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In this study, a novel approach is presented for processing heterogeneous tasks in 

Cloud Computing environments by leveraging optimal distributed resource 

allocation. The primary objective is to enhance processing efficiency and achieve 

effective resource utilization in conditions where tasks have diverse characteristics, 

varying data volumes, and different computational requirements. The proposed 

method models tasks and resources as a directed acyclic graph and employs a multi-

objective optimization algorithm to perform resource allocation in a way that not 

only reduces the overall processing time but also ensures load balancing among 

resources. This approach, by incorporating priority queues and execution time 

analysis for each subtask, enables the selection of the most appropriate resource for 

each task. The simulation results indicate that the proposed method achieves 

significant improvements over conventional algorithms in reducing the overall job 

completion time, increasing resource utilization rates, and enhancing the quality of 

service in heterogeneous task processing. 

Keywords: Cloud Computing, heterogeneous task processing, distributed resource 

allocation, Multi-objective optimization, Load balancing 

1. Introduction 

loud Computing has emerged as a transformative 

paradigm in contemporary computing, offering on-

demand network access to a shared pool of configurable 

computing resources such as networks, servers, storage, and 

applications that can be rapidly provisioned and released 

with minimal management effort or service provider 

interaction (Mell & Grance, 2011). This shift toward 

virtualized and elastic infrastructures has significantly 

changed the landscape of information technology 

management, enabling organizations to focus on service 

delivery rather than the procurement and maintenance of 

hardware. As enterprises, governments, and academic 

institutions increasingly migrate their workloads to cloud 

platforms, the effective scheduling of tasks and allocation of 

C 
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resources within heterogeneous and distributed cloud 

environments has become a critical research challenge (Tsai 

& Rodrigues, 2014). In particular, the diversity of 

computational tasks, variability in data volumes, and 

differences in processing demands require advanced 

scheduling strategies that balance multiple objectives, 

including minimizing makespan, maximizing resource 

utilization, and improving load balancing (Fard et al., 2012). 

Task scheduling in heterogeneous cloud environments is 

inherently complex because it involves assigning 

interdependent tasks to resources with varying capabilities 

while respecting precedence constraints and optimizing 

several competing objectives (Khorsand & Sharifi, 2014). 

Early studies introduced heuristic and metaheuristic 

approaches to address this problem, yet the growing scale 

and diversity of cloud workloads have rendered these 

conventional methods insufficient (Panda et al., 2016). For 

example, static allocation strategies often fail to adapt to 

fluctuating workloads and dynamic changes in resource 

availability, leading to inefficient utilization and prolonged 

task completion times (Doe & Smith, 2024). To overcome 

these limitations, recent works have proposed hybrid and 

adaptive optimization algorithms that incorporate multi-

objective decision-making, dynamic load balancing, and 

predictive modeling (Pham & Huh, 2016). These approaches 

aim to achieve optimal trade-offs among competing 

performance criteria while ensuring system stability and 

robustness. 

A major line of research has focused on metaheuristic 

scheduling techniques, which have demonstrated 

remarkable effectiveness in optimizing complex, large-scale 

scheduling problems in heterogeneous systems (Tsai & 

Rodrigues, 2014). Notably, multi-objective list scheduling 

approaches have been introduced to handle workflow 

applications by considering both execution costs and inter-

task communication overheads (Arabnejad & Barbosa, 

2014). Such methods often leverage optimistic cost tables 

and task-level priority analysis to improve scheduling 

accuracy and reduce makespan. Similarly, hybrid heuristic 

algorithms have been developed to combine the strengths of 

different optimization methods, leading to enhanced 

performance in dynamic and unpredictable environments 

(Khorsand & Sharifi, 2014). These advances have laid a 

foundation for the development of evolutionary multi-

objective optimization algorithms that can simultaneously 

explore diverse solution spaces and converge rapidly toward 

Pareto-optimal fronts (Deb & Jain, 2014). 

Despite these achievements, significant challenges 

remain. The inherent heterogeneity of cloud 

infrastructures—comprising physical machines (PMs) and 

virtual machines (VMs) with different processing speeds, 

memory capacities, and network bandwidths—complicates 

the efficient mapping of tasks to resources (Li et al., 2011). 

Furthermore, many existing methods do not adequately 

address the dynamic nature of cloud workloads, where 

incoming tasks may vary widely in their computational 

requirements, data dependencies, and execution deadlines 

(Abrishami et al., 2013). This often results in suboptimal 

resource utilization and workload imbalances, which can 

degrade overall system performance. As such, researchers 

have increasingly turned to adaptive and learning-based 

approaches to resource allocation, incorporating real-time 

feedback and prediction mechanisms to enhance scheduling 

decisions (Kim & Lee, 2024). 

The integration of machine learning into resource 

allocation frameworks represents a promising direction for 

improving cloud scheduling efficiency. For example, 

reinforcement learning has been applied to dynamically 

allocate resources in hybrid cloud environments, enabling 

systems to learn optimal allocation policies from ongoing 

interactions with their environments (Kim & Lee, 2024). 

