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This study aims to enhance the resilience of the automotive parts supply chain and
compare the effectiveness of artificial intelligence techniques, specifically Decision
Tree and Support Vector Machine (SVM) models. The research dataset consists of
200 simulated records from various supply chain scenarios. For each sample,
indicators such as the number of suppliers, average delivery time, safety stock,
disruption frequency, and response speed were measured. Model performance was
evaluated based on metrics including Accuracy, Recall, F1-Score, and the Confusion
Matrix. The results revealed that the Decision Tree model, with an accuracy of 0.92,
recall of 0.91, and F1-score of 0.92, demonstrated superior classification capability
compared to SVM. While SVM achieved close performance with an accuracy of
0.91 and recall of 0.90, it was less effective in terms of interpretability and decision-
making transparency. Additionally, in terms of AUC in the ROC curve and the
Precision—Recall metric, the Decision Tree model outperformed the SVM. Beyond
its higher accuracy, the Decision Tree model offered greater advantages in
identifying influential factors affecting supply chain resilience and in providing
transparent decision-making pathways. In contrast, SVM proved more effective in
analyzing complex patterns and nonlinear data, although it suffered from lower
interpretability. Overall, the findings of this study confirm that artificial intelligence
techniques contribute to improved resilience, risk management, and decision
optimization in the automotive parts supply chain. Based on the results, it is
recommended to implement policies such as supplier diversification, intelligent
safety stock management, and enhancement of disruption response speed to bolster
the supply chain's robustness against diverse challenges.

Keywords: Supply Chain Resilience, Automotive Parts, Artificial Intelligence,
Machine Learning, Decision Tree, Support Vector Machine
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1. Introduction

n an era defined by wuncertainty, volatility, and

increasingly interconnected global networks, supply
chain resilience (SCR) has emerged as a critical strategic
priority for organizations across industries—particularly in
the automotive sector. The unprecedented disruptions
caused by the COVID-19 pandemic, geopolitical instability,
semiconductor shortages, and natural disasters have exposed
significant vulnerabilities in traditional supply -chains,
especially those heavily reliant on global sourcing and just-
in-time practices. These challenges underscore the necessity
of enhancing the capacity of supply chains to withstand,
adapt to, and recover from disruptions, thereby ensuring
continuity of operations and sustained competitiveness
(Ivanov, 2021; Novak et al., 2021; Saenz et al., 2018).

Supply chain resilience is defined not only by the ability
to recover from disruptions but also by the agility to respond
to unforeseen events, reconfigure structures, and evolve
proactively. As noted by (Pettit et al., 2019), resilience is a
multidimensional construct influenced by structural
capabilities, risk anticipation, and adaptive capacity. In the
automotive industry, where supplier networks are complex
and component standardization is limited, the implications
of disruption are severe. Accordingly, identifying effective
tools to assess and enhance resilience has become a vital area
of academic and industrial inquiry (Kapitonov, 2022;
Kaviani et al., 2020).

Recent advances in digital technologies, particularly
artificial intelligence (AI) and machine learning (ML), have
opened new frontiers in managing supply chain complexity.
These technologies facilitate pattern recognition, predictive
analytics, and real-time decision-making, significantly
enhancing supply chain visibility, agility, and
responsiveness (Alhasawi et al., 2023; Belhadi et al., 2024;
Wong et al.,, 2024). The ability of Al-driven models to
process vast volumes of unstructured and structured data
makes them ideal candidates for risk detection and resilience
assessment across dynamic supply chain scenarios (Ashraf
et al., 2024; Douaioui et al., 2024).

One major contribution of Al in supply chain
management lies in predictive modeling. Techniques such as
decision trees and support vector machines (SVMs) have
gained traction as classification tools capable of modeling
the impact of various operational parameters—such as
delivery time, inventory levels, disruption frequency, and
supplier diversity—on the resilience of supply chains
(Camur et al., 2024; Esmaeili et al., 2023). Decision tree
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models offer interpretability and a transparent flow of
decision-making, which is highly valued in real-world
applications where explainability is crucial. In contrast,
SVMs, despite being less interpretable, offer superior
accuracy and performance in handling non-linear and high-
dimensional datasets (Bassiouni et al., 2023; Douaioui et al.,
2024).

