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The aim of this study was to present a model for intelligent monitoring of 

maintenance in the railway industry. Therefore, in terms of purpose, it is an 

applied research, as in addition to its informative and scientific aspects, it also 

has practical implications for various companies and organizations, particularly 

in the railway industry. Considering the aim and nature of the study, the research 

method is qualitative. Moreover, since this research seeks to design a model, it 

is exploratory in nature. The results indicated that the intelligent monitoring 

model for maintenance in the railway industry consists of: data and repair 

management (data management and interactive dashboards, resource 

management and repair optimization, scalability and integration of systems and 

sensors), system and maintenance management (sensor management and system 

maintenance, data analysis and anomaly detection, alert systems and data 

monitoring), monitoring and integration (data management and system 

integration, performance monitoring and system optimization, prediction and 

preventive maintenance), optimization and customization (improving user 

experience and customization, collecting and analyzing user feedback, system 

optimization), security and maintenance (maintenance management and 

production optimization, data analysis and machine learning, data security and 

regulatory compliance), and usability and human resources (security and user 

design, monitoring and maintenance, human resource training and development). 

Keywords: Intelligent monitoring, maintenance, railway industry 

1. Introduction 

aintenance is a critical component of operational 

efficiency, asset longevity, and organizational 

sustainability, particularly in infrastructure-intensive and 

production-oriented industries. Over the past few decades, 

the concept of maintenance has evolved from reactive repair 

approaches to integrated, predictive, and optimization-

driven strategies, enabling organizations to enhance 

performance while reducing operational costs (Eze et al., 

2024; Jeze et al., 2024). In infrastructure systems such as 

water supply, railway networks, and manufacturing plants, 

maintenance is not merely a technical necessity but a 

strategic enabler for safety, environmental stewardship, and 
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customer satisfaction (Jambadu, Pilo, et al., 2024; Sarfaraz 

et al., 2023). In this context, intelligent monitoring and 

advanced maintenance frameworks are gaining prominence 

as they combine technological capabilities with systematic 

decision-making, thereby addressing both technical and 

managerial challenges (Salahi et al., 2023; Sharifzadegan et 

al., 2023). 

Total Productive Maintenance (TPM) remains one of the 

most influential paradigms in modern maintenance 

management, focusing on maximizing equipment 

effectiveness through proactive involvement of employees 

across all levels (Wolska, 2023; Yang & Yang, 2023). By 

integrating TPM principles with Lean Manufacturing 

techniques, organizations can improve reliability, reduce 

waste, and increase operational responsiveness (Risonarta & 

Wardhani, 2023; Saenagri, 2023). The application of these 

principles has been documented across diverse sectors, from 

pharmaceuticals (Saenagri, 2023) to automotive 

manufacturing (Farihi, 2023) and other high-precision 

industries (Firdaus et al., 2023). In each of these cases, the 

combination of systematic maintenance schedules, real-time 

monitoring, and continuous improvement processes has 

proven effective in reducing unplanned downtime and 

enhancing quality outputs. 

In large-scale infrastructure systems, particularly those 

involving complex and geographically dispersed assets, the 

integration of intelligent monitoring with maintenance 

strategies is paramount. Recent research emphasizes that 

predictive maintenance—leveraging sensor networks, big 

data analytics, and machine learning—offers significant 

advantages in anticipating failures before they occur 

(Kaewunruen, 2023; Meddaoui, 2023). Predictive models 

can detect patterns invisible to manual inspections, enabling 

proactive intervention and resource allocation (Cacereño et 

al., 2023; Kaya & Ulutagay, 2023). This approach is 

especially relevant in high-risk environments such as 

railway infrastructure, where operational disruptions have 

cascading impacts on safety, service reliability, and 

economic performance (Kaewunruen, 2023). 

The optimization of maintenance strategies is not solely a 

matter of technological advancement but also of 

organizational adaptation. For example, the successful 

implementation of condition-based maintenance (CBM) 

depends on aligning technical capabilities with management 

structures, resource availability, and employee competencies 

(Kaya & Ulutagay, 2023; Lestari, 2023). Studies have shown 

that integrating fuzzy inference systems and multi-objective 

optimization techniques with CBM frameworks can enhance 

decision-making under uncertainty, balancing cost-

efficiency with reliability (Cacereño et al., 2023; 

Sharifzadegan et al., 2023). Similarly, hybrid optimization 

models, such as those combining simulation-based design 

with maintenance planning, offer comprehensive tools for 

maximizing operational value (Cacereño et al., 2023). 