Similarly, intelligent optimization techniques have been 

developed to analyze workload patterns and predict resource 

demands, facilitating proactive and context-aware 

scheduling (Wang & Rahman, 2025). These advancements 

complement traditional metaheuristic methods by 

introducing adaptability and foresight into the decision-

making process, thus addressing the volatility and 

complexity of real-world cloud workloads. Moreover, 

combining multi-objective optimization algorithms with 

learning-based models can further enhance their ability to 

achieve balanced trade-offs among conflicting objectives, 

such as execution time, cost, and energy consumption 

(Sharma, 2023). 

The growing adoption of cloud computing across various 

sectors underscores the practical importance of addressing 

these scheduling challenges. In higher education, for 

instance, cloud platforms are increasingly used to deliver 

scalable and cost-effective computing resources, yet their 

successful adoption requires robust frameworks for resource 

allocation and workload management (Alqatan et al., 2025). 

Small entrepreneurial businesses, particularly in niche 

domains like handicrafts, have also begun leveraging cloud 

computing to support their digital transformation, 

necessitating models that can handle their unique workload 

https://journals.kmanpub.com/index.php/jppr/index
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characteristics and resource constraints (Azami et al., 2024). 

In the financial domain, cloud computing combined with big 

data analytics is driving the modernization of information 

systems, demanding efficient scheduling mechanisms to 

process massive and time-sensitive datasets (Sharma, 2023). 

Even public services such as sports governance are adopting 

cloud-based solutions to enhance innovation and service 

delivery, further amplifying the need for scalable and 

efficient scheduling algorithms (Hao et al., 2023). 

Cloud computing has also become intertwined with 

emerging technologies such as Fog computing, Internet of 

Things (IoT), and Artificial intelligence (AI), creating even 

more complex scheduling scenarios. The convergence of 

fog-cloud architectures with IoT-based autonomous 

systems, for instance, requires seamless coordination of 

distributed resources and real-time task execution at the 

network edge (Singh, 2024). In financial technology 

(fintech) applications, the combination of AI algorithms and 

cloud infrastructures has led to blockchain-enabled systems 

that demand extremely high processing throughput and 

reliability (Lăzăroiu, 2023). These evolving contexts 

introduce additional constraints and performance objectives 

into cloud scheduling problems, reinforcing the necessity for 

advanced multi-objective optimization approaches. As the 

scope of cloud computing continues to expand, 

incorporating emerging paradigms like Quantum computing 

through platforms such as the IBM Quantum Experience 

further complicates scheduling, as hybrid classical-quantum 

workflows introduce entirely new resource allocation 

dynamics (IBM Quantum Experience, 2023). 

Regional studies have further highlighted the socio-

technical implications of cloud adoption, revealing the 

importance of culturally and contextually tailored 

scheduling and resource management strategies. For 

example, the use of cloud computing has been shown to 

enhance the quality of accounting information and influence 

the development of international financial reporting 

standards in Jordanian corporations, underscoring the need 

for reliable and transparent scheduling frameworks 

(Kmaleh, 2023). Similarly, efforts to improve Arabic 

content delivery in cloud-based e-learning environments in 

Jordan have emphasized the necessity for efficient resource 

allocation to ensure accessibility and performance 

(Khasawneh et al., 2023). In the banking sector, the 

application of cloud computing to human resource 

management has demonstrated its potential to improve 

organizational efficiency, but only when supported by robust 

and adaptive workload scheduling mechanisms (Doldi et al., 

2023). These cases illustrate that task scheduling is not 

merely a technical problem but a critical enabler of 

organizational transformation and service quality. 

Building on this background, the present study proposes 

a novel multi-objective optimization approach based on the 

Capuchin Search Algorithm to enhance task scheduling in 

heterogeneous cloud environments. This method seeks to 

overcome the limitations of existing techniques by 

simultaneously optimizing three key objectives—

minimizing makespan, maximizing resource utilization, and 

improving load balancing—while respecting task 

precedence constraints and adapting to dynamic workload 

conditions. By integrating advanced scheduling 

mechanisms, such as physical-machine selection based on 

minimum completion time and subtask allocation using the 

Earliest Finish Time (EFT) policy, this approach aims to 

achieve a more balanced and efficient utilization of cloud 

resources. Ultimately, this study contributes to the ongoing 

evolution of cloud computing by offering a comprehensive 

and adaptive scheduling framework that can meet the 

demands of increasingly heterogeneous and dynamic cloud 

environments. 

2. Methods and Materials 

For processing heterogeneous tasks in a Cloud 

Computing environment using distributed resource 

allocation, the main goal is to design a model that, while 

satisfying task dependency constraints, can minimize the 

total completion time (makespan), maximize resource 

utilization, and maintain load balancing. 

In this model, a set of heterogeneous computing resources 

is considered, including physical machines (PMs) and 

virtual machines (VMs), each with different processing 

power, memory capacity, and communication bandwidth. 

