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CrossMark

The aim of this study was to present a model for intelligent monitoring of
maintenance in the railway industry. Therefore, in terms of purpose, it is an
applied research, as in addition to its informative and scientific aspects, it also
has practical implications for various companies and organizations, particularly
in the railway industry. Considering the aim and nature of the study, the research
method is qualitative. Moreover, since this research seeks to design a model, it
is exploratory in nature. The results indicated that the intelligent monitoring
model for maintenance in the railway industry consists of: data and repair
management (data management and interactive dashboards, resource
management and repair optimization, scalability and integration of systems and
sensors), system and maintenance management (sensor management and system
maintenance, data analysis and anomaly detection, alert systems and data
monitoring), monitoring and integration (data management and system
integration, performance monitoring and system optimization, prediction and
preventive maintenance), optimization and customization (improving user
experience and customization, collecting and analyzing user feedback, system
optimization), security and maintenance (maintenance management and
production optimization, data analysis and machine learning, data security and
regulatory compliance), and usability and human resources (security and user
design, monitoring and maintenance, human resource training and development).
Keywords: Intelligent monitoring, maintenance, railway industry

1. Introduction

approaches to integrated, predictive, and optimization-
driven strategies, enabling organizations to enhance

Resource Management and

aintenance is a critical component of operational
efficiency, asset longevity, and organizational
sustainability, particularly in infrastructure-intensive and
production-oriented industries. Over the past few decades,
the concept of maintenance has evolved from reactive repair

performance while reducing operational costs (Eze et al.,
2024; Jeze et al., 2024). In infrastructure systems such as
water supply, railway networks, and manufacturing plants,
maintenance is not merely a technical necessity but a
strategic enabler for safety, environmental stewardship, and


https://doi.org/10.61838/kman.jrmde.4.3.126
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0009-0007-3850-0667
https://orcid.org/0000-0002-0765-423X
https://orcid.org/0009-0000-2012-683X
https://crossmark.crossref.org/dialog/?doi=10.61838/kman.jrmde.4.2.5
http://creativecommons.org/licenses/by-nc/4.0

Yavari et al.
MAN

PUBLISHING INSTITUTE

customer satisfaction (Jambadu, Pilo, et al., 2024; Sarfaraz
et al.,, 2023). In this context, intelligent monitoring and
advanced maintenance frameworks are gaining prominence
as they combine technological capabilities with systematic
decision-making, thereby addressing both technical and
managerial challenges (Salahi et al., 2023; Sharifzadegan et
al., 2023).

Total Productive Maintenance (TPM) remains one of the
most influential paradigms in modern maintenance
management, focusing on maximizing equipment
effectiveness through proactive involvement of employees
across all levels (Wolska, 2023; Yang & Yang, 2023). By
integrating  TPM principles with Lean Manufacturing
techniques, organizations can improve reliability, reduce
waste, and increase operational responsiveness (Risonarta &
Wardhani, 2023; Saenagri, 2023). The application of these
principles has been documented across diverse sectors, from
pharmaceuticals  (Saenagri, 2023) to automotive
manufacturing (Farihi, 2023) and other high-precision
industries (Firdaus et al., 2023). In each of these cases, the
combination of systematic maintenance schedules, real-time
monitoring, and continuous improvement processes has
proven effective in reducing unplanned downtime and
enhancing quality outputs.

In large-scale infrastructure systems, particularly those
involving complex and geographically dispersed assets, the
integration of intelligent monitoring with maintenance
strategies is paramount. Recent research emphasizes that
predictive maintenance—leveraging sensor networks, big
data analytics, and machine learning—offers significant
advantages in anticipating failures before they occur
(Kaewunruen, 2023; Meddaoui, 2023). Predictive models
can detect patterns invisible to manual inspections, enabling
proactive intervention and resource allocation (Cacerefio et
al., 2023; Kaya & Ulutagay, 2023). This approach is
especially relevant in high-risk environments such as
railway infrastructure, where operational disruptions have
cascading impacts on safety, service reliability, and
economic performance (Kaewunruen, 2023).

The optimization of maintenance strategies is not solely a
matter of technological advancement but also of
organizational adaptation. For example, the successful
implementation of condition-based maintenance (CBM)
depends on aligning technical capabilities with management
structures, resource availability, and employee competencies
(Kaya & Ulutagay, 2023; Lestari, 2023). Studies have shown
that integrating fuzzy inference systems and multi-objective
optimization techniques with CBM frameworks can enhance
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decision-making under uncertainty, balancing cost-
efficiency with reliability (Cacerefio et al., 2023;
Sharifzadegan et al., 2023). Similarly, hybrid optimization
models, such as those combining simulation-based design
with maintenance planning, offer comprehensive tools for
maximizing operational value (Cacerefio et al., 2023).

