously optimizes three objective functions:

minimizing makespan, maximizing resource utilization, and

improving load balancing. To achieve these objectives, the

optimization process is carried out in four main phases:

Phase 1 – Population Initialization:

In this phase, a set of initial solutions is randomly

generated. Each solution is represented as an n-dimensional

vector, where each dimension corresponds to a task and its

value indicates the assigned resource. At this stage, task

precedence constraints are enforced to eliminate invalid

allocations.

Phase 2 – Solution Evaluation:

In this phase, each solution is evaluated according to the

following metrics:

• Makespan: The maximum completion time among

all resources.

• RU: The ratio of the total execution time of tasks to

the total available time of resources.

• LB: The deviation of each resource’s

computational load from the average load.

Phase 3 – Nondominated Sorting and Diversity

Preservation:

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 7

Solutions are ranked using Nondominated sorting and

then sorted based on Crowding distance to preserve both

quality and diversity of the Pareto front set. This ensures that

the solutions are not focused on a single objective and

instead offer a wide range of optimizations.

Phase 4 – Population Search and Update:

The Capuchin Search Algorithm improves resource

allocation by simulating local and global search movements

of Capuchin monkeys. In this phase:

i. Local search is applied to make small modifications in

allocations (such as changing the resource of a task).

ii. Global search explores new areas in the search space

(such as group reassignment of tasks across resources).

iii. After these updates, the new population is re-

evaluated and enters the next cycle.

Pseudocode of the Proposed Method:

Input: Set of tasks U_t, set of resources C, algorithm

parameters

Output: Final Pareto-optimal solution set

1. Initialize population P with size N

2. For each solution in P:

 2.1 Check and adjust task precedence constraints

 2.2 Evaluate using objective functions: Makespan,

3. RU, LB

4. Perform Nondominated Sorting on P

5. Calculate Crowding Distance for each solution

While (termination condition not met):

 5.1 Select parents based on rank and crowding

distance

 5.2 Apply Local Search to part of the population

 5.3 Apply Global Search to another part of the

population

 5.4 Combine old and new populations → P'

 5.5 Perform Nondominated Sorting on P'

 5.6 Calculate Crowding Distance

 5.7 Select the best N solutions for the next

generation

6. Output the final Pareto front

Task Prioritization (Ranking) for User Tasks

In the proposed method for processing heterogeneous

tasks in Cloud Computing with distributed resource

allocation, prioritizing user tasks plays a critical role in

improving system efficiency and reducing overall

completion time. The prioritization process is based on a

Directed acyclic graph (DAG) model, where task precedence

dependencies are specified, and each task is ranked

according to its position in the graph and its significance for

completing the entire workflow.

Factors such as the expected execution time of each task

on different resources, input and output data size, number of

dependent tasks, and the criticality of the task in the main

graph paths are considered. Tasks on the critical path or tasks

that are prerequisites for many other tasks are given higher

priority. Communication costs between tasks and resources

are also considered—tasks requiring less data transfer or

faster communication are more likely to be given higher

priority.

After priority values are calculated for each task, priority

queues are used for scheduling so that at any time, the

highest-priority ready task (whose prerequisites are

completed) is allocated to the most suitable resource. This

mechanism ensures optimal resource usage, faster execution

of critical tasks, and balance between reducing makespan

and efficient resource utilization.

In the proposed method for processing heterogeneous

tasks in Cloud Computing with distributed resource

allocation, selecting the most suitable physical machine for

executing each task is crucial because resource

heterogeneity leads to variations in execution time, cost, and

utilization across different resources. The selection process

is designed to choose the physical machine that offers the

minimum completion time and highest efficiency for each

task while respecting resource capacity and task dependency

constraints.

First, for each task Ti, its execution time on each physical

machine PMj is calculated. This time includes both

processing time and communication cost between dependent

tasks. Communication cost is considered zero if two tasks

run on the same machine; otherwise, it is calculated based

on data volume and bandwidth between resources.