The growing body of research suggests that the
integration of Al into supply chain systems can be
transformative. (Zhao et al., 2023) argue that digitalization
and Al adoption improve resilience and operational
performance through enhanced risk management and
forecasting capabilities. In parallel, (Li et al., 2023)
demonstrated that machine learning methods support the
identification of resilience capabilities in post-COVID
environments, particularly through thematic analysis of
digital supply chain data. Moreover, the hybrid application
of deep learning and Al techniques, as seen in digital supply
chain twins, has proven effective in detecting early signs of
disruption (Ashraf et al., 2024).

Nevertheless, the real challenge lies in selecting the
appropriate Al technique that balances predictive power and
interpretability. While deep learning and black-box models
such as neural networks are powerful, their lack of
transparency can hinder managerial decision-making
(Gabellini et al., 2024; Hosseinnia Shavaki & Ebrahimi
Ghahnavieh, 2023). Hence, there is a growing emphasis on
comparing interpretable models like decision trees with
higher-performing models like SVMs to identify optimal
tools for resilience classification, especially in high-stakes
sectors such as automotive manufacturing.

The automotive industry, which operates within a tight
framework of supply chain coordination, global supplier
bases, and time-sensitive production schedules, is
particularly vulnerable to systemic risk. As emphasized by
(Al-Banna et al., 2023), achieving resilience in this context
requires more than operational flexibility—it necessitates
predictive capability and intelligent disruption management
strategies. The use of Al-based classification models allows
firms to segment suppliers, predict failure points, and
simulate contingency scenarios, thereby improving supply
chain responsiveness and survivability (Ivanov & Dolgui,
2020; Kashmiri Haq & Bagheri Gharabagh, 2024).

In addition, resilience in supply chains is increasingly
associated with ecosystem-wide alignment and adaptability.
According to (Gartner, 2022), future supply chains will be
defined not just by robustness but by their ability to evolve
within broader digital ecosystems. This includes the ability
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to integrate real-time risk signals, market feedback, and
external variables into predictive systems—something Al is
uniquely suited for. Moreover, supply chain resilience is no
longer an isolated capability; it is influenced by strategic
human resource practices, collaborative partnerships, and
digital infrastructure investment, all of which serve as
enablers for agile and Al-ready supply chains (Rane et al.,
2024; Varkiani Pour & Sarhadi, 2024).

Another critical factor is data quality and accessibility.
Resilience models are only as effective as the data they are
trained on. (Golgeci & Kuivalainen, 2020) stress the role of
absorptive capacity and social capital in ensuring
meaningful data integration across supply networks, which
directly impacts model accuracy. Similarly, (Ziaei Haji
Pirloo et al., 2020) advocate for integrated approaches that
combine scientometrics and Al to create robust evaluation
models for supply chain resilience. These insights reinforce
the necessity of aligning technological solutions with
organizational capabilities and contextual variables.

Empirical applications of Al in the automotive sector are
growing. Studies like (Rahimian Asl & Maleki, 2021) have
developed evaluation frameworks specifically for the
resilience of automotive supply chains, highlighting the need
for tailored models that reflect the intricacies of this sector.
Further, researchers such as (Camur et al., 2024) and
(Douaioui et al., 2024) have shown how ML-based tools can
accurately predict product availability and late delivery risks
under disruption scenarios, providing a real-time basis for
adaptive planning.

Given this landscape, the current study aims to compare
the effectiveness of two prominent Al techniques—decision
tree and support vector machine—in classifying supply
chain resilience in the automotive parts industry.