The human factor remains a decisive element in the
effectiveness of maintenance  systems. Employee
participation in TPM initiatives fosters a bottom-up
approach that strengthens ownership, accountability, and
knowledge sharing (Lestari, 2023; Yang & Yang, 2023). In
welfare service centers and other public service contexts, the
role of maintenance extends beyond technical reliability to
encompass care and accessibility, especially at the
intersections of analog and digital systems (Kaun &
Liminga, 2023). This aligns with broader organizational
development principles, where training, development, and
empowerment of human resources are fundamental to
sustaining long-term maintenance performance (Fan et al.,
2023; Lestari, 2023).

Moreover, balanced scorecard frameworks have been
applied to assess maintenance performance
comprehensively, integrating financial, operational,
learning, and customer perspectives (Hraiga et al., 2023).
Such frameworks facilitate the translation of maintenance
objectives into measurable indicators, which can be linked
to corporate strategies and regulatory compliance (Heidari,
2023; Sarfaraz et al., 2023). In highly regulated industries,
this is critical for ensuring safety, environmental protection,
and adherence to legal requirements (Eze et al., 2024; Jeze
etal., 2024).

Maintenance also plays a significant role in sustainable
development. For example, studies on the upkeep of
traditional building materials, such as mud houses, highlight
the importance of context-specific methods that align with
environmental and cultural sustainability goals (Eze et al.,
2024; Jeze et al., 2024). Similarly, in manufacturing
contexts, sustainable maintenance practices—such as
energy-efficient scheduling, lifecycle optimization, and
waste minimization—contribute directly to reducing the
ecological footprint (Kaewunruen, 2023; Meddaoui, 2023).
These approaches underscore the dual role of maintenance
as both an operational and environmental strategy.

In water infrastructure systems, the politics of
maintenance intersect with issues of technology transfer,
labor relations, and institutional capacity (Jambadu,
Monstadt, et al., 2024; Jambadu, Pilo, et al., 2024). Hybrid
labor arrangements in maintenance activities, combining
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formal employment with community participation, have
been shown to enhance service resilience in resource-
constrained settings (Jambadu, Monstadt, et al., 2024;
Sarfaraz et al., 2023). However, these arrangements require
careful governance to ensure quality, accountability, and
equitable resource allocation.

Recent advances in railway infrastructure maintenance
have demonstrated the potential of integrating reinforcement
learning  techniques with  sustainability  objectives
(Kaewunruen, 2023). By modeling the trade-offs between
operational efficiency, carbon emission reduction, and cost
minimization, such innovations align maintenance with
broader environmental and social priorities. This is
consistent with the growing emphasis on “maintenance for
sustainability,” which reframes maintenance not only as a
cost center but also as a strategic investment (Kaewunruen,
2023; Meddaoui, 2023).

The integration of production planning with maintenance
scheduling is another area of increasing importance.
Mathematical models have been proposed to coordinate
production and preventive maintenance under uncertainty,
considering constraints such as resource availability and
facility disruptions (Salahi et al., 2023; Sharifzadegan et al.,
2023). These models aim to optimize system throughput
while minimizing downtime, thereby increasing overall
competitiveness (Risonarta & Wardhani, 2023; Saenagri,
2023). In this respect, advanced scheduling approaches are
crucial for industries where operational interruptions carry
high financial or reputational costs.

From a methodological perspective, multi-objective
optimization and simulation-based approaches have proven
effective in simultaneously addressing multiple performance
criteria in maintenance systems (Cacerefio et al., 2023; Kaya
& Ulutagay, 2023). This is particularly relevant in contexts
where trade-offs exist between cost, availability, and
reliability. Predictive and prescriptive analytics—when
embedded in maintenance decision-making—enable
organizations to prioritize interventions dynamically, based
on real-time data and evolving operational conditions
(Meddaoui, 2023; Sarfaraz et al., 2023).

In sum, the body of literature illustrates that effective
maintenance systems require an integrated approach,
combining advanced analytical tools, robust human resource
strategies, and sustainable operational practices. Whether
applied to traditional housing (Eze et al., 2024; Jeze et al.,
2024), manufacturing plants (Risonarta & Wardhani, 2023;
Saenagri, 2023), railway infrastructure (Kaewunruen, 2023;
Meddaoui, 2023), or welfare service facilities (Kaun &
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Liminga, 2023), maintenance is most successful when it is
embedded in a broader organizational and societal context.
The convergence of predictive technologies, participatory
management, and sustainability-driven design offers a
promising pathway for future maintenance innovation (Fan
et al., 2023; Wolska, 2023).