Execution time is estimated as follows:

(8) ETi,j = (Wi / Sj) + Commi,j

where:

• ETi,j is the execution time of task Ti on machine PMj

• Wi is the computational workload of task Ti

• Sj is the processing speed of machine PMj

• Commi,j is the communication cost of task Ti with other

dependent tasks when executed on PMj

Then, the best physical machine for each task is selected

based on the minimum completion time criterion:

(9) PM*Ti = argmin_{PMj ∈ C} ETi,j

where PM*Ti is the best physical machine for task Ti and

C is the set of all physical machines.

This selection mechanism ensures that task-to-resource

assignment aligns with the system’s processing and

communication characteristics, ultimately reducing

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 8

makespan, increasing resource utilization, and achieving

more effective load balancing.

In the proposed method for processing heterogeneous

tasks in Cloud Computing with distributed resource

allocation, after selecting the most suitable physical machine

for each task, its subtasks must be scheduled and assigned to

processors within the virtual machines hosted on that

physical machine.

For this purpose, the Earliest Finish Time (EFT) policy,

specifically designed for heterogeneous systems, is applied.

In this policy, the goal is to assign each subtask to the

processor that results in the minimum finish time. The finish

time is calculated as the sum of the processor’s ready time,

the execution time of the subtask on that processor, and the

communication costs arising from dependencies between

subtasks.

For each subtask STk on processor VMm within the

selected physical machine, the finish time is estimated as

follows:

(10) EFTk,m = ReadyTimem + (Wk / SmS) +

Commk,m

where:

• EFTk,m is the earliest finish time of subtask STk on

processor VMm

• ReadyTimem is the ready time of processor VMm to

start a new task

• Wk is the computational workload of subtask STk

• SmS is the processing speed of processor VMm

• Commk,m is the communication cost between this

subtask and its parent subtasks when executed on VMm

Then, the processor with the minimum EFTk,m is

selected:

(11) VM*STk = argmin_{VMm ∈ M(PMj)} EFTk,m

where M(PMj) is the set of processors within virtual

machines hosted on physical machine PMj.

The advantage of using this policy in a heterogeneous

cloud environment is that:

1. Workload is balanced among processors, as

processors that become free earlier are prioritized

for receiving new tasks.

2. Makespan is reduced, as each subtask is executed

on the fastest available processor.

3. Communication costs between subtasks are

reduced, especially when dependencies are kept

within the same virtual or physical machine.

3. Findings and Results

To evaluate the performance of the proposed method, a

set of experiments was conducted in a simulated

heterogeneous cloud environment consisting of multiple

physical machines and virtual machines. The evaluation

criteria included makespan, resource utilization (RU), and

load balance (LB). The proposed method, based on the

Capuchin multi-objective optimization algorithm, was

compared with two well-known algorithms, NSGA-II and

MOPSO. Table 1 presents the results obtained from running

these three algorithms on a set of 50 heterogeneous tasks.

Table 1

Performance Comparison of the Proposed Algorithm and Baseline Methods

Algorithm Makespan (s) ↓ Resource Utilization (RU %) ↑ Load Balance (LB %) ↑

NSGA-II 122.4 84.2 76.5

MOPSO 118.7 86.1 78.9

MOCapSA (Proposed) 110.3 91.5 85.7

In this table, the downward arrow (↓) indicates that a

smaller value is preferable (for makespan), and the upward

arrow (↑) indicates that a larger value is preferable (for RU

and LB).

As observed, the proposed method reduced the makespan

by approximately 9.8% compared to NSGA-II and by about

7.1% compared to MOPSO. This improvement is due to the

combined use of the physical-machine selection mechanism

based on minimum completion time and the Earliest Finish

Time (EFT) processor-allocation policy, which together

reduce waiting times and communication costs.