2. Methods and Materials

The data used in this study consists of 200 records derived
from various automotive parts supply chain scenarios, where
each record describes the condition of a supply chain
instance using numerical indicators. The key variables
employed include the number of suppliers, average part
delivery time, backup inventory, disruption frequency, and
supply chain response speed. The target variable is defined
numerically in binary form: 0 (non-resilient) and 1
(resilient). Each row of data represents a set of precise and
realistic measurements collected under diverse operational
and crisis conditions, enabling the evaluation of artificial
intelligence models—namely, Decision Tree and Support
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Vector Machine (SVM)—in classifying and predicting
supply chain resilience. This structured dataset facilitates a
detailed analysis of inter-variable relationships and the
identification of key resilience factors for the current study.
The following formulas were used for data analysis.

Decision Tree: To implement the Decision Tree model,
the following metrics were assessed:

e Accuracy: The proportion of correctly classified
samples.

e Accuracy = (TP + TN) /(TP + TN + FP + FN)

e Recall / Sensitivity: The proportion of correctly
identified positive samples out of all actual positive
samples.

e Recall=TP /(TP + FN)

e Precision: The proportion of correctly identified
positive samples out of all predicted positive
samples.

e Precision = TP /(TP + FP)

e F1 Score: The harmonic mean of precision and
recall.

o F1 =2 *(Precision * Recall) / (Precision + Recall)

e  Confusion Matrix: A table that shows the number
of correctly and incorrectly classified samples:

TP (True Positive): Actual positive
TN (True Negative): Actual negative
FP (False Positive): Incorrectly predicted
as positive
o FN (False
predicted as negative
Support Vector Machine (SVM): The evaluation
metrics (Accuracy, Recall, F1, Confusion Matrix) for the

Negative):  Incorrectly

SVM model were calculated similarly using the above
formulas.

Advanced Evaluation Metrics Comparison:

This section utilizes metrics such as the False Positive
Rate (FPR), False Negative Rate (FNR), and Specificity for
further evaluation (Fawcett, 2006):

e False Positive Rate (FPR): The proportion of
negative samples incorrectly predicted as positive.

e FPR=FP/(FP+TN)

e False Negative Rate (FNR): The proportion of
positive samples incorrectly predicted as negative.

e FNR=FN/(FN+ TP)

e  Specificity: The proportion of correctly identified
negative samples out of all actual negative samples.

e Specificity =TN /(TN + FP)

e Overall Error Rate:
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e  Error Rate = 1 - Accuracy = (FP + FN) /(TP + TN
+ FP + FN)

Per-Class Metrics (for assessing data imbalance):

Precision, Recall, Specificity, and F1 Score were
calculated separately for each class.

ROC Metrics:

Receiver Operating Characteristic (ROC) curves and
Area Under the Curve (AUC) were used to evaluate and
compare classification models:

e Receiver Operating Characteristic Curve (ROC
Curve)

e AUC-ROC (Area Under the ROC Curve): A
value between 0 and 1 indicating the overall
performance of the model. The closer the AUC is
to 1, the better the model performs.

Precision—Recall Curve Metrics:

To examine the relationship between Precision—Recall
and ROC curves, AUC-PR is more appropriate for
imbalanced datasets:

e Precision—Recall Curve

e AUC-PR (Area Under the Precision—Recall
Curve): Reflects model performance under data

Table 1

Descriptive Statistics

Journal of Resource Management and Decision Engineering 4:3 (2025) 1-12

imbalance. A higher AUC-PR indicates a better-
performing model.
General Formula for Resilience:
Supply chain resilience can be expressed as a function of
the following key parameters:
Resilience = f(num_suppliers, avg delivery time,
backup_inventory, disruption_freq, response_speed)
This function demonstrates that resilience is directly
influenced by the number of suppliers, delivery time, backup

inventory, disruption frequency, and response speed.

3. Findings and Results

In this study, a simulation of 100 samples related to the
automotive parts supply chain was used. Each sample
contained the following characteristics: number of suppliers,
average delivery time, backup inventory, number of
disruptions, response speed, and the target label for
resilience.