The present study contributes to this evolving field by
developing and validating an intelligent monitoring model
for maintenance in the railway industry. Building upon
existing frameworks in predictive maintenance, total
productive maintenance, and integrated planning, the
proposed model seeks to bridge technological capabilities
with practical management solutions. It incorporates sensor-
based data acquisition, real-time anomaly detection, and
performance optimization, supported by human resource
development and systemic integration. In doing so, the study
addresses the dual challenge of enhancing operational
reliability and aligning maintenance practices with
contemporary sustainability and efficiency objectives

2. Methods and Materials

Considering the aim and nature of the study, this research
was qualitative in method and was conducted through
interviews with subject-matter experts. The research
approach was based on grounded theory. The qualitative
section of the study included interviews with experts;
therefore, the statistical population consisted of individuals
familiar with the research topic (university professors in the
fields of industry and artificial intelligence, as well as senior
managers of maintenance in the railway industry). In this
section, theoretical sampling was employed. In theoretical
sampling, events rather than individuals are sampled; if
individuals are approached, the main objective is to explore
the events. Although there is no specific rule for sample size
in qualitative strategies, it has been suggested that for
homogeneous groups, 6 to 8 units are appropriate, and for
heterogeneous groups, 12 to 20 units are recommended. The
interviews continued until theoretical saturation was
achieved. In this study, saturation was reached after
interviewing 12 experts (university professors in the fields
of industry and artificial intelligence, and senior managers
of maintenance in the railway industry).

Sampling was conducted within the framework of
qualitative methodology and on a purposive basis. Two
purposive sampling methods were employed: purposive
sampling and snowball sampling. In qualitative research,
purposive sampling is generally used to obtain the most
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comprehensive information; thus, the researcher selected 3.

Findings and Results

participants who were “information-rich,” meaning that,

based on the principles of qualitative research, samples were
chosen that could provide a strong representation of the

Table 1 presents the initial themes, secondary themes, and
main categories derived from the interviews.

phenomenon under study. The qualitative section of the
study was grounded in grounded theory methodology and
was conducted using MAXQDA software.

Table 1

Open Coding, Axial Coding, and Selective Coding

Selective Coding

Axial Coding

Open Coding

Data and repair

Data management and

Designing interactive dashboards for real-time data insights; Ensuring user-friendly and accessible

management interactive dashboards visualizations; Integration with data sources; Enabling users to customize views and reports according
to their needs; Ensuring fast loading of visualizations and efficient management of large datasets; Mobile
compatibility

Data and repair Resource management Linking repairs with inventory; Accurate validation of repairs; Maintaining up-to-date inventory of

management and repair optimization available resources (tools, parts, personnel); Assigning tasks based on the skill sets of available

personnel; Even workload distribution among maintenance teams; Cost-effective resource allocation;
Ensuring resource availability when needed to prevent delays; Forecasting future resource needs based
on maintenance schedules; Training personnel to perform different types of maintenance tasks;
Coordination with external vendors for specialized resources

Data and repair System and sensor Scalable architecture; Using load balancing techniques to manage traffic and workload; Employing

management scalability and integration  distributed storage systems to handle large data volumes; Implementing parallel processing to enhance
efficiency and processing speed; Adding more servers to increase system capacity; Upgrading existing
hardware to expand capacity

System and Sensor management and  Selecting suitable sensor types for various train components and track sections; Determining optimal

maintenance system maintenance sensor placement for maximum data accuracy; Developing installation protocols to ensure sensor

management stability and reliability; Integrating sensors with existing train and track infrastructure; Calibration
methods to maintain sensor accuracy over time; Power solutions for sensors, including battery options
and energy harvesting; Setting up wireless communication for real-time data transmission;
Environmental protection measures for sensors against weather and physical damage; Regular
maintenance programs for inspecting and replacing sensors; Complying with industry standards and
regulations for sensor use

System and Data analysis and Regular testing of alarm systems to ensure reliability and effectiveness; Developing a centralized data

maintenance anomaly detection repository for storing various data types; Implementing data normalization techniques to ensure

management consistency; Using data transformation tools to convert data into usable formats; Creating data pipelines
for automated data flow; Integrating data from IoT devices, legacy systems, and external sources; Real-
time data synchronization across platforms and devices; Cleaning and organizing data for analysis
readiness