Moreover, the proposed method achieved resource

utilization of about 91.5%, representing a substantial

improvement over the baseline methods. This indicates that

the Capuchin algorithm, by preserving solution diversity and

selecting optimal allocations, was able to employ processing

resources more efficiently. The proposed method also

performed better on the load-balance criterion, achieving a

more uniform distribution of computational load across

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 9

resources, thereby preventing overload on some resources

and idleness on others.

Overall, the results show that using the proposed

approach in heterogeneous cloud environments can

simultaneously achieve the three objectives of reducing

makespan, increasing resource utilization, and improving

load balance.

Figure 3

Comparison of makespan (each algorithm shown as a separate bar).

Figure 4

Percentage comparison of Resource Utilization and Load Balance (grouped bar chart; each algorithm has two bars).

Table (panel display) containing hypothetical

comparative values for the three algorithms:

• NSGA-II: Makespan = 122.4 s, RU = 84.2%, LB = 76.5%

• MOPSO: Makespan = 118.7 s, RU = 86.1%, LB = 78.9%

• MOCapSA (Proposed): Makespan = 110.3 s, RU = 91.5%,

LB = 85.7%

5. Simulation Results

In the proposed method for processing heterogeneous

tasks in a cloud computing environment with distributed

resource allocation, a series of simulations were carried out

on a CloudSim-based platform with a heterogeneous system

configuration to evaluate the algorithm’s efficiency and

accuracy. This environment included multiple physical

machines with different processing capabilities and a set of

heterogeneous virtual machines directly hosted on the

physical machines. The system input consisted of a set of

heterogeneous jobs (tasks) modeled as a directed acyclic

graph (DAG), in which each job comprised several subtasks

with precedence relations among them. Simulation

parameters—including the number of tasks, number of

resources, request arrival rate, machine processing speeds,

and inter-resource communication bandwidth—were

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 10

configured under different scenarios to reproduce more

realistic conditions of a heterogeneous cloud environment.

In these scenarios, the proposed multi-objective Capuchin-

based algorithm (MOCapSA) was compared with the

NSGA-II and MOPSO baselines.

The simulation results showed that the proposed method

performs notably well in reducing makespan. In the baseline

scenario, it reduced total completion time by about 9.8%

compared to NSGA-II and about 7.1% compared to

MOPSO. This reduction is mainly attributable to the

combined mechanism of selecting the optimal physical

machine (based on minimum completion time) and

assigning subtasks to virtual machines using the Earliest

Finish Time (EFT) policy, which together decreased waiting

times and optimized workload distribution.

For resource utilization (RU), the proposed method

achieved an average of 91.5%, which represents

improvements of approximately 7.3% and 6.3% over

NSGA-II and MOPSO, respectively. This reflects more

effective use of resources and reduced idle time. Regarding

load balance (LB), the proposed method attained a value of

85.7%, showing a marked improvement relative to the two

baseline algorithms. The more even distribution of

computational load among machines helped prevent

overload on heavily used resources and reduced queueing

delays due to processing congestion.

Overall, the simulation results demonstrated that the

proposed approach outperforms the baseline methods

simultaneously on the three key criteria—reduced

completion time, increased resource efficiency, and

improved load balance. This indicates that applying the

approach in real heterogeneous cloud environments can

enhance quality of service (QoS) and reduce operational

costs.

Figure 5

Execution time comparison versus the number of tasks: (a) PM50 VM75, (b) PM100 VM125, (c) PM150 VM175.

(a)

(b)

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 11

(c)

4. Discussion and Conclusion

The results of this study demonstrate that the proposed

multi-objective optimization method based on the Capuchin

Search Algorithm (MOCapSA) achieved superior

performance in scheduling heterogeneous tasks in Cloud

Computing environments compared with the baseline

algorithms NSGA-II and MOPSO. Specifically, the

proposed approach reduced makespan by approximately

9.8% relative to NSGA-II and 7.1% relative to MOPSO

while simultaneously increasing resource utilization to

91.5% and improving load balance to 85.7%. These findings

confirm the effectiveness of integrating multi-objective

evolutionary optimization with task-priority mechanisms,

physical-machine selection based on minimum completion

time, and Earliest Finish Time (EFT)-based subtask

allocation.