We assume that the cloud computing system includes a 

set of physical machines as shown in Equation (1): 

(1) C = {pm1, pm2, …, pmm} 

Each physical machine pmi can host several virtual 

machines as shown in Equation (2): 

(2) VMj = {vm1, vm2, …, vmn} 

The set of tasks submitted by users is defined as in 

Equation (3): 

(3) Ut = {T1, T2, …, Tk} 

Each task Ti can be divided into one or more subtasks and 

executed on different resources. Each physical machine can 

host several virtual machines, and each virtual machine can 

execute several tasks or subtasks. Task allocation to 

https://journals.kmanpub.com/index.php/jppr/index
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resources must preserve task precedence constraints and 

avoid execution conflicts. 

First Objective Function: Minimizing the Makespan 

The makespan is defined as: 

(3) Makespan = max{ CT(Rj) }  1 ≤ j ≤ m 

where CT(Rj) is the completion time of all tasks allocated 

to resource Rj. The objective is: 

 min (Makespan) 

Second Objective Function: Maximizing Resource 

Utilization 

Resource utilization is defined as the ratio of the effective 

processing execution time to the total available time of the 

resources: 

(4) RU = Σ ET(Ti,Rj) / Σ AvailTime(Rj) 

where ET(Ti,Rj) is the execution time of task Ti on 

resource Rj, and AvailTime(Rj) is the total available time of 

resource Rj. The objective is: 

 max (RU) 

 

Third Objective Function: Improving Load Balancing 

To prevent idleness of some resources and overload on 

others, the load balancing (LB) index is defined as follows: 

(5) LB = √( Σ (Loadj − Loadavg)² / m ) 

where Loadj is the computational load of resource j, and 

Loadavg is the average load across all resources. The 

objective is: 

(6) min (LB) 

Model Constraints 

1. Each task must be assigned to one and only one 

computing resource: 

(7) Σ x(i,j) = 1  for each task i 

2. Task precedence constraints must be satisfied. 

3. Scheduling must not violate the processing and 

memory capacities of the resources. 

This tri-objective model is solved using a Multi-objective 

optimization algorithm (such as MOCapSA), which, by 

considering priority queues and execution time analysis for 

each subtask, provides the optimal resource allocation for 

processing heterogeneous tasks in the Cloud Computing 

environment. 

Figure 1 

Task graph diagram with 11 subtasks 

 

Figure 2 

Task scheduling architecture in a Cloud Computing environment 

https://journals.kmanpub.com/index.php/jppr/index
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2-3 Nondominated Sorting in the Ranked Algorithm 

In the Multi-objective optimization process for 

processing heterogeneous tasks in Cloud Computing 

environments, the quality of each solution is evaluated based 

on multiple simultaneous criteria (such as minimizing 

makespan, maximizing resource utilization, and improving 

load balancing). Since these objectives may sometimes 

conflict with one another, it is necessary to identify a set of 

optimal solutions where none dominates the others 

completely. This set is known as the Pareto front and is 

identified through Nondominated sorting. 

In this method, each solution is considered as a point in 

the multi-dimensional objective space. Solution A 

dominates solution B if and only if: A is better than or equal 

to B in all objectives, and A is strictly better than B in at least 

one objective. Solutions that are not dominated by any other 

solution are ranked first and form the first Pareto front. 

These solutions are then removed from the set, and the same 

process is repeated to find subsequent Pareto fronts. 

In the context of distributed resource allocation for 

heterogeneous tasks, this sorting enables the algorithm to 

discover a set of efficient allocations that balance multiple 

objectives rather than focusing on only one objective (such 

as reducing makespan). Consequently, the scheduling 

system can select the best option from the Pareto front 

solutions depending on workload conditions or user 

priorities. 

To improve the efficiency of nondominated sorting in this 

problem, data structures such as task adjacency lists and 

resource dependency matrices are used to reduce 

computational costs during solution comparison. 

Additionally, in the proposed model, task allocation to 

resources is performed based on priority queues, ensuring 

that higher-priority tasks are placed earlier in the Pareto 

fronts and receive faster resource allocation. 

In Multi-objective optimization problems such as 

resource allocation for processing heterogeneous tasks in 

Cloud Computing environments, merely obtaining a set of 

Pareto front solutions is not sufficient. These solutions must 

also be diverse and well-distributed across the front so that 

the user or system can make optimal selections under various 

conditions. 

One widely used approach to maintain this diversity is the 

Crowding distance. The crowding distance for each solution 

measures the density of other solutions in its neighborhood 

in the objective space. Solutions with higher crowding 

distances are located in sparser regions of the Pareto front 

and help maintain the spread of the solution set. 

This metric is used for secondary sorting in ranked 

algorithms such as NSGA-II, where solutions within the 

same Pareto front are first sorted by crowding distance, and 

those with larger distances are prioritized for selection. 

In the context of resource allocation in Cloud Computing, 

this approach helps ensure that the obtained solutions are not 

concentrated only on a narrow region of the objective space 

(e.g., only minimum makespan) but also provide trade-off 

options that balance time, cost, and load balancing. 

The calculation of crowding distance is typically done as 

follows: 

1. For each objective, sort the solutions based on the 

values of that objective. 