System and Data analysis and  Using statistical methods to identify trends and deviations; Time series analysis; Clustering techniques;

maintenance anomaly detection Anomaly detection algorithms; Using charts for visual identification of patterns and anomalies; Setting

management up systems to detect anomalies as they occur; Comparing current data with historical data for anomaly
detection; Adapting pattern detection techniques to industry-specific needs; Implementing systems that
learn from detected anomalies to improve detection accuracy

System and Alert systems and data Providing alerts as soon as events occur; Configurable alert settings; Multi-channel notifications;

maintenance monitoring Classifying alerts by importance to help users prioritize responses; Allowing users to acknowledge

management receipt of alerts; Automatic escalation of alerts if unresolved within a specified time frame; Keeping
records of past alerts for review and analysis; User-friendly interface; Integration with other systems

Monitoring and Data management and Seamless data exchange between systems; Data governance policies to manage access and usage;

integration system integration Systems for monitoring data flows and integration performance; Scalability solutions to handle

increasing data volumes; Using standard protocols for data exchange; APIs; Ensuring data compatibility
and consistency across systems; Selecting and managing appropriate communication protocols; Using
common data formats to facilitate information exchange; Hardware compatibility; Ensuring
compatibility between different software versions; Managing system changes to maintain
interoperability; Providing training and documentation for users and developers; Conducting tests to
compare system performance with industry standards; Seamless integration with existing maintenance
workflows
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Monitoring and  Performance monitoring
integration and system optimization
Monitoring and  Prediction and preventive
integration maintenance

Optimization and
customization

Optimization and
customization

Optimization and
customization

Security and

maintenance

Security and

maintenance

Usability and
human resources

Usability and
human resources

Usability and
human resources

User
enhancement
customization

experience
and

User feedback collection
and analysis

System optimization

Maintenance
management and
production optimization

Data analysis and
machine learning / Data
security and regulatory
compliance

Security and user design

Monitoring and

maintenance

Human resource training
and development

Linking repair data with system performance; Tracking system response times to user inputs; Measuring
frequency and types of system errors; Monitoring memory and network performance for efficiency;
Logging incidents and system downtime duration; Collecting user feedback specifically on system
performance; Regularly evaluating system security measures and protocols; Assessing system capacity
to manage user and data growth; Setting alerts to notify managers of performance issues; Conducting
regular tests to ensure proper operational collaboration

Gathering relevant data from sensors and historical records; ldentifying key indicators that predict
equipment failure; Implementing real-time equipment monitoring systems; Anomaly detection;
Estimating time to failure or failure probability; Creating alerts for maintenance actions based on
predictions; Updating models with new data to improve accuracy

Allowing customization and prioritization of information on the main user interface; Providing options
to change system colors, fonts, and overall appearance; Enabling users to create shortcuts for frequently
used actions; Allowing users to manage personal information and preferences; Giving users control over
how and when alerts are received; Providing support for multiple languages and regional settings

Regular distribution of surveys to gather user opinions and suggestions; Implementing easily accessible
feedback forms within the system; Conducting user interviews for deeper insights; Observing user
interactions to identify pain points; Organizing focus groups; Engaging users in beta testing; User-
centered design; Monitoring online platforms for reviews and ratings

Tracking social media mentions; Analyzing system usage data to identify recurring problems;
Reviewing customer support reports; Gathering user feedback on system performance; Implementing
agile methods; Continuous integration and deployment; Developing and maintaining a roadmap for
future features; System technology upgrades; Continuous performance optimization; Regular security
upgrades

Determining maintenance task urgency based on equipment importance; Considering personnel and tool
availability; Planning maintenance to minimize downtime; Using predictive analytics; Balancing costs
and operational efficiency; Ensuring compliance with industry standards; Adjusting schedules for
unexpected changes; Coordinating maintenance with production; Using task feedback to improve future
scheduling; Using scheduling software

Training staff on best practices for data quality; Selecting suitable machine learning algorithms; Creating
input variables; Training models with labeled datasets; Classifying failures; Tuning model parameters;
Combining models for accuracy; Integrating models into production systems; Updating models with
new data; Ensuring model interpretability; Implementing data validation rules; Data cleansing; Setting
accuracy metrics; Conducting audits; Using ML for anomaly detection; Feedback loops for quality
improvement; Data lineage tracking; Metadata management; Encryption for data protection; Access
control; Strong authentication; Secure key management; Activity monitoring; Security training;
Firewalls and intrusion detection; Backup and recovery; Compliance assurance; Regular security testing
Focusing on user needs and behaviors; Simple and consistent navigation; Logical information
architecture; Visual cues for importance; Consistency across system sections; Immediate feedback to
users; Accessible design; Familiar icons and labels; Cross-device compatibility