The human factor remains a decisive element in the 

effectiveness of maintenance systems. Employee 

participation in TPM initiatives fosters a bottom-up 

approach that strengthens ownership, accountability, and 

knowledge sharing (Lestari, 2023; Yang & Yang, 2023). In 

welfare service centers and other public service contexts, the 

role of maintenance extends beyond technical reliability to 

encompass care and accessibility, especially at the 

intersections of analog and digital systems (Kaun & 

Liminga, 2023). This aligns with broader organizational 

development principles, where training, development, and 

empowerment of human resources are fundamental to 

sustaining long-term maintenance performance (Fan et al., 

2023; Lestari, 2023). 

Moreover, balanced scorecard frameworks have been 

applied to assess maintenance performance 

comprehensively, integrating financial, operational, 

learning, and customer perspectives (Hraiga et al., 2023). 

Such frameworks facilitate the translation of maintenance 

objectives into measurable indicators, which can be linked 

to corporate strategies and regulatory compliance (Heidari, 

2023; Sarfaraz et al., 2023). In highly regulated industries, 

this is critical for ensuring safety, environmental protection, 

and adherence to legal requirements (Eze et al., 2024; Jeze 

et al., 2024). 

Maintenance also plays a significant role in sustainable 

development. For example, studies on the upkeep of 

traditional building materials, such as mud houses, highlight 

the importance of context-specific methods that align with 

environmental and cultural sustainability goals (Eze et al., 

2024; Jeze et al., 2024). Similarly, in manufacturing 

contexts, sustainable maintenance practices—such as 

energy-efficient scheduling, lifecycle optimization, and 

waste minimization—contribute directly to reducing the 

ecological footprint (Kaewunruen, 2023; Meddaoui, 2023). 

These approaches underscore the dual role of maintenance 

as both an operational and environmental strategy. 

In water infrastructure systems, the politics of 

maintenance intersect with issues of technology transfer, 

labor relations, and institutional capacity (Jambadu, 

Monstadt, et al., 2024; Jambadu, Pilo, et al., 2024). Hybrid 

labor arrangements in maintenance activities, combining 

https://journals.kmanpub.com/index.php/jppr/index
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formal employment with community participation, have 

been shown to enhance service resilience in resource-

constrained settings (Jambadu, Monstadt, et al., 2024; 

Sarfaraz et al., 2023). However, these arrangements require 

careful governance to ensure quality, accountability, and 

equitable resource allocation. 

Recent advances in railway infrastructure maintenance 

have demonstrated the potential of integrating reinforcement 

learning techniques with sustainability objectives 

(Kaewunruen, 2023). By modeling the trade-offs between 

operational efficiency, carbon emission reduction, and cost 

minimization, such innovations align maintenance with 

broader environmental and social priorities. This is 

consistent with the growing emphasis on “maintenance for 

sustainability,” which reframes maintenance not only as a 

cost center but also as a strategic investment (Kaewunruen, 

2023; Meddaoui, 2023). 

The integration of production planning with maintenance 

scheduling is another area of increasing importance. 

Mathematical models have been proposed to coordinate 

production and preventive maintenance under uncertainty, 

considering constraints such as resource availability and 

facility disruptions (Salahi et al., 2023; Sharifzadegan et al., 

2023). These models aim to optimize system throughput 

while minimizing downtime, thereby increasing overall 

competitiveness (Risonarta & Wardhani, 2023; Saenagri, 

2023). In this respect, advanced scheduling approaches are 

crucial for industries where operational interruptions carry 

high financial or reputational costs. 

From a methodological perspective, multi-objective 

optimization and simulation-based approaches have proven 

effective in simultaneously addressing multiple performance 

criteria in maintenance systems (Cacereño et al., 2023; Kaya 

& Ulutagay, 2023). This is particularly relevant in contexts 

where trade-offs exist between cost, availability, and 

reliability. Predictive and prescriptive analytics—when 

embedded in maintenance decision-making—enable 

organizations to prioritize interventions dynamically, based 

on real-time data and evolving operational conditions 

(Meddaoui, 2023; Sarfaraz et al., 2023). 