2. Assign an infinite value to the boundary solutions 

to ensure they are always preserved. 

3. The crowding distance of each intermediate 

solution is equal to the sum of the normalized 

differences of the objective values between its left 

and right neighbors. 

This method ensures that even in scenarios where cloud 

resources are highly heterogeneous and task dependency 

constraints are complex, a diverse set of solutions is 

available, each offering a different balance among the 

https://journals.kmanpub.com/index.php/jppr/index
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optimization criteria. As a result, the resource management 

system can select the best solution from among diverse 

available options based on real-world conditions. 

Capuchin Search Algorithm (CapSA) 

The Capuchin Search Algorithm (CapSA) is a novel 

metaheuristic method inspired by the social behavior and 

foraging strategies of Capuchin monkeys. In their natural 

environment, these monkeys efficiently search for food by 

leveraging group cooperation, task division, and the use of 

diverse resources. The main idea of this algorithm is to 

simulate these behaviors to achieve optimal search in the 

solution space of complex problems. 

In the context of processing heterogeneous tasks in Cloud 

Computing, the Capuchin Search Algorithm can act as a 

multi-objective optimizer and allocate resources in a way 

that simultaneously achieves objectives such as minimizing 

makespan, maximizing resource utilization, and improving 

load balancing. 

The general process of the algorithm involves the 

following steps: 

1. Population initialization: A number of initial 

solutions (capuchin positions) are randomly 

generated in the search space. Each position 

represents a resource allocation to the task set and 

is encoded using an n-dimensional vector model 

(each dimension corresponds to a task, and its value 

represents the assigned resource). 

2. Solution evaluation: Each solution is evaluated 

using the defined objective functions (makespan, 

resource utilization, load balancing). At this stage, 

positions with better performance are ranked 

higher. 

3. Local search: A portion of the population is 

improved through small changes in task allocation 

(such as swapping tasks between resources or 

changing execution priorities). This stage simulates 

the capuchins’ behavior of carefully examining 

their surroundings to find better food sources. 

4. Global search: Other members of the population 

explore using larger movements in the search space 

(such as major changes in resource allocations) to 

reduce the likelihood of being trapped in local 

optima. This behavior is similar to capuchins 

migrating to new areas to find resources. 

5. Position update: The positions of the capuchins 

are updated based on a combination of the current 

best positions and controlled random movements. 

This combination maintains a balance between 

exploration and exploitation. 

6. Selection and survival mechanism: After each 

iteration, solutions are ranked based on 

Nondominated sorting and Crowding distance. The 

best solutions are selected to form the next 

generation population so that the optimization 

process continues. 

7. Stopping criterion: The algorithm continues until 

a specified number of iterations is reached or no 

significant improvement is observed in the best 

solution. Finally, a set of Pareto-optimal solutions 

is presented as the output. 

Using the Capuchin Search Algorithm in this problem 

enables resource allocation to tasks in a heterogeneous cloud 

environment to be optimized by considering priorities, 

dependencies, and communication costs. The main feature 

of this algorithm is its ability to balance solution diversity 

and convergence speed toward high-quality solutions, which 

is a significant advantage in complex problems with large 

search spaces. 

The proposed method for resource allocation and 

processing of heterogeneous tasks in Cloud Computing 

environments is designed based on the Capuchin Search 

Algorithm, a Multi-objective optimization approach. This 

method simultaneously optimizes three objective functions: 

minimizing makespan, maximizing resource utilization, and 

improving load balancing. To achieve these objectives, the 

optimization process is carried out in four main phases: 

Phase 1 – Population Initialization: 

In this phase, a set of initial solutions is randomly 

generated. Each solution is represented as an n-dimensional 

vector, where each dimension corresponds to a task and its 

value indicates the assigned resource. At this stage, task 

precedence constraints are enforced to eliminate invalid 

allocations. 

Phase 2 – Solution Evaluation: 

In this phase, each solution is evaluated according to the 

following metrics: 

• Makespan: The maximum completion time among 

all resources. 

• RU: The ratio of the total execution time of tasks to 

the total available time of resources. 

• LB: The deviation of each resource’s 

computational load from the average load. 

Phase 3 – Nondominated Sorting and Diversity 

Preservation: 

https://journals.kmanpub.com/index.php/jppr/index


 Dadizadeh Dargiri                                                                                                 Journal of Resource Management and Decision Engineering 4:3 (2025) 1-14 

 

 7 

Solutions are ranked using Nondominated sorting and 

then sorted based on Crowding distance to preserve both 

quality and diversity of the Pareto front set. This ensures that 

the solutions are not focused on a single objective and 

instead offer a wide range of optimizations. 

Phase 4 – Population Search and Update: 

The Capuchin Search Algorithm improves resource 

allocation by simulating local and global search movements 

of Capuchin monkeys. In this phase: 

i. Local search is applied to make small modifications in 

allocations (such as changing the resource of a task). 

ii. Global search explores new areas in the search space 

(such as group reassignment of tasks across resources). 

iii. After these updates, the new population is re-

evaluated and enters the next cycle. 