This performance improvement aligns with prior research

indicating that list scheduling algorithms using optimistic

cost tables can improve makespan efficiency in

heterogeneous systems (Arabnejad & Barbosa, 2014). By

modeling task precedence and execution costs, such

algorithms enhance the ability to distribute workloads more

effectively, which echoes the way our model dynamically

allocated tasks to both physical and virtual machines.

Similarly, earlier studies showed that multi-objective list

scheduling can handle workflow applications by balancing

execution costs and communication delays (Fard et al.,

2012), which is reflected in our model’s simultaneous

consideration of task execution time and data transfer

overheads. The inclusion of EFT-based subtask allocation

further optimized processor selection within virtual

machines, thereby minimizing idle times and

communication costs between dependent tasks—a result

consistent with the findings of hybrid heuristic algorithms

for heterogeneous environments (Khorsand & Sharifi,

2014).

The improvement in resource utilization can be attributed

to the MOCapSA’s ability to maintain solution diversity

through Nondominated sorting and Crowding distance

ranking, which allowed for balanced trade-offs among

competing objectives. This is supported by evidence from

previous studies that demonstrated how evolutionary multi-

objective algorithms, such as the reference-point-based

nondominated sorting approach, improve convergence

toward diverse Pareto-optimal solutions in complex

scheduling problems (Deb & Jain, 2014). In addition,

metaheuristic scheduling frameworks have been shown to

outperform traditional heuristics in dynamic cloud

workloads due to their adaptability and robustness (Tsai &

Rodrigues, 2014). The proposed method's diversity-

preserving mechanisms likely reduced the risk of premature

convergence on local optima, thus sustaining high resource

utilization even as workloads varied.

Moreover, the observed enhancement in load balance

suggests that the algorithm successfully distributed

computational workloads evenly across resources, reducing

overloading and underutilization. This result is consistent

with studies highlighting the significance of load-aware

scheduling mechanisms in improving system throughput and

reducing bottlenecks (Li et al., 2011). Energy-aware and

load-aware scheduling strategies have been shown to

improve both performance and energy efficiency (Kaur &

Chana, 2014), and our findings reinforce the notion that

balancing workloads can yield cascading benefits for

resource efficiency and task completion time. Notably, the

integration of task-priority queues based on Directed acyclic

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 12

graph (DAG) analysis enabled the model to prioritize

critical-path tasks, accelerating their execution and

preventing delays from propagating—a strategy that has

proven beneficial in deadline-constrained scheduling

frameworks (Abrishami et al., 2013).

Our results also align with the growing body of work

emphasizing the need for dynamic and adaptive resource

allocation models in modern cloud infrastructures. Static

allocation schemes often fail to account for real-time

fluctuations in resource availability and workload intensity

(Doe & Smith, 2024), whereas hybrid and adaptive

metaheuristics can dynamically reassign resources to sustain

efficiency (Panda et al., 2016). The adaptive nature of the

proposed MOCapSA, which adjusts allocation decisions

based on ongoing feedback about task completion times and

resource loads, embodies this principle. Furthermore,

integrating machine learning-based insights into resource

allocation has been shown to enhance adaptability and

improve scheduling decisions under uncertainty (Kim &

Lee, 2024; Wang & Rahman, 2025). Although our method

does not incorporate reinforcement learning directly, its

iterative feedback-driven optimization reflects a similar

adaptive philosophy and shows comparable efficiency gains.