Verifying correct repairs; Task checklists; Offline system use; Monitoring key fleet components;
Monitoring fuel tanks; Monitoring traction systems; Monitoring doors; Locomotive fire alarm health;
Early failure detection with Al; Passenger car safety equipment monitoring; Intelligent HVAC
monitoring; Intelligent turnout monitoring; Intelligent track monitoring; Intelligent signaling monitoring
Fire extinguishing training for operators; Crisis management training; Full regulatory familiarity;
Excessive checklist items; Irrelevant checklist items; Frequent inspectors; Redundant checks; Proper
inspector training; Untimely failure reporting; Lack of inventory-repair coordination

Based on the final categorization, it is observed that the

preventive maintenance), optimization and customization

final categories and axes include 186 open codes, 18 axial
codes, and 6 selective codes. These codes consist of data and
repair management (data management and interactive
dashboards, resource management and repair optimization,
system and sensor scalability and integration), system and
maintenance management (sensor management and system
maintenance, data analysis and anomaly detection, alert
systems and data monitoring), monitoring and integration
(data management and system integration, performance
monitoring and system optimization, prediction and

(user experience enhancement and customization, user
feedback collection and analysis, system optimization),
security and maintenance (maintenance management and
production optimization, data analysis and machine
learning, data security and regulatory compliance), and
usability and human resources (security and user design,
monitoring and maintenance, human resource training and
development). Subsequently, these factors were placed
within the paradigm model.
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Figure 1

Intelligent Monitoring Model for Maintenance in the Railway Industry

Causal Factors Central Factors

4. Discussion and Conclusion

The results of this study led to the development of an
intelligent monitoring model for maintenance in the railway
industry that integrates six selective codes—data and repair
management, system and maintenance management,
monitoring and integration, optimization and customization,
security and maintenance, and usability and human
resources—supported by 18 axial codes and 186 open codes.
This comprehensive model reflects a convergence between
technical, managerial, and human resource considerations,
indicating that high-performing railway maintenance
systems must be grounded in both advanced technological
tools and structured organizational processes. The
categorization of factors into causal, contextual, intervening,
central, and consequence dimensions further reinforces the
relevance of systems thinking in maintenance design, where
interdependencies between hardware, software, and human
expertise must be acknowledged (Salahi et al., 2023;
Sharifzadegan et al., 2023).

Strategies

Environmental Factors

A key finding is that data management and interactive
dashboards form the backbone of the model, enabling real-
time decision-making through accessible, visualized, and
user-customizable interfaces. This aligns with prior studies
emphasizing the role of data-driven decision-making in
optimizing maintenance schedules and reducing downtime
(Cacerefio et al., 2023). By integrating data pipelines,
normalization techniques, and real-time synchronization, the
model ensures that information from 10T sensors, historical
records, and legacy systems is not only aggregated but also
actionable. Such integration resonates with frameworks
proposed in water supply infrastructure management, where
centralized data repositories and analytical platforms have
enhanced responsiveness and efficiency (Jambadu, Pilo, et
al., 2024; Sarfaraz et al., 2023).

The resource management and repair optimization
dimension addresses allocation efficiency, ensuring that
tools, spare parts, and personnel are deployed cost-
effectively without compromising availability. This finding
is consistent with the principles of Total Productive
Maintenance (TPM), which seek to balance preventive
strategies with operational demands to minimize unplanned
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stoppages (Wolska, 2023; Yang & Yang, 2023). The study’s
emphasis on scalability and system integration further
validates the relevance of adaptive architectures capable of
expanding in response to increased data volumes or
operational complexity (Kaya & Ulutagay, 2023).

System and maintenance management emerged as a
pivotal area, incorporating sensor management, anomaly
detection, and alert systems. The empirical evidence
suggests that optimal sensor deployment—both in type
selection and placement—combined with predictive
algorithms significantly enhances the early detection of
equipment failures. These results support prior work
demonstrating that predictive maintenance strategies, when
paired with machine learning models, can accurately
forecast failures and guide timely interventions
(Kaewunruen, 2023; Meddaoui, 2023). Furthermore, the
inclusion of alert systems with configurable thresholds and
multi-channel notifications ensures that maintenance teams
can prioritize and escalate issues appropriately, mirroring
similar advancements in manufacturing and automotive
contexts (Farihi, 2023; Risonarta & Wardhani, 2023).