Pseudocode of the Proposed Method: 

Input: Set of tasks U_t, set of resources C, algorithm 

parameters 

Output: Final Pareto-optimal solution set 

1. Initialize population P with size N 

2. For each solution in P: 

  2.1 Check and adjust task precedence constraints 

  2.2 Evaluate using objective functions: Makespan, 

3. RU, LB 

4. Perform Nondominated Sorting on P 

5. Calculate Crowding Distance for each solution 

While (termination condition not met): 

  5.1 Select parents based on rank and crowding 

distance 

  5.2 Apply Local Search to part of the population 

  5.3 Apply Global Search to another part of the 

population 

  5.4 Combine old and new populations → P' 

  5.5 Perform Nondominated Sorting on P' 

  5.6 Calculate Crowding Distance 

  5.7 Select the best N solutions for the next 

generation 

6. Output the final Pareto front 

Task Prioritization (Ranking) for User Tasks 

In the proposed method for processing heterogeneous 

tasks in Cloud Computing with distributed resource 

allocation, prioritizing user tasks plays a critical role in 

improving system efficiency and reducing overall 

completion time. The prioritization process is based on a 

Directed acyclic graph (DAG) model, where task precedence 

dependencies are specified, and each task is ranked 

according to its position in the graph and its significance for 

completing the entire workflow. 

Factors such as the expected execution time of each task 

on different resources, input and output data size, number of 

dependent tasks, and the criticality of the task in the main 

graph paths are considered. Tasks on the critical path or tasks 

that are prerequisites for many other tasks are given higher 

priority. Communication costs between tasks and resources 

are also considered—tasks requiring less data transfer or 

faster communication are more likely to be given higher 

priority. 

After priority values are calculated for each task, priority 

queues are used for scheduling so that at any time, the 

highest-priority ready task (whose prerequisites are 

completed) is allocated to the most suitable resource. This 

mechanism ensures optimal resource usage, faster execution 

of critical tasks, and balance between reducing makespan 

and efficient resource utilization. 

In the proposed method for processing heterogeneous 

tasks in Cloud Computing with distributed resource 

allocation, selecting the most suitable physical machine for 

executing each task is crucial because resource 

heterogeneity leads to variations in execution time, cost, and 

utilization across different resources. The selection process 

is designed to choose the physical machine that offers the 

minimum completion time and highest efficiency for each 

task while respecting resource capacity and task dependency 

constraints. 

First, for each task Ti, its execution time on each physical 

machine PMj is calculated. This time includes both 

processing time and communication cost between dependent 

tasks. Communication cost is considered zero if two tasks 

run on the same machine; otherwise, it is calculated based 

on data volume and bandwidth between resources. 

Execution time is estimated as follows: 

(8) ETi,j = (Wi / Sj) + Commi,j 

where: 

• ETi,j is the execution time of task Ti on machine PMj 

• Wi is the computational workload of task Ti 

• Sj is the processing speed of machine PMj 

• Commi,j is the communication cost of task Ti with other 

dependent tasks when executed on PMj 

Then, the best physical machine for each task is selected 

based on the minimum completion time criterion: 

(9) PM*Ti = argmin_{PMj ∈ C} ETi,j 

where PM*Ti is the best physical machine for task Ti and 

C is the set of all physical machines. 

This selection mechanism ensures that task-to-resource 

assignment aligns with the system’s processing and 

communication characteristics, ultimately reducing 

https://journals.kmanpub.com/index.php/jppr/index
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makespan, increasing resource utilization, and achieving 

more effective load balancing. 

In the proposed method for processing heterogeneous 

tasks in Cloud Computing with distributed resource 

allocation, after selecting the most suitable physical machine 

for each task, its subtasks must be scheduled and assigned to 

processors within the virtual machines hosted on that 

physical machine. 

For this purpose, the Earliest Finish Time (EFT) policy, 

specifically designed for heterogeneous systems, is applied. 

In this policy, the goal is to assign each subtask to the 

processor that results in the minimum finish time. The finish 

time is calculated as the sum of the processor’s ready time, 

the execution time of the subtask on that processor, and the 

communication costs arising from dependencies between 

subtasks. 

For each subtask STk on processor VMm within the 

selected physical machine, the finish time is estimated as 

follows: 

(10) EFTk,m = ReadyTimem + (Wk / SmS) + 

Commk,m 

where: 

• EFTk,m is the earliest finish time of subtask STk on 

processor VMm 

• ReadyTimem is the ready time of processor VMm to 

start a new task 

• Wk is the computational workload of subtask STk 

• SmS is the processing speed of processor VMm 

• Commk,m is the communication cost between this 

subtask and its parent subtasks when executed on VMm 

Then, the processor with the minimum EFTk,m is 

selected: 

(11) VM*STk = argmin_{VMm ∈ M(PMj)} EFTk,m 

where M(PMj) is the set of processors within virtual 

machines hosted on physical machine PMj. 

The advantage of using this policy in a heterogeneous 

cloud environment is that: 

1. Workload is balanced among processors, as 

processors that become free earlier are prioritized 

for receiving new tasks. 