In sum, the body of literature illustrates that effective 

maintenance systems require an integrated approach, 

combining advanced analytical tools, robust human resource 

strategies, and sustainable operational practices. Whether 

applied to traditional housing (Eze et al., 2024; Jeze et al., 

2024), manufacturing plants (Risonarta & Wardhani, 2023; 

Saenagri, 2023), railway infrastructure (Kaewunruen, 2023; 

Meddaoui, 2023), or welfare service facilities (Kaun & 

Liminga, 2023), maintenance is most successful when it is 

embedded in a broader organizational and societal context. 

The convergence of predictive technologies, participatory 

management, and sustainability-driven design offers a 

promising pathway for future maintenance innovation (Fan 

et al., 2023; Wolska, 2023). 

The present study contributes to this evolving field by 

developing and validating an intelligent monitoring model 

for maintenance in the railway industry. Building upon 

existing frameworks in predictive maintenance, total 

productive maintenance, and integrated planning, the 

proposed model seeks to bridge technological capabilities 

with practical management solutions. It incorporates sensor-

based data acquisition, real-time anomaly detection, and 

performance optimization, supported by human resource 

development and systemic integration. In doing so, the study 

addresses the dual challenge of enhancing operational 

reliability and aligning maintenance practices with 

contemporary sustainability and efficiency objectives 

2. Methods and Materials 

Considering the aim and nature of the study, this research 

was qualitative in method and was conducted through 

interviews with subject-matter experts. The research 

approach was based on grounded theory. The qualitative 

section of the study included interviews with experts; 

therefore, the statistical population consisted of individuals 

familiar with the research topic (university professors in the 

fields of industry and artificial intelligence, as well as senior 

managers of maintenance in the railway industry). In this 

section, theoretical sampling was employed. In theoretical 

sampling, events rather than individuals are sampled; if 

individuals are approached, the main objective is to explore 

the events. Although there is no specific rule for sample size 

in qualitative strategies, it has been suggested that for 

homogeneous groups, 6 to 8 units are appropriate, and for 

heterogeneous groups, 12 to 20 units are recommended. The 

interviews continued until theoretical saturation was 

achieved. In this study, saturation was reached after 

interviewing 12 experts (university professors in the fields 

of industry and artificial intelligence, and senior managers 

of maintenance in the railway industry). 

Sampling was conducted within the framework of 

qualitative methodology and on a purposive basis. Two 

purposive sampling methods were employed: purposive 

sampling and snowball sampling. In qualitative research, 

purposive sampling is generally used to obtain the most 

https://journals.kmanpub.com/index.php/jppr/index
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comprehensive information; thus, the researcher selected 

participants who were “information-rich,” meaning that, 

based on the principles of qualitative research, samples were 

chosen that could provide a strong representation of the 

phenomenon under study. The qualitative section of the 

study was grounded in grounded theory methodology and 

was conducted using MAXQDA software. 

3. Findings and Results 

Table 1 presents the initial themes, secondary themes, and 

main categories derived from the interviews. 

Table 1 

Open Coding, Axial Coding, and Selective Coding 

Open Coding Axial Coding Selective Coding 

Designing interactive dashboards for real-time data insights; Ensuring user-friendly and accessible 

visualizations; Integration with data sources; Enabling users to customize views and reports according 

to their needs; Ensuring fast loading of visualizations and efficient management of large datasets; Mobile 

compatibility 

Data management and 

interactive dashboards 

Data and repair 

management 

Linking repairs with inventory; Accurate validation of repairs; Maintaining up-to-date inventory of 

available resources (tools, parts, personnel); Assigning tasks based on the skill sets of available 

personnel; Even workload distribution among maintenance teams; Cost-effective resource allocation; 

Ensuring resource availability when needed to prevent delays; Forecasting future resource needs based 

on maintenance schedules; Training personnel to perform different types of maintenance tasks; 