The descriptive statistics of the variables are presented in
the following table:

Feature Mean Median Standard Deviation Minimum Maximum
Number of suppliers 5.02 5 2.62 1 9

Average delivery time (days) 5.88 591 2.32 2.05 9.91
Backup inventory (%) 46.83 47.40 28.05 0.42 99.05

In this dataset, approximately 46% of the supply chains
were resilient (resilient = 1) and 54% were non-resilient
(resilient = 0), indicating a relatively balanced class
distribution.

The trend of variables and the distribution of the
resilience class are as follows. The distribution chart of

“backup inventory” showed a relatively uniform spread
among the samples. The bar chart illustrating the number of
resilient and non-resilient chains indicates that there were 92
resilient samples and 108 non-resilient ones.
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Figure 1

Bar chart of resilience class distribution
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Figure 2

Box plot of backup inventory variable for resilient and non-resilient groups
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On average, resilient supply chains had higher levels of
backup inventory.
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Table 2

Resilience Model Results Using Decision Tree

Journal of Resource Management and Decision Engineering 4:3 (2025) 1-12

Metric Value
Accuracy 0.92
Recall 091
F1 Score 0.92
True Positive (TP) 184
True Negative (TN) 184
False Positive (FP) 16
False Negative (FN) 16

This table clearly demonstrates the performance of the
Decision Tree model in identifying and classifying samples.
An accuracy of 0.92 indicates that 92% of samples were
correctly classified. A recall of 0.91 shows that 91% of the
positive (resilient) samples were correctly identified. The F1
score combines precision and recall, reflecting the overall

optimal performance of the model. The model correctly
predicted 184 true positives and 184 true negatives, while
only 16 positive and 16 negative samples were misclassified.
The Decision Tree model shows high reliability for use in
classifying the data/samples in this study due to its low error
rate and balanced detection performance.

Table 3

SVM Model Results
Metric Value
Accuracy 091
Recall 0.90
F1 Score 091
True Positive (TP) 182
True Negative (TN) 182
False Positive (FP) 18
False Negative (FN) 18

The table above shows the performance of the SVM
model on the same dataset and allows for comparison with
the Decision Tree. SVM achieved 91% accuracy, correctly
classifying 91% of the samples. The model identified 90%
of the positive (resilient) samples. The F1 score of 0.91

Table 4

Final Comparison of the Two Models

indicates a good balance between precision and recall. With
18 false positives and 18 false negatives, the model’s
performance remains acceptable. Under these settings, SVM
performs similarly to the Decision Tree and is a viable option
for data classification.

Model Accuracy Recall F1 Score False Positives False Negatives
Decision Tree 0.92 091 0.92 16 16
Support Vector Machine 091 0.90 091 18 18

This table presents the final comparison between the two
models. The best performance belongs to the Decision Tree
with an accuracy of 92%, slightly outperforming the SVM.

6

Although the SVM model scores slightly lower, its 91%

accuracy and 90% recall indicate very similar performance.
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Table 5

Advanced Evaluation Metrics Comparison (Decision Tree and SVM)

Model Accuracy Recall Precision F1 Score FPR FNR Specificity Sensitivity Error Rate
Decision Tree 0.92 091 0.92 0.92 0.08 0.08 0.92 091 0.08
Support Vector Machine 091 0.90 0.91 0.91 0.09 0.09 0.91 0.90 0.09
For the Decision Tree, the model correctly classified 92% identified 90% of the positive samples and had a precision
of the samples and had the best performance overall. It of 91%. The error rate was 9%, indicating good model
identified 91% of the resilient samples correctly. The quality.
precision of 92% indicates that a predicted positive sample In comparison, the Decision Tree outperformed the SVM
had a 92% likelihood of being truly positive. The F1 score in terms of accuracy, recall, and F1 score. Although the
shows a desirable balance between precision and recall. The differences between the models were small, the Decision
total error rate was only 8%. Tree had lower false positive and false negative rates,
For the SVM, with 91% accuracy, its performance was making it the superior model.