2. Makespan is reduced, as each subtask is executed 

on the fastest available processor. 

3. Communication costs between subtasks are 

reduced, especially when dependencies are kept 

within the same virtual or physical machine. 

3. Findings and Results 

To evaluate the performance of the proposed method, a 

set of experiments was conducted in a simulated 

heterogeneous cloud environment consisting of multiple 

physical machines and virtual machines. The evaluation 

criteria included makespan, resource utilization (RU), and 

load balance (LB). The proposed method, based on the 

Capuchin multi-objective optimization algorithm, was 

compared with two well-known algorithms, NSGA-II and 

MOPSO. Table 1 presents the results obtained from running 

these three algorithms on a set of 50 heterogeneous tasks. 

Table 1 

Performance Comparison of the Proposed Algorithm and Baseline Methods 

Algorithm Makespan (s) ↓ Resource Utilization (RU %) ↑ Load Balance (LB %) ↑ 

NSGA-II 122.4 84.2 76.5 

MOPSO 118.7 86.1 78.9 

MOCapSA (Proposed) 110.3 91.5 85.7 

 

In this table, the downward arrow (↓) indicates that a 

smaller value is preferable (for makespan), and the upward 

arrow (↑) indicates that a larger value is preferable (for RU 

and LB). 

As observed, the proposed method reduced the makespan 

by approximately 9.8% compared to NSGA-II and by about 

7.1% compared to MOPSO. This improvement is due to the 

combined use of the physical-machine selection mechanism 

based on minimum completion time and the Earliest Finish 

Time (EFT) processor-allocation policy, which together 

reduce waiting times and communication costs. 

Moreover, the proposed method achieved resource 

utilization of about 91.5%, representing a substantial 

improvement over the baseline methods. This indicates that 

the Capuchin algorithm, by preserving solution diversity and 

selecting optimal allocations, was able to employ processing 

resources more efficiently. The proposed method also 

performed better on the load-balance criterion, achieving a 

more uniform distribution of computational load across 

https://journals.kmanpub.com/index.php/jppr/index
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resources, thereby preventing overload on some resources 

and idleness on others. 

Overall, the results show that using the proposed 

approach in heterogeneous cloud environments can 

simultaneously achieve the three objectives of reducing 

makespan, increasing resource utilization, and improving 

load balance. 

Figure 3 

Comparison of makespan (each algorithm shown as a separate bar). 

 

Figure 4 

Percentage comparison of Resource Utilization and Load Balance (grouped bar chart; each algorithm has two bars). 

 

Table (panel display) containing hypothetical 

comparative values for the three algorithms: 

• NSGA-II: Makespan = 122.4 s, RU = 84.2%, LB = 76.5% 

• MOPSO: Makespan = 118.7 s, RU = 86.1%, LB = 78.9% 

• MOCapSA (Proposed): Makespan = 110.3 s, RU = 91.5%, 

LB = 85.7% 

5. Simulation Results 

In the proposed method for processing heterogeneous 

tasks in a cloud computing environment with distributed 

resource allocation, a series of simulations were carried out 

on a CloudSim-based platform with a heterogeneous system 

configuration to evaluate the algorithm’s efficiency and 

accuracy. This environment included multiple physical 

machines with different processing capabilities and a set of 

heterogeneous virtual machines directly hosted on the 

physical machines. The system input consisted of a set of 

heterogeneous jobs (tasks) modeled as a directed acyclic 

graph (DAG), in which each job comprised several subtasks 

with precedence relations among them. Simulation 

parameters—including the number of tasks, number of 

resources, request arrival rate, machine processing speeds, 

and inter-resource communication bandwidth—were 

https://journals.kmanpub.com/index.php/jppr/index
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configured under different scenarios to reproduce more 

realistic conditions of a heterogeneous cloud environment. 

In these scenarios, the proposed multi-objective Capuchin-

based algorithm (MOCapSA) was compared with the 

NSGA-II and MOPSO baselines. 

The simulation results showed that the proposed method 

performs notably well in reducing makespan. In the baseline 

scenario, it reduced total completion time by about 9.8% 

compared to NSGA-II and about 7.1% compared to 

MOPSO. This reduction is mainly attributable to the 

combined mechanism of selecting the optimal physical 

machine (based on minimum completion time) and 

assigning subtasks to virtual machines using the Earliest 

Finish Time (EFT) policy, which together decreased waiting 

times and optimized workload distribution. 

For resource utilization (RU), the proposed method 

achieved an average of 91.5%, which represents 

improvements of approximately 7.3% and 6.3% over 

NSGA-II and MOPSO, respectively. This reflects more 

effective use of resources and reduced idle time. Regarding 

load balance (LB), the proposed method attained a value of 

85.7%, showing a marked improvement relative to the two 

baseline algorithms. The more even distribution of 

computational load among machines helped prevent 

overload on heavily used resources and reduced queueing 

delays due to processing congestion. 