The monitoring and integration category of the model—
covering performance monitoring, system optimization, and
preventive maintenance—highlights the necessity of linking
repair data with performance metrics. The capacity to
analyze these linkages in real time supports continuous
improvement and is consistent with balanced scorecard
approaches to maintenance performance evaluation (Hraiga
et al., 2023). Predictive and preventive elements in this
category draw on statistical modeling, clustering, and
anomaly detection to identify emerging issues before they
affect operations, a strategy shown to significantly improve
reliability in both transport and manufacturing industries
(Fan et al., 2023; Saenagri, 2023).

Optimization and customization elements in the model
reveal the importance of tailoring interfaces, workflows, and
system settings to user needs. This finding aligns with the
literature on user-centered design in welfare and public
service contexts, where customization not only improves
usability but also fosters greater stakeholder engagement
(Kaun & Liminga, 2023; Lestari, 2023). The feedback
collection and analysis components of this category ensure
that user experience remains a driver of system evolution,
reflecting agile development principles in maintenance
software design (Firdaus et al., 2023).

Security and maintenance capabilities—including
production optimization, machine learning integration, and
data security—were found to be integral for safeguarding
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system integrity. The model’s focus on encryption, access
controls, and compliance with regulations reflects
established best practices for protecting operational and
customer data in critical infrastructure sectors (Eze et al.,
2024; Jeze et al., 2024). By incorporating machine learning
into maintenance optimization, the model aligns with trends
in lean maintenance and predictive analytics, where
continuous model updates and explainable Al improve both
transparency and accuracy (Heidari, 2023).

Finally, the usability and human resources dimension
emphasizes human resource training, monitoring, and user
security design. This component acknowledges that even the
most technologically advanced maintenance systems rely on
well-trained personnel for effective execution. The focus on
training in crisis management, safety protocols, and
equipment operation is supported by studies demonstrating
that empowered employees are more capable of maintaining
asset reliability and responding effectively to unexpected
issues (Jambadu, Monstadt, et al., 2024; Sharifzadegan et al.,
2023). Moreover, the design principles embedded in this
dimension—simplicity, accessibility, and feedback—mirror
usability standards that have been shown to increase
adoption and reduce errors in digital maintenance tools (Fan
et al., 2023).

In synthesis, the results validate that a holistic, multi-
dimensional model—combining data integration, predictive
analytics, human resource development, and security—can
significantly enhance railway maintenance systems. This
conclusion is consistent with cross-sectoral findings in
manufacturing, public infrastructure, and service delivery,
where integrated approaches yield superior outcomes in
terms of cost, reliability, and sustainability (Kaewunruen,
2023; Salahi et al., 2023). The study thus contributes to both
theoretical and practical discourses on maintenance by
providing a replicable framework adaptable to other high-
reliability sectors.

Despite the comprehensiveness of the proposed model,
several limitations must be acknowledged. First, the study
was conducted within the specific context of the railway
industry, which may limit its generalizability to sectors with
different operational dynamics, regulatory frameworks, or
technological infrastructures. Second, the reliance on expert
interviews and qualitative coding—while valuable for depth
and context—may introduce subjective biases in the
interpretation of findings. The thematic saturation achieved
with 12 experts, though consistent with qualitative research
standards, might not capture the full diversity of perspectives
in larger or more varied operational environments.
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Additionally, the model has not yet undergone large-scale
empirical testing in live operational contexts, meaning that
its predictive accuracy, integration feasibility, and cost-
effectiveness remain to be validated through longitudinal
and quantitative assessments. Technological dependencies,
such as the availability of high-quality sensor data and
reliable connectivity, also pose potential challenges for
implementation in regions with limited infrastructure.

Future research could expand the empirical testing of the
intelligent monitoring model across multiple railway
systems in diverse geographical and operational contexts to
assess scalability and adaptability. Comparative studies
between railway and other critical infrastructure sectors—
such as power grids, aviation, and maritime transport—
could further validate the model’s applicability and reveal
sector-specific modifications. Incorporating hybrid research
designs that blend qualitative insights with quantitative
performance metrics would strengthen the robustness of
findings. Another promising direction would be to integrate
emerging technologies such as edge computing, digital
twins, and blockchain into the monitoring framework,
thereby enhancing real-time decision-making, security, and
traceability. Investigating the socio-technical dynamics of
implementation—particularly how organizational culture,
change management strategies, and workforce readiness
affect adoption—would also provide valuable practical
insights.