Coordination with external vendors for specialized resources 

Resource management 

and repair optimization 

Data and repair 

management 

Scalable architecture; Using load balancing techniques to manage traffic and workload; Employing 

distributed storage systems to handle large data volumes; Implementing parallel processing to enhance 

efficiency and processing speed; Adding more servers to increase system capacity; Upgrading existing 

hardware to expand capacity 

System and sensor 

scalability and integration 

Data and repair 

management 

Selecting suitable sensor types for various train components and track sections; Determining optimal 

sensor placement for maximum data accuracy; Developing installation protocols to ensure sensor 

stability and reliability; Integrating sensors with existing train and track infrastructure; Calibration 

methods to maintain sensor accuracy over time; Power solutions for sensors, including battery options 

and energy harvesting; Setting up wireless communication for real-time data transmission; 

Environmental protection measures for sensors against weather and physical damage; Regular 

maintenance programs for inspecting and replacing sensors; Complying with industry standards and 

regulations for sensor use 

Sensor management and 

system maintenance 

System and 

maintenance 

management 

Regular testing of alarm systems to ensure reliability and effectiveness; Developing a centralized data 

repository for storing various data types; Implementing data normalization techniques to ensure 

consistency; Using data transformation tools to convert data into usable formats; Creating data pipelines 

for automated data flow; Integrating data from IoT devices, legacy systems, and external sources; Real-

time data synchronization across platforms and devices; Cleaning and organizing data for analysis 

readiness 

Data analysis and 

anomaly detection 

System and 

maintenance 

management 

Using statistical methods to identify trends and deviations; Time series analysis; Clustering techniques; 

Anomaly detection algorithms; Using charts for visual identification of patterns and anomalies; Setting 

up systems to detect anomalies as they occur; Comparing current data with historical data for anomaly 

detection; Adapting pattern detection techniques to industry-specific needs; Implementing systems that 

learn from detected anomalies to improve detection accuracy 

Data analysis and 

anomaly detection 

System and 

maintenance 

management 

Providing alerts as soon as events occur; Configurable alert settings; Multi-channel notifications; 

Classifying alerts by importance to help users prioritize responses; Allowing users to acknowledge 

receipt of alerts; Automatic escalation of alerts if unresolved within a specified time frame; Keeping 

records of past alerts for review and analysis; User-friendly interface; Integration with other systems 

Alert systems and data 

monitoring 

System and 

maintenance 

management 

Seamless data exchange between systems; Data governance policies to manage access and usage; 

Systems for monitoring data flows and integration performance; Scalability solutions to handle 

increasing data volumes; Using standard protocols for data exchange; APIs; Ensuring data compatibility 

and consistency across systems; Selecting and managing appropriate communication protocols; Using 

common data formats to facilitate information exchange; Hardware compatibility; Ensuring 

compatibility between different software versions; Managing system changes to maintain 

interoperability; Providing training and documentation for users and developers; Conducting tests to 

compare system performance with industry standards; Seamless integration with existing maintenance 

workflows 

Data management and 

system integration 

Monitoring and 

integration 

https://journals.kmanpub.com/index.php/jppr/index
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Linking repair data with system performance; Tracking system response times to user inputs; Measuring 

frequency and types of system errors; Monitoring memory and network performance for efficiency; 

Logging incidents and system downtime duration; Collecting user feedback specifically on system 

performance; Regularly evaluating system security measures and protocols; Assessing system capacity 

to manage user and data growth; Setting alerts to notify managers of performance issues; Conducting 

regular tests to ensure proper operational collaboration 

Performance monitoring 

and system optimization 

Monitoring and 

integration 

Gathering relevant data from sensors and historical records; Identifying key indicators that predict 

equipment failure; Implementing real-time equipment monitoring systems; Anomaly detection; 

Estimating time to failure or failure probability; Creating alerts for maintenance actions based on 

predictions; Updating models with new data to improve accuracy 

Prediction and preventive 

maintenance 

Monitoring and 

integration 

Allowing customization and prioritization of information on the main user interface; Providing options 

to change system colors, fonts, and overall appearance; Enabling users to create shortcuts for frequently 

used actions; Allowing users to manage personal information and preferences; Giving users control over 

how and when alerts are received; Providing support for multiple languages and regional settings 