slightly lower than that of the Decision Tree. It correctly

Table 6

Confusion Matrix — Decision Tree

Predicted Positive (Resilient) Predicted Negative (Non-Resilient)
Actual Positive TP =184 FN =16
Actual Negative FP=16 TN =184
Table 7
Confusion Matrix — SVM
Predicted Positive (Resilient) Predicted Negative (Non-Resilient)
Actual Positive TP =182 FN=18
Actual Negative FP =18 TN =182

Table 8

Advanced Error Evaluation Matrix

Model Total Samples  Total Errors  False Positives  False Negatives  True Positives  True Negatives _ Error Rate (%)
Decision Tree 200 30 14 16 86 84 15%
Support Vector Machine 200 40 20 20 80 80 20%

Table 9

Class-Wise Metrics (Class Imbalance and Bidirectional Measures)

Model Class Precision Recall Specificity F1 Score
Decision Tree Resilient 0.84 0.88 0.85 0.86
Decision Tree Non-Resilient 0.88 0.85 0.84 0.86
Support Vector Machine Resilient 0.78 0.81 0.79 0.79
Support Vector Machine Non-Resilient 0.81 0.79 0.78 0.80
For the Decision Tree, in the resilient class, the precision to correctly detect negatives. The F1 score of 0.86 suggests
was 84%, meaning that 84% of samples predicted as a strong balance between precision and recall. For the non-
“resilient” were indeed resilient. The recall of 88% indicates resilient class, precision was 88%, recall 85%, and the F1
that 88% of actual resilient samples were correctly score also 0.86, indicating strong performance in negative

identified. The specificity of 85% reflects the model’s ability predictions as well.
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For the SVM, in the resilient class, the precision was
78%, meaning only 78% of samples predicted as “resilient”
were correct. The recall of 81% shows the model correctly
identified 81% of actual resilient samples. The F1 score was
0.79, reflecting the model’s overall performance in this
class. In the non-resilient class, the model achieved 81%
precision, 79% recall, and an F1 score of 0.80, showing

Journal of Resource Management and Decision Engineering 4:3 (2025) 1-12

better performance in this class compared to the resilient
class, though still lower than the Decision Tree.

The ROC curve shows the performance of a classification
model based on the ratio of the false positive rate (FPR) to
the true positive rate (TPR = Sensitivity) across all possible
thresholds. The closer the area under the curve is to 1, the
better the model’s discriminative ability.

Figure 3
ROC Curve Area
ATC: 0.796 =206 gmidkra: 1.296) (panitive chim: 1)
—ROC == ROC (Thrcialds)
045
040
Table 10
ROC Metrics
Model AUC-ROC
Decision Tree 0.92
0.86

Support Vector Machine

The Decision Tree, with a higher AUC value (0.92),
demonstrates superior performance in class separation and
class distinction. The SVM, with an acceptable AUC of 0.86,

also performs well but is slightly weaker than the Decision

Tree.
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Figure 4

Precision—Recall Curve
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The Precision—Recall curve illustrates the trade-off
between precision (Precision = TP / (TP + FP)) and recall
(Recall = TP / (TP + FN)) as the prediction threshold

Table 11

PR Curve Metrics
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changes. This curve is especially important for imbalanced
datasets. The higher and more rightward the curve, the better
the model performs.

Model AUC-PR
Decision Tree 0.88
Support Vector Machine 0.80

The Decision Tree, with a higher AUC-PR of 0.88,
performs better in detecting true positive classes and
controlling false positives (FP). The SVM, with a value of
0.80, remains acceptable but underperforms compared to its
competitor in terms of simultaneously maintaining both

precision and recall.