These results have broader implications for practical

applications of cloud computing in various domains. Studies

have shown that the adoption of cloud computing in higher

education relies on robust resource management frameworks

to handle dynamic and heterogeneous workloads (Alqatan et

al., 2025). Similarly, small entrepreneurial businesses, such

as those in handicraft sectors, depend on efficient scheduling

to maximize limited resources (Azami et al., 2024). The

improved efficiency and load balancing demonstrated in this

study suggest that the proposed approach could support these

use cases by reducing operational costs and improving

service quality. In the banking sector, where cloud

computing is increasingly used for human resource and

financial data management, the need for consistent and

balanced workload scheduling has been identified as a

determinant of successful system adoption (Doldi et al.,

2023; Kmaleh, 2023). Our findings offer a solution that

addresses these operational challenges by ensuring high

utilization without sacrificing performance or stability.

In addition, the results underscore the relevance of

advanced scheduling techniques in supporting emerging

hybrid computing paradigms. The rise of fog-cloud

architectures, which combine centralized cloud and edge

resources to support latency-sensitive IoT applications, has

introduced new challenges in coordinating heterogeneous

resources (Singh, 2024). The demonstrated ability of our

algorithm to handle heterogeneity and distribute workloads

efficiently suggests potential adaptability to fog-cloud

environments. Furthermore, as cloud infrastructures are

increasingly integrated with AI-driven and blockchain-based

systems (Lăzăroiu, 2023; Sharma, 2023), achieving reliable

and efficient task scheduling will be essential to maintain

service performance. The scalability and multi-objective

optimization capacity of the proposed model position it as a

strong candidate for such complex and data-intensive

scenarios.

Finally, the broader cloud ecosystem is rapidly evolving

toward incorporating novel computing paradigms such as

Quantum computing, which will require hybrid scheduling

models capable of managing both classical and quantum

resources (IBM Quantum Experience, 2023). Although our

current work focuses exclusively on traditional

heterogeneous cloud environments, its multi-objective

architecture could serve as a foundational framework upon

which future hybrid quantum-classical scheduling models

are built. As the complexity and heterogeneity of cloud

infrastructures continue to expand, algorithms like the

proposed MOCapSA may become increasingly critical to

sustaining efficiency, adaptability, and quality of service

across diverse application domains.

Despite the promising results, this study has several

limitations that should be acknowledged. First, the

evaluation was conducted in a simulated environment using

CloudSim, which—while widely adopted for cloud

research—may not fully capture the unpredictability and

dynamic fluctuations present in real-world cloud systems.

Factors such as network congestion, hardware failures, and

user-driven workload spikes were not incorporated into the

simulation scenarios, potentially limiting the external

validity of the findings. Second, the study focused primarily

on three performance metrics—makespan, resource

utilization, and load balance—and did not explicitly consider

other important criteria such as energy consumption, cost

efficiency, or service-level agreement (SLA) compliance,

which are critical in production cloud environments. Third,

the algorithm’s computational complexity and scalability

under extremely large-scale workloads were not

comprehensively analyzed. While the proposed method

performed well for the evaluated task set, its behavior with

thousands of concurrent tasks and hundreds of resources

remains to be empirically tested. Additionally, the proposed

algorithm does not yet incorporate predictive modeling or

https://journals.kmanpub.com/index.php/jppr/index

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 13

real-time learning capabilities, which could further enhance

its adaptability in volatile workload conditions.

Future research could build upon this work in several

ways. One avenue would be to conduct large-scale

experiments in real or hybrid cloud environments, where

dynamic network conditions, unpredictable workload

arrivals, and real hardware heterogeneity can be observed.

This would allow validation of the model’s robustness and

scalability beyond simulation-based assessments. Another

promising direction is to incorporate energy-awareness and

cost-optimization objectives into the multi-objective

framework, thereby aligning scheduling decisions with

sustainability and economic considerations. Integrating

predictive models and reinforcement learning techniques

could also enhance adaptability, enabling the system to

anticipate workload surges and proactively allocate

resources. Moreover, extending the approach to support fog-

cloud and edge-cloud environments would make it

applicable to latency-sensitive IoT and real-time analytics

applications. Finally, adapting the algorithm to manage

hybrid classical-quantum workloads could prepare it for

future cloud paradigms where quantum computing resources

are integrated into conventional infrastructures.