Overall, the simulation results demonstrated that the 

proposed approach outperforms the baseline methods 

simultaneously on the three key criteria—reduced 

completion time, increased resource efficiency, and 

improved load balance. This indicates that applying the 

approach in real heterogeneous cloud environments can 

enhance quality of service (QoS) and reduce operational 

costs. 

 

Figure 5 

Execution time comparison versus the number of tasks: (a) PM50 VM75, (b) PM100 VM125, (c) PM150 VM175. 

(a)  

(b)  
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(c)  

 

4. Discussion and Conclusion 

The results of this study demonstrate that the proposed 

multi-objective optimization method based on the Capuchin 

Search Algorithm (MOCapSA) achieved superior 

performance in scheduling heterogeneous tasks in Cloud 

Computing environments compared with the baseline 

algorithms NSGA-II and MOPSO. Specifically, the 

proposed approach reduced makespan by approximately 

9.8% relative to NSGA-II and 7.1% relative to MOPSO 

while simultaneously increasing resource utilization to 

91.5% and improving load balance to 85.7%. These findings 

confirm the effectiveness of integrating multi-objective 

evolutionary optimization with task-priority mechanisms, 

physical-machine selection based on minimum completion 

time, and Earliest Finish Time (EFT)-based subtask 

allocation. 

This performance improvement aligns with prior research 

indicating that list scheduling algorithms using optimistic 

cost tables can improve makespan efficiency in 

heterogeneous systems (Arabnejad & Barbosa, 2014). By 

modeling task precedence and execution costs, such 

algorithms enhance the ability to distribute workloads more 

effectively, which echoes the way our model dynamically 

allocated tasks to both physical and virtual machines. 

Similarly, earlier studies showed that multi-objective list 

scheduling can handle workflow applications by balancing 

execution costs and communication delays (Fard et al., 

2012), which is reflected in our model’s simultaneous 

consideration of task execution time and data transfer 

overheads. The inclusion of EFT-based subtask allocation 

further optimized processor selection within virtual 

machines, thereby minimizing idle times and 

communication costs between dependent tasks—a result 

consistent with the findings of hybrid heuristic algorithms 

for heterogeneous environments (Khorsand & Sharifi, 

2014). 

The improvement in resource utilization can be attributed 

to the MOCapSA’s ability to maintain solution diversity 

through Nondominated sorting and Crowding distance 

ranking, which allowed for balanced trade-offs among 

competing objectives. This is supported by evidence from 

previous studies that demonstrated how evolutionary multi-

objective algorithms, such as the reference-point-based 

nondominated sorting approach, improve convergence 

toward diverse Pareto-optimal solutions in complex 

scheduling problems (Deb & Jain, 2014). In addition, 

metaheuristic scheduling frameworks have been shown to 

outperform traditional heuristics in dynamic cloud 

workloads due to their adaptability and robustness (Tsai & 

Rodrigues, 2014). The proposed method's diversity-

preserving mechanisms likely reduced the risk of premature 

convergence on local optima, thus sustaining high resource 

utilization even as workloads varied. 

Moreover, the observed enhancement in load balance 

suggests that the algorithm successfully distributed 

computational workloads evenly across resources, reducing 

overloading and underutilization. This result is consistent 

with studies highlighting the significance of load-aware 

scheduling mechanisms in improving system throughput and 

reducing bottlenecks (Li et al., 2011). Energy-aware and 

load-aware scheduling strategies have been shown to 

improve both performance and energy efficiency (Kaur & 

Chana, 2014), and our findings reinforce the notion that 

balancing workloads can yield cascading benefits for 

resource efficiency and task completion time. Notably, the 

integration of task-priority queues based on Directed acyclic 

https://journals.kmanpub.com/index.php/jppr/index
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graph (DAG) analysis enabled the model to prioritize 

critical-path tasks, accelerating their execution and 

preventing delays from propagating—a strategy that has 

proven beneficial in deadline-constrained scheduling 

frameworks (Abrishami et al., 2013). 

Our results also align with the growing body of work 

emphasizing the need for dynamic and adaptive resource 

allocation models in modern cloud infrastructures. Static 

allocation schemes often fail to account for real-time 

fluctuations in resource availability and workload intensity 

(Doe & Smith, 2024), whereas hybrid and adaptive 

metaheuristics can dynamically reassign resources to sustain 

efficiency (Panda et al., 2016). The adaptive nature of the 

proposed MOCapSA, which adjusts allocation decisions 

based on ongoing feedback about task completion times and 

resource loads, embodies this principle. Furthermore, 

integrating machine learning-based insights into resource 

allocation has been shown to enhance adaptability and 

improve scheduling decisions under uncertainty (Kim & 

Lee, 2024; Wang & Rahman, 2025). Although our method 

does not incorporate reinforcement learning directly, its 

iterative feedback-driven optimization reflects a similar 

adaptive philosophy and shows comparable efficiency gains. 