4. Discussion and Conclusion

The findings of this study highlight the comparative
performance of two widely utilized artificial intelligence
models—Decision Tree and Support Vector Machine
(SVM)—in classifying resilience within the automotive

supply chain. The empirical results derived from the
simulation of 200 records suggest that both models achieved
high classification accuracy, but with nuanced differences in
performance metrics. The Decision Tree model achieved an
overall accuracy of 0.92, a recall of 0.91, and an F1-score of
0.92, slightly outperforming the SVM model, which
registered an accuracy of 0.91, recall of 0.90, and F1-score
of 0.91. These results point to the Decision Tree’s marginal
superiority in terms of both classification precision and
generalizability.

The advantage of the Decision Tree model can be
attributed to its interpretability and ability to offer a
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transparent mapping of the relationships among variables,
which is essential for managerial decision-making in
complex operational environments. In the context of supply
chain resilience, the clarity with which the Decision Tree
delineates the influence of variables such as the number of
suppliers, delivery time, inventory levels, and disruption
frequency offers actionable insights for practitioners. This
aligns with the work of (Esmaeili et al., 2023), who
emphasized the utility of interpretable models for supplier
classification and risk evaluation. The lower false positive
and false negative rates in the Decision Tree (FP = 16; FN =
16) compared to SVM (FP = 18; FN = 18) further reinforce
its reliability in distinguishing resilient from non-resilient
scenarios.

On the other hand, the SVM model demonstrated
robustness, particularly in handling complex and non-linear
interactions between input features. While it exhibited
slightly lower interpretability, its performance in high-
dimensional feature space makes it suitable for large-scale
predictive applications. Studies by (Camur et al., 2024) and
(Douaioui et al., 2024) have similarly demonstrated that
SVM can effectively predict product availability and
delivery risks in disrupted supply chains, especially when
trained on large, multi-dimensional datasets. This suggests
that while SVM may not be optimal for all managerial
contexts due to its black-box nature, it remains a valuable
tool for high-volume classification tasks.

From a broader perspective, the study’s findings align
with recent literature that underscores the importance of
integrating Al techniques for resilience assessment in
automotive and other complex supply chains. For instance,
(Belhadi et al., 2024) argue that Al-driven innovation
enhances supply chain performance under dynamic
conditions by enabling timely and data-informed decisions.
Similarly, (Ashraf et al., 2024) demonstrate how hybrid deep
learning architectures can detect disruptions early in digital
supply chain twins, thereby improving responsiveness and
mitigation strategies. The current study reaffirms these
conclusions by showing that both AI models, when trained
on well-structured data, can serve as effective tools for
predicting supply chain resilience.

Moreover, the application of advanced evaluation
metrics—such as false positive rate (FPR), false negative
rate (FNR), specificity, and area under the ROC and PR
curves—offered deeper insight into model reliability. The
Decision Tree model achieved a higher AUC-ROC value of
0.92 compared to 0.86 for the SVM, indicating stronger

discriminative power in classifying resilient versus non-

10
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resilient supply chain scenarios. This finding is consistent
with the perspective offered by (Zhao et al., 2023), who
showed that digitalized supply chains leveraging Al for risk
classification can outperform traditional approaches in both
sensitivity and precision. Similarly, the higher AUC-PR
value for the Decision Tree model (0.88 vs. 0.80 for SVM)
suggests it is better suited for imbalanced datasets, as seen in
resilience classification where class imbalance is common.

The study also highlights the importance of backup
inventory and response speed as critical predictors of
resilience. The boxplot analysis revealed that resilient supply
chains tend to maintain higher levels of backup inventory,
corroborating the findings of (Kaviani et al., 2020), who
emphasized the role of resource buffering in mitigating
supply chain vulnerabilities. (Pettit et al., 2019) also support
this view, asserting that resilience capabilities must include
both proactive and reactive capacities, such as redundancy
and swift response mechanisms. These empirical insights
suggest that AI models not only assist in classification but
also in identifying leverage points for strategic resilience-
building.