User experience 

enhancement and 

customization 

Optimization and 

customization 

Regular distribution of surveys to gather user opinions and suggestions; Implementing easily accessible 

feedback forms within the system; Conducting user interviews for deeper insights; Observing user 

interactions to identify pain points; Organizing focus groups; Engaging users in beta testing; User-

centered design; Monitoring online platforms for reviews and ratings 

User feedback collection 

and analysis 

Optimization and 

customization 

Tracking social media mentions; Analyzing system usage data to identify recurring problems; 

Reviewing customer support reports; Gathering user feedback on system performance; Implementing 

agile methods; Continuous integration and deployment; Developing and maintaining a roadmap for 

future features; System technology upgrades; Continuous performance optimization; Regular security 

upgrades 

System optimization Optimization and 

customization 

Determining maintenance task urgency based on equipment importance; Considering personnel and tool 

availability; Planning maintenance to minimize downtime; Using predictive analytics; Balancing costs 

and operational efficiency; Ensuring compliance with industry standards; Adjusting schedules for 

unexpected changes; Coordinating maintenance with production; Using task feedback to improve future 

scheduling; Using scheduling software 

Maintenance 

management and 

production optimization 

Security and 

maintenance 

Training staff on best practices for data quality; Selecting suitable machine learning algorithms; Creating 

input variables; Training models with labeled datasets; Classifying failures; Tuning model parameters; 

Combining models for accuracy; Integrating models into production systems; Updating models with 

new data; Ensuring model interpretability; Implementing data validation rules; Data cleansing; Setting 

accuracy metrics; Conducting audits; Using ML for anomaly detection; Feedback loops for quality 

improvement; Data lineage tracking; Metadata management; Encryption for data protection; Access 

control; Strong authentication; Secure key management; Activity monitoring; Security training; 

Firewalls and intrusion detection; Backup and recovery; Compliance assurance; Regular security testing 

Data analysis and 

machine learning / Data 

security and regulatory 

compliance 

Security and 

maintenance 

Focusing on user needs and behaviors; Simple and consistent navigation; Logical information 

architecture; Visual cues for importance; Consistency across system sections; Immediate feedback to 

users; Accessible design; Familiar icons and labels; Cross-device compatibility 

Security and user design Usability and 

human resources 

Verifying correct repairs; Task checklists; Offline system use; Monitoring key fleet components; 

Monitoring fuel tanks; Monitoring traction systems; Monitoring doors; Locomotive fire alarm health; 

Early failure detection with AI; Passenger car safety equipment monitoring; Intelligent HVAC 

monitoring; Intelligent turnout monitoring; Intelligent track monitoring; Intelligent signaling monitoring 

Monitoring and 

maintenance 

Usability and 

human resources 

Fire extinguishing training for operators; Crisis management training; Full regulatory familiarity; 

Excessive checklist items; Irrelevant checklist items; Frequent inspectors; Redundant checks; Proper 

inspector training; Untimely failure reporting; Lack of inventory-repair coordination 

Human resource training 

and development 

Usability and 

human resources 

 

Based on the final categorization, it is observed that the 

final categories and axes include 186 open codes, 18 axial 

codes, and 6 selective codes. These codes consist of data and 

repair management (data management and interactive 

dashboards, resource management and repair optimization, 

system and sensor scalability and integration), system and 

maintenance management (sensor management and system 

maintenance, data analysis and anomaly detection, alert 

systems and data monitoring), monitoring and integration 

(data management and system integration, performance 

monitoring and system optimization, prediction and 

preventive maintenance), optimization and customization 

(user experience enhancement and customization, user 

feedback collection and analysis, system optimization), 

security and maintenance (maintenance management and 

production optimization, data analysis and machine 

learning, data security and regulatory compliance), and 

usability and human resources (security and user design, 

monitoring and maintenance, human resource training and 

development). Subsequently, these factors were placed 

within the paradigm model. 

https://journals.kmanpub.com/index.php/jppr/index
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Figure 1 

Intelligent Monitoring Model for Maintenance in the Railway Industry 

 

4. Discussion and Conclusion 

The results of this study led to the development of an 

intelligent monitoring model for maintenance in the railway 

industry that integrates six selective codes—data and repair 

management, system and maintenance management, 

monitoring and integration, optimization and customization, 

security and maintenance, and usability and human 

resources—supported by 18 axial codes and 186 open codes. 