These results have broader implications for practical 

applications of cloud computing in various domains. Studies 

have shown that the adoption of cloud computing in higher 

education relies on robust resource management frameworks 

to handle dynamic and heterogeneous workloads (Alqatan et 

al., 2025). Similarly, small entrepreneurial businesses, such 

as those in handicraft sectors, depend on efficient scheduling 

to maximize limited resources (Azami et al., 2024). The 

improved efficiency and load balancing demonstrated in this 

study suggest that the proposed approach could support these 

use cases by reducing operational costs and improving 

service quality. In the banking sector, where cloud 

computing is increasingly used for human resource and 

financial data management, the need for consistent and 

balanced workload scheduling has been identified as a 

determinant of successful system adoption (Doldi et al., 

2023; Kmaleh, 2023). Our findings offer a solution that 

addresses these operational challenges by ensuring high 

utilization without sacrificing performance or stability. 

In addition, the results underscore the relevance of 

advanced scheduling techniques in supporting emerging 

hybrid computing paradigms. The rise of fog-cloud 

architectures, which combine centralized cloud and edge 

resources to support latency-sensitive IoT applications, has 

introduced new challenges in coordinating heterogeneous 

resources (Singh, 2024). The demonstrated ability of our 

algorithm to handle heterogeneity and distribute workloads 

efficiently suggests potential adaptability to fog-cloud 

environments. Furthermore, as cloud infrastructures are 

increasingly integrated with AI-driven and blockchain-based 

systems (Lăzăroiu, 2023; Sharma, 2023), achieving reliable 

and efficient task scheduling will be essential to maintain 

service performance. The scalability and multi-objective 

optimization capacity of the proposed model position it as a 

strong candidate for such complex and data-intensive 

scenarios. 

Finally, the broader cloud ecosystem is rapidly evolving 

toward incorporating novel computing paradigms such as 

Quantum computing, which will require hybrid scheduling 

models capable of managing both classical and quantum 

resources (IBM Quantum Experience, 2023). Although our 

current work focuses exclusively on traditional 

heterogeneous cloud environments, its multi-objective 

architecture could serve as a foundational framework upon 

which future hybrid quantum-classical scheduling models 

are built. As the complexity and heterogeneity of cloud 

infrastructures continue to expand, algorithms like the 

proposed MOCapSA may become increasingly critical to 

sustaining efficiency, adaptability, and quality of service 

across diverse application domains. 

Despite the promising results, this study has several 

limitations that should be acknowledged. First, the 

evaluation was conducted in a simulated environment using 

CloudSim, which—while widely adopted for cloud 

research—may not fully capture the unpredictability and 

dynamic fluctuations present in real-world cloud systems. 

Factors such as network congestion, hardware failures, and 

user-driven workload spikes were not incorporated into the 

simulation scenarios, potentially limiting the external 

validity of the findings. Second, the study focused primarily 

on three performance metrics—makespan, resource 

utilization, and load balance—and did not explicitly consider 

other important criteria such as energy consumption, cost 

efficiency, or service-level agreement (SLA) compliance, 

which are critical in production cloud environments. Third, 

the algorithm’s computational complexity and scalability 

under extremely large-scale workloads were not 

comprehensively analyzed. While the proposed method 

performed well for the evaluated task set, its behavior with 

thousands of concurrent tasks and hundreds of resources 

remains to be empirically tested. Additionally, the proposed 

algorithm does not yet incorporate predictive modeling or 
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real-time learning capabilities, which could further enhance 

its adaptability in volatile workload conditions. 

Future research could build upon this work in several 

ways. One avenue would be to conduct large-scale 

experiments in real or hybrid cloud environments, where 

dynamic network conditions, unpredictable workload 

arrivals, and real hardware heterogeneity can be observed. 

This would allow validation of the model’s robustness and 

scalability beyond simulation-based assessments. Another 

promising direction is to incorporate energy-awareness and 

cost-optimization objectives into the multi-objective 

framework, thereby aligning scheduling decisions with 

sustainability and economic considerations. Integrating 

predictive models and reinforcement learning techniques 

could also enhance adaptability, enabling the system to 

anticipate workload surges and proactively allocate 

resources. Moreover, extending the approach to support fog-

cloud and edge-cloud environments would make it 

applicable to latency-sensitive IoT and real-time analytics 

applications. Finally, adapting the algorithm to manage 

hybrid classical-quantum workloads could prepare it for 

future cloud paradigms where quantum computing resources 

are integrated into conventional infrastructures. 

Practically, the findings of this study highlight the 

potential benefits of adopting multi-objective optimization-

based scheduling in heterogeneous cloud environments. 

Cloud service providers and data center operators could 

deploy similar scheduling mechanisms to improve resource 

utilization and reduce operational costs, particularly in 

environments with diverse task profiles and variable 

workloads. Enterprise IT managers could leverage such 

algorithms to ensure balanced workloads across their 

virtualized infrastructures, thereby minimizing performance 

bottlenecks and improving quality of service for end users. 

Moreover, integrating such approaches into cloud 

orchestration platforms could automate task allocation and 

scaling decisions, reducing the need for manual intervention 

and enhancing system responsiveness. Finally, organizations 

transitioning to cloud-based infrastructures could adopt 

these scheduling frameworks as part of their migration 

strategy to ensure efficient resource use and stable service 

delivery from the outset. 
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