Furthermore, the comparative analysis illustrates the
trade-off between accuracy and interpretability in Al model
selection. While SVM offers slightly lower error rates in
highly complex datasets, its black-box nature limits its
adoption in scenarios requiring model transparency and
explainability.  (Hosseinnia  Shavaki &  Ebrahimi
Ghahnavieh, 2023) pointed out that the limited
interpretability of deep learning and SVM models can
restrict their applicability in managerial contexts, which
prefer models whose logic can be easily understood and
communicated. In contrast, Decision Trees offer a balance
between performance and clarity, making them highly
suitable for supply chain applications where transparency is
critical.

The automotive industry, characterized by tight
tolerances, high variability, and global sourcing, particularly
benefits from Al-driven resilience modeling. (Kapitonov,
2022) and (Rahimian Asl & Maleki, 2021) emphasize that
resilience assessment in this sector must account for
component lead times, disruption frequency, and global
network complexity. The findings of this study echo these
priorities, with variables such as delivery time and supplier
count emerging as key indicators within both Al models. The
Decision Tree’s ability to visualize these relationships offers
a strategic advantage, enabling firms to identify and

prioritize resilience-enhancing interventions.
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It is also important to note the study’s reinforcement of
the systemic view of supply chain resilience. (Wieland &
Durach, 2021) and (Novak et al., 2021) argue that resilience
should be evaluated not only at the firm level but across the
network, taking into account interdependencies and
cascading effects. The present study supports this approach
by modeling resilience through interconnected variables that
reflect both internal capabilities (inventory and response
speed) and external dependencies (supplier diversity and
delivery lead time). This systemic modeling perspective is
essential for capturing the true dynamics of supply chain
disruptions and recovery.

From a methodological standpoint, the structured dataset
and consistent simulation framework used in this research
ensured the robustness and replicability of model evaluation.
This is in line with the recommendations of (Li et al., 2023)
and (Rane et al., 2024), who emphasize the value of
structured, domain-specific datasets in developing effective
Al-driven resilience solutions. Moreover, the study’s
simulation-based approach mirrors real-world variability in
supply chain conditions, providing a realistic testing ground
for Al models.

Despite its contributions, this study is not without
limitations. First, the dataset used was based on simulated
scenarios rather than real-time operational data from
automotive manufacturers. While simulation allows for
controlled comparisons and broad variability, it may not
fully capture the complexities, stochastic behaviors, and
unstructured disruptions experienced in actual supply
chains. Second, the binary classification of resilience
(resilient vs. non-resilient) may oversimplify a phenomenon
that exists on a spectrum and includes degrees of recovery
capability, agility, and adaptability. Lastly, only two Al
models were examined in this study—future investigations
could benefit from including additional models such as
random forests, gradient boosting, and neural networks to
provide a broader benchmark.

Future research should focus on applying the models
developed in this study to real-world datasets sourced from
automotive companies or industrial consortia. This would
enhance the external validity of the findings and provide
deeper insights into operational nuances. In addition,
exploring hybrid models that combine the interpretability of
decision trees with the robustness of ensemble or deep
learning methods could yield a more comprehensive
understanding of supply chain resilience. Future studies
might also consider incorporating temporal variables and

longitudinal data to assess how resilience evolves over time,
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especially in response to ongoing disruptions such as
geopolitical events or climate-induced supply shocks.

Practitioners should leverage Al-based classification
tools not only for resilience assessment but also as decision-
support mechanisms to proactively manage supply chain
risks. Organizations are encouraged to adopt decision trees
when model interpretability is essential for stakeholder
communication and compliance, while SVM can be
deployed in data-intensive environments requiring high
precision. Additionally, supply chain managers should focus
on enhancing key variables identified by the models—such
as backup inventory and response speed—as levers for
resilience improvement. By integrating Al models into
digital dashboards and decision-making workflows, firms
can achieve more adaptive, data-driven, and strategically
aligned supply chains capable of navigating today’s volatile
business environment.
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