For practitioners, the model offers a structured blueprint
for enhancing maintenance performance in railway
operations. Implementation should begin with a thorough
audit of existing data infrastructure, sensor capabilities, and
workforce competencies to identify gaps relative to the
model’s requirements. Building a phased rollout plan—
starting with data integration and predictive analytics,
followed by customization and security layers—can help
manage resource demands and minimize disruption. Regular
training programs for operational staff, combined with
iterative feedback loops from system users, will ensure
continuous refinement and alignment with evolving needs.
Collaboration between technical teams, operational
managers, and regulatory bodies is essential for ensuring that
the system remains compliant, secure, and effective in
delivering both operational and sustainability goals.

Authors’ Contributions

Authors contributed equally to this article.

Declaration

Journal of Resource Management and Decision Engineering 4:3 (2025) 1-9

In order to correct and improve the academic writing of
our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable
request to the corresponding author.

Acknowledgments

We would like to express our gratitude to all individuals
helped us to do the project.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial
support.

Ethics Considerations

In this research, ethical standards including obtaining
informed consent, ensuring privacy and confidentiality were
considered.

References

Cacerefio, A., Greiner, D., & Galvan, B. (2023). Simultaneous
optimization of design and maintenance for systems using
multi-objective  evolutionary algorithms and  discrete
simulation. Soft Computing. https://doi.org/10.1007/s00500-
023-08922-2

Eze, C., Obaje, G., & Nzubairu, S. (2024). Evaluation of
Traditional Methods in the Maintenance of Mud Houses for
Environmental  Sustainability in  Northern  Nigeria.
http://irepo.futminna.edu.ng:8080/jspui/handle/123456789/9
612

Fan, F., Chen, J., Chen, Y., Li, B., Guo, L., Shi, Y., Yang, F. C,,
Yang, Q., Yang, L., Ding, C., & Shi, H. (2023). How
Relationship-Maintenance  Strategies Influence Athlete
Burnout: Mediating Roles of Coach—athlete Relationship and
Basic Psychological Needs Satisfaction. Frontiers in
psychology. https://doi.org/10.3389/fpsyg.2022.1104143

Farihi, A. H. A. (2023). Designing Lean Maintenance Using Total
Productive Maintenance Method — A Case Study at Wiring
Harness Production. E3s Web of Conferences, 465, 02016.
https://doi.org/10.1051/e3sconf/202346502016

Firdaus, H., Anggrainy, S. D., & Abdillah, H. (2023). Project Based
Learning Model on Basic Competencies of Light Vehicle
Front Suspension System Maintenance at SMK. Jurnal limiah
Profesi Pendidikan, 8(4), 2548-2556.
https://doi.org/10.29303/jipp.v8i4.1723

Heidari, R. (2023). Designing a Model for Enhancing the Capacity
of Implementing Policies in the Road Maintenance and
Transportation ~ Organization.  Journal  of  Public
Administration, 31(116), 200-179.


https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.1007/s00500-023-08922-2
https://doi.org/10.1007/s00500-023-08922-2
http://irepo.futminna.edu.ng:8080/jspui/handle/123456789/9612
http://irepo.futminna.edu.ng:8080/jspui/handle/123456789/9612
https://doi.org/10.3389/fpsyg.2022.1104143
https://doi.org/10.1051/e3sconf/202346502016
https://doi.org/10.29303/jipp.v8i4.1723

Yavari et al.
MAN

PUBLISHING INSTITUTE

Hraiga, R. A., Ahmed Maher Muhammad Alli, F., & Abbas, A. A.
(2023). Role of Balanced Scorecard in Evaluating Total
Productive Maintenance Performance. journal of Economics
And Administrative Sciences, 29(135), 83-99.
https://doi.org/10.33095/jeas.v29i135.2508

Jambadu, L., Monstadt, J., & Pilo, F. (2024). The politics of tied
aid: Technology transfer and the maintenance and repair of
water infrastructure. World Development, 175.
https://doi.org/10.1016/j.worlddev.2023.106476

Jambadu, L., Pilo, F., & Monstadt, J. (2024). Co-producing
maintenance and repair: hybrid labor relations in water supply
in Accra, Ghana. Urban Research & Practice, 17(2), 280-302.
https://doi.org/10.1080/17535069.2023.2180325

Jeze, C., Aobaje, J., & Nzubairu, S. (2024). Evaluation of
Traditional Methods in the Maintenance of Mud Houses for
Environmental Sustainability in Northern Nigeria. Available
online.
http://irepo.futminna.edu.ng:8080/jspui/handle/123456789/9
612