This comprehensive model reflects a convergence between 

technical, managerial, and human resource considerations, 

indicating that high-performing railway maintenance 

systems must be grounded in both advanced technological 

tools and structured organizational processes. The 

categorization of factors into causal, contextual, intervening, 

central, and consequence dimensions further reinforces the 

relevance of systems thinking in maintenance design, where 

interdependencies between hardware, software, and human 

expertise must be acknowledged (Salahi et al., 2023; 

Sharifzadegan et al., 2023). 

A key finding is that data management and interactive 

dashboards form the backbone of the model, enabling real-

time decision-making through accessible, visualized, and 

user-customizable interfaces. This aligns with prior studies 

emphasizing the role of data-driven decision-making in 

optimizing maintenance schedules and reducing downtime 

(Cacereño et al., 2023). By integrating data pipelines, 

normalization techniques, and real-time synchronization, the 

model ensures that information from IoT sensors, historical 

records, and legacy systems is not only aggregated but also 

actionable. Such integration resonates with frameworks 

proposed in water supply infrastructure management, where 

centralized data repositories and analytical platforms have 

enhanced responsiveness and efficiency (Jambadu, Pilo, et 

al., 2024; Sarfaraz et al., 2023). 

The resource management and repair optimization 

dimension addresses allocation efficiency, ensuring that 

tools, spare parts, and personnel are deployed cost-

effectively without compromising availability. This finding 

is consistent with the principles of Total Productive 

Maintenance (TPM), which seek to balance preventive 

strategies with operational demands to minimize unplanned 

https://journals.kmanpub.com/index.php/jppr/index
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stoppages (Wolska, 2023; Yang & Yang, 2023). The study’s 

emphasis on scalability and system integration further 

validates the relevance of adaptive architectures capable of 

expanding in response to increased data volumes or 

operational complexity (Kaya & Ulutagay, 2023). 

System and maintenance management emerged as a 

pivotal area, incorporating sensor management, anomaly 

detection, and alert systems. The empirical evidence 

suggests that optimal sensor deployment—both in type 

selection and placement—combined with predictive 

algorithms significantly enhances the early detection of 

equipment failures. These results support prior work 

demonstrating that predictive maintenance strategies, when 

paired with machine learning models, can accurately 

forecast failures and guide timely interventions 

(Kaewunruen, 2023; Meddaoui, 2023). Furthermore, the 

inclusion of alert systems with configurable thresholds and 

multi-channel notifications ensures that maintenance teams 

can prioritize and escalate issues appropriately, mirroring 

similar advancements in manufacturing and automotive 

contexts (Farihi, 2023; Risonarta & Wardhani, 2023). 

The monitoring and integration category of the model—

covering performance monitoring, system optimization, and 

preventive maintenance—highlights the necessity of linking 

repair data with performance metrics. The capacity to 

analyze these linkages in real time supports continuous 

improvement and is consistent with balanced scorecard 

approaches to maintenance performance evaluation (Hraiga 

et al., 2023). Predictive and preventive elements in this 

category draw on statistical modeling, clustering, and 

anomaly detection to identify emerging issues before they 

affect operations, a strategy shown to significantly improve 

reliability in both transport and manufacturing industries 

(Fan et al., 2023; Saenagri, 2023). 

Optimization and customization elements in the model 

reveal the importance of tailoring interfaces, workflows, and 

system settings to user needs. This finding aligns with the 

literature on user-centered design in welfare and public 

service contexts, where customization not only improves 

usability but also fosters greater stakeholder engagement 

(Kaun & Liminga, 2023; Lestari, 2023). The feedback 

collection and analysis components of this category ensure 

that user experience remains a driver of system evolution, 

reflecting agile development principles in maintenance 

software design (Firdaus et al., 2023). 