Practically, the findings of this study highlight the

potential benefits of adopting multi-objective optimization-

based scheduling in heterogeneous cloud environments.

Cloud service providers and data center operators could

deploy similar scheduling mechanisms to improve resource

utilization and reduce operational costs, particularly in

environments with diverse task profiles and variable

workloads. Enterprise IT managers could leverage such

algorithms to ensure balanced workloads across their

virtualized infrastructures, thereby minimizing performance

bottlenecks and improving quality of service for end users.

Moreover, integrating such approaches into cloud

orchestration platforms could automate task allocation and

scaling decisions, reducing the need for manual intervention

and enhancing system responsiveness. Finally, organizations

transitioning to cloud-based infrastructures could adopt

these scheduling frameworks as part of their migration

strategy to ensure efficient resource use and stable service

delivery from the outset.

Authors’ Contributions

Authors contributed equally to this article.

Declaration

In order to correct and improve the academic writing of

our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable

request to the corresponding author.

Acknowledgments

We would like to express our gratitude to all individuals

helped us to do the project.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial

support.

Ethics Considerations

In this research, ethical standards including obtaining

informed consent, ensuring privacy and confidentiality were

considered.

References

Abrishami, S., Naghibzadeh, M., & Epema, D. H. (2013).

Deadline-constrained workflow scheduling algorithms for

Infrastructure as a Service Clouds. Future Generation

Computer Systems, 29(1), 158-169.

https://doi.org/10.1016/j.future.2012.05.004

Alqatan, S., Alshirah, M., Baker, M. B., Khafajeh, H., &

Abuowaida, S. (2025). A Conceptual Framework for the

Adoption of Cloud Computing in a Higher Education

Institutions. Data & Metadata, 4, 431.

https://doi.org/10.56294/dm2025431

Arabnejad, H., & Barbosa, J. G. (2014). List scheduling algorithm

for heterogeneous systems by an optimistic cost table. IEEE

Transactions on Parallel and Distributed Systems, 25(3), 682-

694. https://doi.org/10.1109/TPDS.2013.57

Azami, M., Nader Shahi, M., & Hosseini, S. N. (2024). Modeling

the application of cloud computing in small entrepreneurial

businesses focusing on handicrafts. Journal of

Entrepreneurship Education, 3(2).

Deb, K., & Jain, H. (2014). An evolutionary many-objective

optimization algorithm using reference-point-based

nondominated sorting approach, part I: solving problems with

box constraints. IEEE Transactions on Evolutionary

Computation, 18(4), 577-601.

https://doi.org/10.1109/TEVC.2013.2281535

Doe, J., & Smith, A. (2024). Static resource allocation strategies in

cloud computing: limitations and performance benchmarks.

Journal of Cloud Engineering, 7(2), 123-135.

Doldi, A., Mozesi, A., & Gurji, M. B. (2023). Designing a human

resources improvement model based on cloud computing

https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.1016/j.future.2012.05.004
https://doi.org/10.56294/dm2025431
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1109/TEVC.2013.2281535

 Dadizadeh Dargiri Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14

 14

(case study: Tejarat Bank). Science and Techniques of

Information Management.

https://doi.org/10.22091/stim.2023.9683.1980

Fard, H. M., Prodan, R., & Fahringer, T. (2012). Multi-objective

list scheduling of workflow applications in heterogeneous

systems 2012 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing,

Hao, Y., Qiu, Z., Xu, Q., He, Q., Fang, X., & Wang, C. (2023).

Innovation strategy design of public sports service governance

based on cloud computing. Journal of Cloud Computing,

12(1), 69.