Kaewunruen, S. (2023). Interactive reinforcement learning
innovation to reduce carbon emissions in railway
infrastructure  maintenance. Development and  Built
Environment, 15, 100193.
https://doi.org/10.1016/j.dibe.2023.100193

Kaun, A., & Liminga, A. (2023). Welfare Service Centers:
Maintenance, Repair, and Care at the Analog Interfaces of the
Digital Welfare State. New Media &  Society.
https://doi.org/10.1177/14614448231220362

Kaya, B., & Ulutagay, G. (2023). Inventory and Maintenance
Optimization of Conditional Based Maintenance Using Fuzzy
Inference System (F. Calisir, Ed.). Springer, Cham.
https://doi.org/10.1007/978-3-031-25847-3_18

Lestari, Y. A. P. (2023). The Application of Maintenance Functions
in The Human Resources Management of Islamic Financial
Institutions. Invest Journal of Sharia & Economic Law, 3(1),
70-83. https://doi.org/10.21154/invest.v3i1.5128

Meddaoui, A. (2023). The Benefits of Predictive Maintenance in
Manufacturing Excellence: A Case Study to Establish
Reliable Methods for Predicting Failures.
https://doi.org/10.21203/rs.3.rs-2908342/v1

Risonarta, V. Y., & Wardhani, A. K. (2023). Increasing
Profitability of a Manufacturing Company by Using the Total
Productive Maintenance Approach: A Review. International
Journal of Mechanical Engineering Technologies and
Applications, 4(1), 39-50.
https://doi.org/10.21776/mechta.2023.004.01.5

Saenagri, A. (2023). Implementation of Total Productive
Maintenance and Lean Manufacturing in the Pharmaceutical
Industry: An Empirical Study. Journal of Business and
Management Studies, 5(3), 114-124.
https://doi.org/10.32996/jbms.2023.5.3.10

Salahi, F., Daneshvar, A., Homayounfar, M., & Pourghader
Chobar, A. (2023). Presenting an Integrated Model for
Production Planning and Preventive Maintenance Scheduling
Considering Uncertainty of Parameters and Disruption of
Facilities. Journal of Industrial Management Perspective,
13(1), 105-140. https://doi.org/10.48308/jimp.13.1.105

Sarfaraz, A. H., Yazdi, A. K., Hanne, T., Wanke, P. F., & Hosseini,
R. S. (2023). Assessing repair and maintenance efficiency for
water suppliers: a novel hybrid USBM-FIS framework.
Operations Management Research.
https://doi.org/10.1007/512063-023-00347-2

Sharifzadegan, M., Heidari, M., Pouri, K., Pourghader Choubar, A.,
& Abolghasemian, M. (2023). Presenting a Mathematical
Model for Production Scheduling and Maintenance

Journal of Resource Management and Decision Engineering 4:3 (2025) 1-9

Considering  Resource
Uncertainty Conditions.

Wolska, M. (2023). Implementation and Improvement of the Total
Productive Maintenance Concept in an Organization.
Encyclopedia, 3(4), 1537-1564.
https://doi.org/10.3390/encyclopedia3040110

Yang, Y., & Yang, B. (2023). Employee Participation in Total
Productive Maintenance — A bottom-Up Perspective.
International Journal of Quality & Reliability Management,
41(1), 269-290. https://doi.org/10.1108/ijgrm-12-2022-0353

Accessibility  Constraints  in


https://journals.kmanpub.com/index.php/jppr/index
https://doi.org/10.33095/jeas.v29i135.2508
https://doi.org/10.1016/j.worlddev.2023.106476
https://doi.org/10.1080/17535069.2023.2180325
http://irepo.futminna.edu.ng:8080/jspui/handle/123456789/9612
http://irepo.futminna.edu.ng:8080/jspui/handle/123456789/9612
https://doi.org/10.1016/j.dibe.2023.100193
https://doi.org/10.1177/14614448231220362
https://doi.org/10.1007/978-3-031-25847-3_18
https://doi.org/10.21154/invest.v3i1.5128
https://doi.org/10.21203/rs.3.rs-2908342/v1
https://doi.org/10.21776/mechta.2023.004.01.5
https://doi.org/10.32996/jbms.2023.5.3.10
https://doi.org/10.48308/jimp.13.1.105
https://doi.org/10.1007/s12063-023-00347-2
https://doi.org/10.3390/encyclopedia3040110
https://doi.org/10.1108/ijqrm-12-2022-0353