Security and maintenance capabilities—including 

production optimization, machine learning integration, and 

data security—were found to be integral for safeguarding 

system integrity. The model’s focus on encryption, access 

controls, and compliance with regulations reflects 

established best practices for protecting operational and 

customer data in critical infrastructure sectors (Eze et al., 

2024; Jeze et al., 2024). By incorporating machine learning 

into maintenance optimization, the model aligns with trends 

in lean maintenance and predictive analytics, where 

continuous model updates and explainable AI improve both 

transparency and accuracy (Heidari, 2023). 

Finally, the usability and human resources dimension 

emphasizes human resource training, monitoring, and user 

security design. This component acknowledges that even the 

most technologically advanced maintenance systems rely on 

well-trained personnel for effective execution. The focus on 

training in crisis management, safety protocols, and 

equipment operation is supported by studies demonstrating 

that empowered employees are more capable of maintaining 

asset reliability and responding effectively to unexpected 

issues (Jambadu, Monstadt, et al., 2024; Sharifzadegan et al., 

2023). Moreover, the design principles embedded in this 

dimension—simplicity, accessibility, and feedback—mirror 

usability standards that have been shown to increase 

adoption and reduce errors in digital maintenance tools (Fan 

et al., 2023). 

In synthesis, the results validate that a holistic, multi-

dimensional model—combining data integration, predictive 

analytics, human resource development, and security—can 

significantly enhance railway maintenance systems. This 

conclusion is consistent with cross-sectoral findings in 

manufacturing, public infrastructure, and service delivery, 

where integrated approaches yield superior outcomes in 

terms of cost, reliability, and sustainability (Kaewunruen, 

2023; Salahi et al., 2023). The study thus contributes to both 

theoretical and practical discourses on maintenance by 

providing a replicable framework adaptable to other high-

reliability sectors. 

Despite the comprehensiveness of the proposed model, 

several limitations must be acknowledged. First, the study 

was conducted within the specific context of the railway 

industry, which may limit its generalizability to sectors with 

different operational dynamics, regulatory frameworks, or 

technological infrastructures. Second, the reliance on expert 

interviews and qualitative coding—while valuable for depth 

and context—may introduce subjective biases in the 

interpretation of findings. The thematic saturation achieved 

with 12 experts, though consistent with qualitative research 

standards, might not capture the full diversity of perspectives 

in larger or more varied operational environments. 

https://journals.kmanpub.com/index.php/jppr/index
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Additionally, the model has not yet undergone large-scale 

empirical testing in live operational contexts, meaning that 

its predictive accuracy, integration feasibility, and cost-

effectiveness remain to be validated through longitudinal 

and quantitative assessments. Technological dependencies, 

such as the availability of high-quality sensor data and 

reliable connectivity, also pose potential challenges for 

implementation in regions with limited infrastructure. 

Future research could expand the empirical testing of the 

intelligent monitoring model across multiple railway 

systems in diverse geographical and operational contexts to 

assess scalability and adaptability. Comparative studies 

between railway and other critical infrastructure sectors—

such as power grids, aviation, and maritime transport—

could further validate the model’s applicability and reveal 

sector-specific modifications. Incorporating hybrid research 

designs that blend qualitative insights with quantitative 

performance metrics would strengthen the robustness of 

findings. Another promising direction would be to integrate 

emerging technologies such as edge computing, digital 

twins, and blockchain into the monitoring framework, 

thereby enhancing real-time decision-making, security, and 

traceability. Investigating the socio-technical dynamics of 

implementation—particularly how organizational culture, 

change management strategies, and workforce readiness 

affect adoption—would also provide valuable practical 

insights. 

For practitioners, the model offers a structured blueprint 

for enhancing maintenance performance in railway 

operations. Implementation should begin with a thorough 

audit of existing data infrastructure, sensor capabilities, and 

workforce competencies to identify gaps relative to the 

model’s requirements. Building a phased rollout plan—

starting with data integration and predictive analytics, 

followed by customization and security layers—can help 

manage resource demands and minimize disruption. Regular 

training programs for operational staff, combined with 

iterative feedback loops from system users, will ensure 

continuous refinement and alignment with evolving needs. 

Collaboration between technical teams, operational 

managers, and regulatory bodies is essential for ensuring that 

the system remains compliant, secure, and effective in 

delivering both operational and sustainability goals. 
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