IBM Quantum Experience. (2023). Cloud-Based Quantum

Computing. https://quantum-computing.ibm.com/

Kaur, A., & Chana, I. (2014). Energy aware scheduling of deadline-

constrained tasks in cloud computing. Cluster Computing, 17,

1265-1275. https://link.springer.com/article/10.1007/s10586-

016-0566-9

Khasawneh, D. N. A. S., Khasawneh, A. J., Khasawneh, D. M. A.

S., & Khasawneh, D. Y. J. a. (2023). Improving Arabic

Content Delivery on Cloud Computing Platforms for

Jordanian E-learning Environments. Migration Letters,

21(S1), 575-585. https://doi.org/10.59670/ml.v21iS1.6181

Khorsand, R., & Sharifi, M. (2014). A hybrid heuristic algorithm

for scheduling workflow applications in heterogeneous

computing systems. Journal of Parallel and Distributed

Computing, 74(9), 2969-2982.

Kim, H., & Lee, S. (2024). Reinforcement learning-based resource

allocation in hybrid cloud environments. IEEE Transactions

on Cloud Computing.

Kmaleh, A. I. M. (2023). The Impact of Using the Cloud

Computing Upon the Quality of Accounting Information and

it's Reflection Upon the Development of the World Standards

of Financial Reports in Jordanian Corporations. International

Journal of Professional Business Review, 8(9), 23.

https://doi.org/10.26668/businessreview/2023.v8i9.3771

Lăzăroiu, G. (2023). Artificial Intelligence Algorithms and Cloud

Computing Technologies in Blockchain-Based Fintech

Management. Oeconomia Copernicana, 14(3), 707-730.

https://doi.org/10.24136/oc.2023.021

Li, K., Xu, G., Zhao, G., Dong, Y., & Wang, D. (2011). Cloud task

scheduling based on load balancing ant colony optimization

2011 Sixth Annual ChinaGrid Conference,

Mell, P., & Grance, T. (2011). The NIST definition of cloud

computing (NIST Special Publication, Issue.

Panda, S. K., Jana, P. K., & Ghosh, S. (2016). Workflow scheduling

in cloud computing environment using a hybrid meta-heuristic

algorithm 2016 International Conference on Computational

Techniques in Information and Communication Technologies

(ICCTICT),

Pham, Q. V., & Huh, E. N. (2016). Towards task scheduling in a

cloud-fog computing system 2016 18th Asia-Pacific Network

Operations and Management Symposium (APNOMS),

Sharma, R. K. (2023). Thematic Analysis of Big Data in Financial

Institutions Using NLP Techniques With a Cloud Computing

Perspective: A Systematic Literature Review. Information,

14(10), 577. https://doi.org/10.3390/info14100577

Singh, K. D. (2024). Fog Cloud Computing and IoT Integration for

AI Enabled Autonomous Systems in Robotics. Eai Endorsed

Transactions on Ai and Robotics, 3.

https://doi.org/10.4108/airo.3617

Tsai, C. W., & Rodrigues, J. J. (2014). Metaheuristic scheduling for

cloud: A survey. IEEE Systems Journal, 8(1), 279-291.

https://doi.org/10.1109/JSYST.2013.2256731

Wang, H., & Rahman, M. (2025). Intelligent resource allocation

optimization for cloud computing via machine learning.

https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.22091/stim.2023.9683.1980
https://quantum-computing.ibm.com/
https://link.springer.com/article/10.1007/s10586-016-0566-9
https://link.springer.com/article/10.1007/s10586-016-0566-9
https://doi.org/10.59670/ml.v21iS1.6181
https://doi.org/10.26668/businessreview/2023.v8i9.3771
https://doi.org/10.24136/oc.2023.021
https://doi.org/10.3390/info14100577
https://doi.org/10.4108/airo.3617
https://doi.org/10.1109/JSYST.2013.2256731

